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We consider statistical experiments associated with a Lévy process X � (Xt)t≥ 0 observed along a deterministic scheme
(iun, 1≤ i≤ n). We assume that under a probability Pθ, the r.v. Xt, t> 0, has a probability density function >o, which is regular
enough relative to a parameter θ ∈ (0,∞). We prove that the sequence of the associated statistical models has the LAN property at
each θ, and we investigate the case when X is the product of an unknown parameter θ by another Lévy process Y with known
characteristics. We illustrate the last results by the case where Y is attracted by a stable process.

1. Introduction

)is work is a part of an ambitious program consisting in the
estimation of the parameter θ intervening in the stochastic
differential equation driven by a known Lévy process Y:

dXt � b(θ, X)dt + a(θ, X)dYt, (1)

)ese kinds of models are motivated by mathematical
finance problems ([1]). In this context, the property of local
asymptotic normality property (LAN) has become an im-
portant issue [2].)e LAN property is described as follows: a
sequence of families of probabilities (Pn

θ)θ∈Θ indexed by an
open set Θ ⊂ R is said to have the LAN property at each
point θ0 ∈ Θ with speed

�
n

√
, if the sequence of probabilities

localized around θ0,

P
n
θ0+n(− 1/2)θ􏼐 􏼑θ∈ ξ/ θ0+n(− 1/2)( )( ) ξ∈Θ{ }

, (2)

converges, in the sense of weak convergence of the asso-
ciated likelihood processes, to a Gaussian shift (Pθ′)θ∈R; see
Section 2 for a precise definition. )e LAN property allows
to recover the so-called asymptotic Fisher information
quantity I(θ0). )is quantity is crucial in any estimation
procedure, since 1/I(θ0) provides the lower bound of the
variance of any estimator of θ0.

)e LAN property was investigated by Akritas [3] in
models associated with Lévy processes X observed contin-
uously in time over the interval [0, n], n⟶∞. He ob-
tained the property under the assumption of
differentiability, according to the parameter θ, of the
characteristics (bθ, cθ, ]θ) of X. With the same asymptotic,
Luschgy [4] obtained the local asymptotic mixed normality
(LAMN) property on models associated with semi-
martingales. As a notion, LAMN property is more general
than the LAN because it allows the Fisher information
quantity to be random. With the asymptotic
[0, n], n⟶∞, the estimation methods do not seem to be
feasible in practice, for this reason, several recent works
focused on discretized schemes, i.e., observations of the
process X along the discrete scheme

Xiun
, 1≤ i≤ n, n⟶∞. (3)

In practice, the most interesting case of the discretization
path un � 1/n turns out to be relatively difficult. )e classical
case of a Brownian motion Y in (1) has been widely treated
[5]. Clément andGloter [6] studied the LAN for themodel in
(1), in the case where Y is a Lévy process attracted by a
symmetric stable process with index α ∈ (1, 2]. Aı̈t-Sahalia
and Jacod [7], Masuda [8], and Kawai and Masuda [9, 10]
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studied LAN property for themodel in (1) in case of constant
coefficients, i.e.,

dXt � θ1dt + θ2dYt, (4)

Our investigation goes to same direction of Aı̈t-Sahalia
and Jacod [11], who studied the LAN property and the
problem of estimation of the parameter (θ1, θ2) involved in
the model of a log-asset price X, solution of (3) with Y being
a standard symmetric stable process with index α ∈ (0, 2].
Section 4 completes their situation in case where Y is a
general stable process, eventually mixed. )e last direction
was initiated Rammeh [12] with observations according to
random schemes (T(i, n), 1≤ i≤ n) for the scale model:

X � θY, (5)

where θ is a real unknown real parameter, and Y is a
symmetrical standard α-stable process. Rammeh showed
that the LAN property always occurs, and his main argu-
ments strongly rely to the linearity in θ to the fact that stable
processes have the temporal scaling property and to the
asymptotic behavior of the stable densities. )eorem 2
generalizes Rammeh’s results in the context of deterministic
discrete scheme T(i, n) � iun.

Because of the intricacy of the case (1), we first focus on
the following model, which contains (5) and intercepts (1):
we assume that for all θ ∈ Θ, under Pθ, X is a Lévy process,
null at t � 0, such that its Lévy exponent is given by the so-
called Lévy-Khintchine formula:

EPθ
e

iuXt􏽨 􏽩 � e
tφθ(u)

, φθ(u) � iubθ −
c
2
θu

2

2

+ 􏽚
R

e
iuy

− 1 − iuy1l|y|≤1􏼐 􏼑μθ(dy),

(6)

where bθ ∈ R, cθ ∈ R+, and μθ is a positive measure on R

which integrates min(y2, 1).
For sake of clarity, we takeΘ is the open intervalR. As in

the precited literature, we will assume the following.

(i) )e existence of densities gθ
t , such that θ↦gθ

t is
regular enough,

(ii) )e convergence, as n⟶∞, of some integrals
depending on gθ

un
.

)eorem 1 and Corollary 1 provide conditions ensuring
the LAN property for the model (6), when the process X is
observed along the discrete scheme (3). Denoting gθ

un
, the

logarithmic derivative of gθ
un

relative to θ, the asymptotic
Fisher information quantity at each θ should satisfy

I(θ) � lim
n⟶∞

􏽚 g
θ
un

􏼐 􏼑
2
(x)g

θ
un

(x)dx ∈ (0,∞). (7)

It is difficult to find Lévy processes fulfilling (7), and the
reasons are numerous, for instance, the existence of the
densities gθ

t , the fact that they are not explicit in general, and
their degeneracy as t⟶ 0. For these reasons, Corollary 1
focuses on the linear dependance (4) of the characteristics
relative to θ. In this case, we may assume, without loss of
generality, that Θ contains a reference value, 1 for example,

and the value 0 is excluded in order to avoid trivialities. In
this case, we only need to assume some regularities of the
function g1

un
(x) and conditions of the kind (7) for θ � 1. Let

hn ≔ g1
un
and hn be the logarithmic derivatives of hn(x). )e

asymptotic Fisher information quantity should then satisfy

I(θ) �
1
θ2

lim
n⟶∞

􏽚 1 + xhn(x)􏼐 􏼑
2
hn(x)dx ∈ (0,∞).

(8)
)e case of the discretization with constant path un �

u ∈ (0,∞) is quite obvious since the scale model (5)
becomes a regular i.i.d. one, that is, to say I(θ) is finite and
nonnull. If un⟶ 0, the situation is more intricate be-
cause hn degenerates when n⟶∞. It turns out that even
the linear model (5) is falsely simple to handle. Intuitively,
one looks at special Lévy processes Y attracted by stable
processes on the sense of (10). )e price to pay is to exhibit
refined controls on the probability density function of
Yt, t> 0. In a second step, we restrict our attention to the
scale model (5). For simplicity’s sake, it is easier in this
case to express the probabilities (Pθ)θ∈Θ in the form (5)
rather than considering them as solutions of martingale
problems associated with the family of characteristics
(bθ, cθ, μθ)θ∈Θ because of the intricacy inherent in the
truncation functions [13]. Generic examples of Lévy
processes are stable processes. )ey characterized Lévy
exponent as follows. Let (α, β, c, δ) ∈ A � (0, 2] × [− 1, 1] ×

(0, +∞) × R and

K(α) � α1l(0,1](α) +(α − 2)1l(1,2](α),

K(α) �
K(α)

α
.

(9)

A stable process, with parameters (α, β, c, δ), is a Lévy
process X � (S

α,β,c,δ
t )t≥ 0, such that the corresponding Lévy

exponent is given by

φ(u) �
iδu − c|u|

α exp(− iπβK(α)Sign((u)/2)), if α≠ 1,

iδu − c|u|(1 + i2β log|u|Sign(u)/π), if α � 1.
􏼨

(10)

)e parameter α is the stability coefficient, β is the
skewness coefficient, c is the scale coefficient, and δ is the
drift parameter. )e corresponding triplet (b, c, μ) of
characteristics is given by

b � δ + c sin(πβK((α)/2))1lα≠1,

c �
��
2c

􏽰
1lα�2,

μ(dx) � C(α, β, c)1lx>0 + C(α, − β, c)1lx<0( 􏼁|x|
− (α+1)dx1lα<2,

C(α, β, c) �
c

π
Γ(α + 1)

sin
π
2
α(1 + K(α)β)􏼒 􏼓, if α≠ 1,

1 + β, if α � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

See [14]. In model (6), a candidate for the unknown
parameter θ could be any the parameters α, β, c, or δ. Since
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stable processes enjoy the scaling property, with δ(α, t) ≔
t[δ+ (2β/π)c log(c)1lα�1],

S
α,β,c,δ
t􏼐 􏼑

t≥ 0�
d
c
1/α δ(α, t) + S

α,β,1,0
t􏼐 􏼑

t≥ 0,
(12)

then a candidate for the unknown parameter in the model
(5) is clearly the parameter θ � c1/α. For more account on
Lévy processes, the reader is referred to [13] or [15] and for
stable distributions, we suggest [16] and also [17]. Section 4
provides nontrivial examples of LANmodels associated with
Lévy processes Y attracted by stable ones. )at means that
there exist measurable functions b(t) ∈ R, a(t) > 0 and a
nondegenerate distribution ], such that

􏽢Yt �
Yt − b(t)

a(t)
⟶d ], as t⟶ 0 or as t⟶∞. (13)

In [18], Far focused on the LAMN property for the
model (5) discretized along the scheme iun � (i/n), 1≤ i≤ n,
when the process Y is of the form Y � W + N, the sum of a
standard Brownian motion and an independent compound
Poisson process. She obtained LAMN property under the
condition that the Lévy measure ] of N has no diffuse
singular part and that if ] is absolutely continuous, then the
model has the LAN property. Our development in Section 5
constitutes a complement to Corollary 1 for the scale model
(5) and also to Far’s work [18] and illustrates how to build a
LAN scale model from another LAN scale model.

2. Definition of the LAN Property

In Section 3, we provide some theoretical results on models
associated with observations, at times iun, un > 0, of the
process X, and to illustrate by some examples. To this end,
we consider the sequence of i.i.d. random variables and the
family of σ-fields:

X
n
j � X(j+1)un

− Xjun
,

G
n
i � σ X

n
j , 0≤ j≤ i − 1􏼐 􏼑 � σ jun, 0≤ j≤ i( 􏼁.

(14)

Denoting Hn � Gn
n and Hn

t � Gn
[nt], t ∈ [0, 1], we in-

troduce the sequence of filtered statistical models:

E
n

� Ω,H
n
, H

n
t( 􏼁t∈[0,1], Pθ( 􏼁θ∈Θ􏼐 􏼑. (15)

For any fixed θ0 ∈ Θ, we denote

Θn � θ ∈ R: θ0 +
θ
�
n

√ ∈ Θ􏼨 􏼩,

[θ]n � θ0 +
θ
�
n

√ ,

P
n
θ � P[θ]n

|H
n
,

(16)

and we introduce the statistical experiments localized
around θ0:

E
n θ0( 􏼁 � Ω,H

n
, H

n
t( 􏼁t∈[0,1], P

n
θ( 􏼁θ∈Θn

􏼐 􏼑,

E′ θ0( 􏼁 � Ω′,F′, Ft
′( 􏼁t∈[0,1], Pθ′( 􏼁θ∈R􏼐 􏼑,

(17)

where the last statistical experiment is a Gaussian Shift. By a
Gaussian shift, we mean, that for all θ ∈ R,Pθ′ is the unique
probability on (Ω′,F′) equivalent toP0′ on eachFt

′ and that
its associated likelihood process is the geometric Brownian
motion defined by

Z
′θ
t �

dPθ′|Ft
′

dPθ0
′|Ft
′

� exp θ
�����

I θ0( 􏼁

􏽱

Xt
′ −

θ2

2
I θ0( 􏼁t􏼨 􏼩, t ∈ [0, 1],

(18)

where (Xt
′)t∈[0,1] is a Wiener process, and then, under Pθ′,

the process (Xt
′ − tθ

�����
I(θ0)

􏽰
)t≥ 0 is again a Wiener process.

)e quantity I(θ0) is called the asymptotic Fisher in-
formation quantity; it is a positive constant related to the
sequence of statistical experiments En(θ0) in (17) and has
to be determined. )e asymptotic Fisher information
quantity is crucial in any estimation procedure. Indeed,
under the LAN property, 1/I(θ0) is the lower bound of the
variance of any estimator ϑn of θ0. More precisely,
HAJEK’s asymptotic convolution theorem says that if ϑn

satisfies

Law
�
n

√
ϑn − θ0 +

θ
�
n

√􏼠 􏼡􏼠 􏼡|P
n
θ􏼠 􏼡⟶Lθ0, as n⟶∞,

(19)

then the distribution Lθ0 is the convolution product
Lθ0 � L1

θ0 ∗L
2
θ0 , whereL

1
θ0 � normal(0, I(θ0)

− 1) andL2
θ0

is a probability measure on R. See [19] for more.
Local asymptotic normality of the sequence of models En

in (17), in a value θ0 ∈ Θ, is actually equivalent to the weak
functional convergence in time of the sequence of statistical
experimentsEn(θ0) to the Gaussian shiftE′(θ0) in (17).)is
fact is explained as follows: let Z′

ηξ and Zn,ηξ be the like-
lihood processes defined, for all η, ξ ∈ Θn and at each time
t ∈ [0, 1], by

Z
′ηξ
t �

dPη′|Ft
′

dPξ′|Ft
′

� EPξ′
dPη′

dPξ′
|Ft
′􏼢 􏼣 �

Z
′η
t

Z
′ξ
t

,

Z
n,ηξ
t �

dPn
η|H

n
t

dPn
ξ |H

n
t

� EPn
ξ

dPn
η

dPn
ξ
|H

n
t􏼢 􏼣,

(20)

with the convention (a/0) � 0, if a ∈ (0, +∞). According to
[5], the likelihood process Zn,ηξ of the statistical experiment
En(θ0) is represented by

Z
n,ηξ
t � 􏽙

[nt]

j�1

g
η
un

g
ξ
un

X
n
j􏼐 􏼑. (21)

)e notion of weak functional convergence in time was
introduced by Lecam [2] and developed by Strasser [19] and
Jacod [20]. It is expressed as follows: for every finite subset J

of R � ∪ n≥1Θn, and every ξ ∈ Θ, we have

Law Z
n,ηξ

􏼐 􏼑η∈J|P
n
[ξ]n

􏼒 􏼓⟶Law Z′ηξ􏼒 􏼓
η∈J

|Pξ′􏼠 􏼡,

as n⟶ +∞,

(22)

Complexity 3



in the sense of the weak convergence for the Skorohod
topology.

3. When Does LAN Property Hold for
Lévy Models?

Our aim is to give sufficient conditions on the p.d.f. > o of Xt

under Pθ, ensuring the LAN property for the sequence of
filtered statistical models En.

3.1. LAN Property for the Model (6). In this section, we will
consider the model (6). If cθ � 0, μθ integrates |y|∧1, and
μθ(0,∞) � 0 (respectively, μθ(− ∞, 0) � 0), then the support
of the distribution of Xt is

dθt,∞ respectively, − ∞, dθt( 􏼃( 􏼁, with dθ � bθ − 􏽚
R

y1l|y|≤1μθ(dy).􏼔 (23)

In all other cases, the distribution of Xt has a support
equal to R. )ere are many situations in which for all
t> 0, Xt has a probability p.d.f. gθ

t (x) which is infinitely
differentiable in x. For instance, the latter holds if

cθ > 0,

or if 􏽚
|y|≤ε

min y
2
, 1􏼐 􏼑μθ(dy)≥Kθε

α
,

(24)

for any ε ∈ [0, 1] and for some Kθ > 0 and some α ∈ (0, 2),
see [21]. Later on, we may assume the following:

(H0): for all θ ∈ Θ and t> 0, underPθ, the support of the law of Xt is an intervalKt,

independent from θ, of the formKt � R or(− ∞, dt

andXt has a p.d.f . x↦g
θ
t (x)which is of classC

2
, relative to θ.

(25)

We denote Kn � Kun
and we define, on the interior of

Kn, the following functions:

h
θ
n � g

θ
un

,

h
θ
n �

z

zθ
log h

θ
n,

€h
θ
n �

z
2

z
2
θ
h
θ
n,

i
θ
n � h

θ
n h

θ
n

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2

j
θ
n � i

θ
n + €h

θ
n

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌.

(26)

When the number χ > 0 appears, it is always understood
that n is big enough so that χ and − χ are in Θn. For all
θ ∈ Θ, ρ ∈ (0, 1), and ρ′ � 1 − ρ, we denote

I
θ
n ≔ 􏽚

Kn

i
θ
n(x)dx,

􏽥In(χ) � sup
|ε|≤χ

I
[ε]n

n ,

(27)

􏽥J
ρ
n(χ) ≔ sup

|ζ|,|ε|≤χ
􏽚
Kn

j
[ζ]n

n (x)j
[ε]n

n (x)

h
[ζ]n

n (x)􏼐 􏼑
ρ

h
[ε]n

n (x)􏼐 􏼑
ρ′
dx � 􏽥J

ρ′
n (χ).

(28)

For statisticians, I
θ0
n is a familiar quantity and corre-

sponds to the Fisher information quantity at stage n. )e
quantity 􏽥J

ρ
n(χ) is less intuitive; it is a localized quantity

around the true value θ0 and corresponds to the rest of
Taylor approximations at the order 1 of Hellinger integrals of
the model.

We are now able to state our first result, that is, the LAN
property for the model (6).

Theorem 1. Assume (H0) and the following conditions:
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(H1): lim
n⟶∞

I
θ0
n � I θ0( 􏼁 ∈ (0,∞)and for all χ > 0, limsup

n⟶+∞
􏽥In(χ)< +∞,

(H2): There exists a ∈ (0, (1/2))such that for all χ > 0, one has

lim
n⟶+∞

􏽥J
ρ
n(χ)

n
� 0 for ρ ∈ (1/2), a, 1 − a{ }.

(29)

)en, the sequence of sequence of filtered statistical
models En (15), corresponding to (6), has the LAN property
at θ0 with the speed

�
n

√
and the asymptotic Fisher infor-

mation quantity I(θ0).

Remark 1

(i) Cauchy–Schwarz inequality gives Iθn ≤ [􏽥J
1/2
n (|θ|]]1/2,

and both conditions (H1) and (H2) are implied by

(H3): lim
n⟶+∞

I
θ0
n � I θ0( 􏼁and there exists a ∈ (0, (1/2)), such that for all χ > 0, one has

limsup
n⟶+∞

􏽥J
ρ
n(χ)< +∞ for ρ ∈ (1/2), a, 1 − a{ }.

(30)

(ii) Under different conditions and a different proof,
Masuda obtained ([8], )eorem 2.12) the same
conclusion as in )eorem 1.

Genon-Catalot and Jacod [5] exhibited discretized
models according to random sampling schemes
(T(i, n), 1≤ i≤ n) associated with a diffusion process X

driven by Brownianmotions (with coefficients dependent on
θ and by an homogeneous way on X) and proved the LAMN
property under conditions similar to (H0), that is, differ-
entiability to the third order relative to θ and integrability of
the densities of the processes. )eir proofs have a general
vocation in the sense that they only use the Markovian
property of the processes and are based on a method of
approximation of the log-likelihood. Because of the intricate
form 16 of the likelihood processes, we show the weak
functional convergence of En(θ0) to E′(θ0) via the con-
vergence of the Hellinger processes, and with a tool, one can
find in [20].

Proof of @eorem 1. Fix θ0. )e Hellinger process of order
ρ ∈ (0, 1) between Pη′ and Pξ′, relative to (Ft

′)t∈[0,1], is de-
terministic and has the form

H′ηξ(ρ)t � ρ(1 − ρ)(η − ξ)
2
I θ0( 􏼁

t

2
􏼒 􏼓. (31)

According to ([20], )eorem 5.3), it is enough to show
that the Hellinger processes Hn,ηξ(ρ) between Pn

η and Pn
ξ ,

relative to (Gn
t )t∈[0,1], satisfy the following: there exists

a ∈ (0, (1/2)), such that for every ∀η, ξ ∈ R,
ρ ∈ (1/2), a, 1 − a{ }, and t ∈ [0, 1], and the convergence in
law

H
n,ηξ

(ρ)t⟶
Pn
ξ
H′ηξ(ρ)t, as n⟶∞, (32)

holds. We will use this method because in our framework,
the processes Hn,ηξ are also deterministic and have the

following quite simple form one can find in [5]: with ⌊nt⌋

being the integer part of nt, we have

H
n,ηξ

(ρ)t � ⌊nt⌋ 1 − 􏽚
Kn

h
[η]n

n􏼐 􏼑
ρ

h
[ξ]n

n􏼐 􏼑
1− ρ

(y)dy􏼠 􏼡.

(33)

(1) For ρ ∈ (0, 1), ρ′ � 1 − ρ, take Φρ(u, v) � ρu + ρ′v−

uρvρ′ , u, v≥ 0, and observe that

H
n,ηξ

(ρ)1 � 􏽚
Kn

Φρ h
[η]n

n , h
[ξ]n

n􏼐 􏼑(y)dy. (34)

According to (32) and (33), it is enough to show that
∀η, ξ ∈ R, and ρ ∈ (1/2), a, 1 − a{ }, and we have

lim
n⟶∞

n􏽚
Kn

Φρ h
[η]n

n , h
[ξ]n

n􏼐 􏼑(y)dy �
ρρ′
2

(η − ξ)
2
I θ0( 􏼁.

(35)

(2) Assume (H0), (H1), and (H2) for a fixed
a ∈ (0, (1/2)). Applying Taylor expansion at the first order
of θ↦(hθ

n)ρ for η ∈ R and n big enough, we get for η ∈ Θn,
the representation of (h

[η]n
n )ρ on Kn:

h
[η]n

n􏼐 􏼑
ρ

� h
θ0
n􏼐 􏼑

ρ
+
ρη

�
n

√ k
θ0 ,ρ
n +

ρη
�
n

√ V
η,ρ
n , (36)

where for all θ ∈ Θ, the functions

k
θ,ρ
n � h

θ
n h

θ
n􏼐 􏼑

ρ
, _k

θ,ρ
n � h

θ
n􏼐 􏼑

ρ z

zθ
h
θ
n + ρ h

θ
n􏼒 􏼓

2
􏼢 􏼣

� h
θ
n􏼐 􏼑

ρ €h
θ
n

h
θ
n

− ρ′ h
θ
n􏼒 􏼓

2
⎡⎢⎢⎣ ⎤⎥⎥⎦,

(37)

V
η,ρ
n � 􏽚

1

0
k

[ηr]n,ρ
n − k

θ0 ,ρ
n􏽨 􏽩dr �

η
�
n

√ 􏽚
1

0
(1 − r) _k

[ηr]n,ρ
n dr,

(38)
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are defined on the interior ofKn. Also, observe the following
relations:

k
θ,ρ
n h

θ
n􏼐 􏼑

ρ′
� k

θ,ρ′
n h

θ
n􏼐 􏼑

ρ
� k

θ,1
n ,

k
θ,ρ
n k

θ,ρ′
n � i

θ
n,

_k
θ,ρ
n h

θ
n􏼐 􏼑

ρ′
� _k

θ,1
n − ρ′iθn.

(39)

Because of (38) and (39), one has

V
η,1
n − h

θ0
n􏼐 􏼑

ρ′
V

η,ρ
n �

η
�
n

√ 􏽚
1

0
(1 − r) _k

[ηr]n,1
n − h

θ0
n􏼐 􏼑

ρ′ _k
[ηr]n,ρ
n􏼔 􏼕dr

�
η
�
n

√ 􏽚
1

0
(1 − r) _k

[ηr]n,ρ
n h

[ηr]n

n􏼐 􏼑
ρ′

− h
θ0
n􏼐 􏼑

ρ′
􏼔 􏼕dr +

ηρ′
�
n

√ 􏽚
1

0
(1 − r)i

[ηr]n

n dr.

(40)

Using (36), finally write

V
η,1
n − h

θ0
n􏼐 􏼑

ρ′
V

η,ρ
n �

η2ρ′
n

􏽚
1

0
(1 − r) _k

[ηr]n,ρ
n k

θ0 ,ρ′
n + V

ηr,ρ′
n􏼔 􏼕dr +

ηρ′
�
n

√ 􏽚
1

0
(1 − r)i

[ηr]n

n dr. (41)

(3) For all η,ξ ∈R and n large enough, so that η,ξ∈Θn, write

Φρ h
[η]n

n , h
[ξ]n

n􏼐 􏼑 � ρ h
θ0
n +

η
�
n

√ k
θ0 ,1
n +

η
�
n

√ V
η,1
n􏼢 􏼣 + ρ′ h

θ0
n +

ξ
�
n

√ k
θ0 ,1
n +

ξ
�
n

√ V
ξ,1
n􏼢 􏼣

− h
θ0
n􏼐 􏼑

ρ
+

ρη
�
n

√ k
θ0 ,ρ
n +

ρη
�
n

√ V
η,ρ
n􏼢 􏼣 h

θ0
n􏼐 􏼑

ρ′
+
ρ′ξ

�
n

√ k
θ0 ,ρ′
n +

ρ′ξ
�
n

√ V
ξ,ρ′
n􏼢 􏼣.

(42)

)en, use (39) and obtain

nΦρ h
[η]n

n , h
[ξ]n

n􏼐 􏼑 �
�
n

√
ρη V

η,1
n − h

θ0
n􏼐 􏼑

ρ′
V

η,ρ
n􏼔 􏼕 +

�
n

√
ρ′ξ V

ξ,1
n − h

θ0
n􏼐 􏼑

ρ
V

η,ρ′
n􏼔 􏼕

− ρρ′ηξ i
θ0
n + V

η,ρ
n V

ξ,ρ′
n + k

θ0 ,ρ
n V

ξ,ρ′
n + k

θ0 ,ρ′
n V

η,ρ
n􏼔 􏼕.

(43)

According to (41), we have

nΦρ h
[η]n

n , h
[ξ]n

n􏼐 􏼑 � ρρ′ A
η,ξ
n + B

η,ξ
n􏽨 􏽩, (44)

where

A
η,ξ
n � η2 􏽚

1

0
(1 − r)i

[ηr]n

n dr + ξ2 􏽚
1

0
(1 − r)i

[ξr]n

n dr − ηξi
θ0
n ,

B
η,ξ
n �

η3
�
n

√ 􏽚
1

0
(1 − r) _k

[ηr]n,ρ
n k

θ0 ,ρ′
n + V

ηr,ρ′
n􏼔 􏼕dr +

ξ3
�
n

√ 􏽚
1

0
(1 − r) _k

[ξr]n,ρ′
n k

θ0 ,ρ
n + V

ξr,ρ
n􏽨 􏽩dr,

− ηξ k
θ0 ,ρ
n V

ξ,ρ′
n + k

θ0 ,ρ′
n V

η,ρ
n + V

η,ρ
n V

ξ,ρ′
n􏼔 􏼕.

(45)

6 Complexity



(4a) We will now prove the following convergence that
will imply (35): for all η, ξ ∈ R,

lim
n⟶∞

􏽚
Kn

A
η,ξ
n (x)dx �

1
2
(η − ξ)

2
I θ0( 􏼁, (46)

lim
n⟶∞

􏽚
Kn

B
η,ξ
n (x)dx � 0. (47)

(4b). To prove (46), we use both (26) and (37), and for all
ρ ∈ (0, 1) and θ ∈ Θ, we have the representation and the
control.

k
θ,ρ
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

��

i
θ
n

􏽱

h
θ
n􏼐 􏼑

ρ− (1/2)
,

_k
θ,ρ
n

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤
j
θ
n

h
θ
n􏼐 􏼑

ρ′
.

(48)

Let η, ξ ∈ R, and let χ � |η|∨|ξ|. Using (26), (37), and
Taylor expansion at the first order of θ↦(kθ,(1/2)

n )2, we obtain
the galloping control, valid for all r ∈ [0, 1]:

I
[ηr]n

n − I
θ0
n � 􏽚

Kn

k
[ηr]n,(1/2)
n (x)

2
− k

θ0,(1/2)
n (x)

2
􏽨 􏽩dx

�
2ηr

�
n

√ 􏽚 􏽚
1

0
k

[ηrs]n,(1/2)
n (x) _k

[ηrs]n,(1/2)

n (x)dsdx.

(49)

Taking ρ � 1/2 in (48), applying Cauchy–Schwarz in-
equality and assuming (H1) and (H2), we obtain

sup
r∈[0,1]

I
[ηr]n

n − I
θ0
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 2|η|􏽥In(χ)
􏽥J
1/2
n (χ)

n
⎛⎝ ⎞⎠

1/2

⟶ 0 as n⟶∞.

(50)

We then can write

􏽚
Kn

A
η,ξ
n (x)dx � η2 􏽚

1

0
(1 − r)I

[ηr]n

n dr + ξ2 􏽚
1

0
(1 − r)I

[ξr]n

n dr − ηξI
θ0
n

� η2 􏽚
1

0
(1 − r) I

[ηr]n

n − I
θ0
n􏼐 􏼑dr + ξ2 􏽚

1

0
(1 − r) I

[ξr]n

n − I
θ0
n􏼐 􏼑dr +

1
2

η2 + ξ2 − 2ηξ􏼐 􏼑I
θ0
n ,

(51)

and clearly (50) implies (46).
(4c). To prove (47), we use same the same arguments as

in (4b), the Taylor expansion at the first order of θ↦kθ,(1/2)
n ,

and the representation

_k
[ηr]n,ρ
n k

θ0 ,ρ′
n � _k

[ηr]n,ρ
n k

[ηr]n,ρ′
n −

ηr
�
n

√ 􏽚
1

0
_k
[ηr]n,ρ
n

_k
[ηrs]n,ρ′
n ds,

ρ ∈ (0, 1), r ∈ [0, 1].

(52)

By (48) and Cauchy–Schwarz inequality, we have the
following control, valid for all r ∈ [0, 1]:

􏽚
Kn

_k
[ηr]n,ρ
n (x)k

θ0 ,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx

≤􏽚
Kn

�������

i
[ηr]n

n (x)

􏽱
j

[ηr]n

n (x)
�������

h
[ηr]n

n (x)

􏽱 dx +
|η|r

�
n

√ 􏽥J
ρ
n(χ).

(53)

)e latter implies

sup
r∈[0,1]

􏽚
Kn

_k
[ηr]n,ρ
n (x)k

θ0 ,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx

≤
����������
􏽥In(χ)􏽥J

1/2
n (χ)

􏽱

+
χ
�
n

√ 􏽥J
ρ
n(χ) ≔ δρn(χ) � δρ′n (χ).

(54)

Using (48), we also have

􏽚
Kn

_k
[ηr]n,ρ
n (x)V

ηr,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx≤
|η|r

�
n

√ 􏽚
1

0
(1 − s)􏽚

Kn

_k
[ηr]n,ρ
n (x) _k

[ηrs]n,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dxds, (55)

and reproducing the method, we used to get (54), and we
obtain

sup
r∈[0,1]

􏽚
Kn

_k
[ηr]n,ρ
n (x)V

ηr,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx≤ δρn(χ). (56)
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According to (38) and (54), we also have

􏽚
Kn

k
θ0 ,ρ
n (x)V

η,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dx≤
|η|

�
n

√ 􏽚
1

0
(1 − r)􏽚

Kn

_k
[ηr]n,ρ′
n (x)k

θ0 ,ρ
n (x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dxdr≤

χ
�
n

√ δρ′n (χ). (57)

Furthermore, (38), (48), and Cauchy–Schwarz inequality
imply

􏽚
Kn

V
η,ρ
n (x)V

ξ,ρ′
n (x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dx≤
|ηξ|

n
􏽚
1

0
􏽚
1

0
(1 − r)(1 − s) 􏽚

j
[ηr]n

n (x)j
[ξs]n

n (x)

h
[ηr]n

n (x)
ρ′

h
[ξs]n

n (x)
ρ
dxdsdr≤

|χ|
�
n

√ δρ′n (χ). (58)

Finally, according to (45), (54), (56)–(58), we obtain the
control

􏽚
Kn

B
η,ξ
n (x)dx≤ 7χ3

δρn(χ)
�
n

√ � 7χ3 􏽥In(χ)
􏽥J

(1/2)

n (χ)

n
⎛⎝ ⎞⎠

(1/2)

+ χ
􏽥J
ρ
n(χ)

n

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (59)

and we conclude with the fact that assumptions (H1) and
(H2) imply (47). □

3.2. LANProperty for the ScaleModel (5). As a consequence of
)eorem 1, we obtain a result for the scale model (5).)emain
argument is that the r.v. Xt, t> 0 has a p.d.f g1

t underP1 if and
only if Xt has the p.d.f. gθ

t (x) � g1
t (x/θ)/θ under Pθ. From

now on, the functions hn, hn
′, and hn

″ denote, respectively, h1
n,

the p.d.f. ofXun
underP1, the first and the second derivatives of

hn. For θ ∈ Θ and n≥ 1, we have the expression

h
θ
n(x) �

1
θ
hn

x

θ
􏼒 􏼓,

x

θ
∈Kn ≔ support hn( 􏼁. (60)

)erefore, if we want (H0) to be satisfied, we need to
impose K � Kn � R orR+ orR− . )en, for all x ∈ K, we
have

i
θ
n(x) �

1
θ3

in
x

θ
􏼒 􏼓,

j
θ
n(x) �

1
θ3

jn

x

θ
􏼒 􏼓,

(61)

where the functions in ≔ i1n and jn ≔ j1n are given by

in(x) � 1 + x
hn
′

hn

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

hn(x),

jn(x) � in(x) + 2 + 4x
hn
′

hn

(x) + x
2hn
″

hn

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
hn(x).

(62)

Making a change of variables, we see that the quantities
Iθn and 􏽥In(χ), defined in (27), satisfy

I
θ
n �

1
θ2

􏽚
K

in(x)dx �
In

θ2
,

􏽥In(χ) � sup
|ζ|≤χ

In

[ζ]n( 􏼁
2 ≤

In

θ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − (χ/
�
n

√
)􏼐 􏼑

2.

(63)

Using Cauchy–Schwarz inequality and again a change of
variables, we obtain the following: for all χ > 0, the quantities
􏽥J
ρ
n(χ), ρ ∈ (0, 1), defined in (28), satisfy

􏽥J
ρ
n(χ)≤ sup

|ζ|,|ξ|≤χ
􏽚

K

j
[ζ]n
n (x)2

h
[ζ]n
n (x)2ρ

dx⎡⎣ ⎤⎦

1/2

􏽚
K

j
[ε]n
n (x)2

h
[ε]n
n (x)2ρ

′ dx⎡⎣ ⎤⎦

1/2

� sup
|ζ|,|ε|≤χ

1
[ζ]n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
5− 2ρ

[ε]n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
5− 2ρ 􏽚

K

jn(x)2

hn(x)2ρ
dx􏽚

K

jn(x)2

hn(x)2ρ
′ dx⎡⎢⎣ ⎤⎥⎦

1/2

≤ θ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 −
χ
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4ρ− 10

Jn(ρ)Jn ρ′( 􏼁􏼂 􏼃
1/2

, Jn(r) ≔ 􏽚
K

jn(x)
2

hn(x)
2r
dx.

(64)
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Corollary 1. For the scale model (5), the sequence of
statistical models En has the LAN property with speed

�
n

√
at

each θ ∈ Θ if the following conditions are satisfied:

(C0): underP1, the supportK of the law of X1 is eitherR orR+ orR− . For all

t> 0, the r.v. Xt has a p.d.f . g
1
t (x)which is of classC

2 on the interior of K.

(C1): the sequence In ≔ 􏽚
K

in(x)dx satisfies lim
n⟶+∞

In � I ∈ (0,∞),

(C2): there exists a ∈ 0,
1
2

􏼒 􏼓such that lim
n⟶∞

1
n

Jn(ρ) � 0 for ρ ∈
1
2
, a, 1 − a􏼚 􏼛.

(65)

In this case, the asymptotic Fisher information quantity
is I(θ) � I/θ2.

Proof. It is immediate that (C0) implies (H0). Represen-
tation (63) shows that (C1) implies (H1) and (64) shows that
(C2) implies (H2). □

Remark 2. Since hn is the p.d.f. of Xun
, then we should be

aware that the discretization path un intervene in the as-
sumptions (C1) and (C2). In )eorem 2, we will see that in
some favorable cases, the effect of the path un has a quite
negligible effect. In general, the LAN property depends
strongly on the asymptotic of un.

4. Examples of LAN Property for Lévy Processes
Attracted by Stable Processes

In this section, we provide some examples of Lévy processes
X satisfying the conditions of Corollary 1. )is corollary
provides the LAN property for the scale model (5), X � θY,
under regularity and integrability conditions on the p.d.f. of
Yt, t> 0. Unfortunately, these p.d.f., if they exist, are not
explicit in general; for this reason, we focus on processes Y

which belong to the domain of attraction of stable processes.
We recall that a process Sα,β,c,δ is stable, if it is a Lévy

process with Lévy exponent given in (10). In the case

α ∈ (0, 1) and δ ≥ 0, the process Sα,1,c,δ is a subordinator, i.e.,
a positive increasing the Lévy process, and the distribution of
S
α,1,c,δ
t , t> 0, has a support equal to [δt,∞). In all cases,

S
α,1,c,δ
t , t> 0, has a p.d.f. G

α,β,c,δ
t which is infinitely differ-

entiable and is explicit only for the particular values
(α, β) � ((1/2), 1), (1, 0), (2, 0). )ese values correspond,
respectively, to the first passage times of the Brownian
motion, the Cauchy process, and the Brownian Motion.
Otherwise, G

α,β,c,δ
t is be expressed only as the inverse Fourier

transform of exp ϕ(u). As announced, the introduction, we
focus in this section on the case where the Lévy processes Y,
in the scale model (5), is attracted by a stable process, i.e.,
satisfying (13). Bertoin and Doney [22] showed that if (10)
holds, then the process Y is attracted by a stable one, and
then, the following holds:

(i) )ere exists b ∈ R, α ∈ (0, 2], and a slowly varying
function l(t) (i.e., a function satisfying
(l(λt)/l(t))⟶ 1, ∀λ> 0), such that b(t) � bt and
a(t) � t1/αl(t)

(ii) ](dx) � G(x)dx, where G is the p.d.f. of some stable
r.v. S

α,β,c,0
1 , β ∈ [− 1, 1], c> 0;

(iii) )e p.d.f. Gt of 􏽢Yt, t> 0, is infinitely differentiable
and satisfies

Gt( 􏼁
(k)

(x)⟶ G
(k)

(x), uniformly inx ∈ Support(G), t⟶ 0 or t⟶∞, k ∈ N. (66)

(iv) )e convergence in (13) can be entirely expressed
with the behavior of the tail of the Lévymeasure ofY

or by the existence of a Brownian component.

Observe that the p.d.f. hn of Yun
is represented by

h(x) � Gun

x − b un( 􏼁

a un( 􏼁, x ∈ R.
􏼠 (67)

As in (8), let us denote by Gun
and G the logarithmic

derivative of Gun
and log G, respectively. After the change of

variable x↦a(un)x + b(un), the asymptotic Fisher infor-
mation quantity in (63) takes the form

I(θ) �
I

θ2
, I � lim

n⟶∞
􏽚 1 + x +

b un( 􏼁

a un( 􏼁
􏼠 􏼡Gun

(x)􏼢 􏼣

2

Gun
(x)dx.

(68)

)e convergence (66) does not ensure that I(θ) is finite
and nonnull; it only ensures that if it happens, then
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l � lim
n⟶∞

b un( 􏼁

a un( 􏼁
􏼠 􏼡 exists,

I � 􏽚 [1 +(x + l)G(x)]
2
G(x)dx ∈ (0,∞).

(69)

)e stronger control

limsup
|x|⟶∞,n⟶∞

xGun
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<∞, (70)

is sufficient to prove (69), but it is hard to obtain. In [14, 17],
we provided controls for the p.d.f. Gt(x) in the space var-
iable x and uniformly in small or big time t, the processes

Y � 􏽘
N

i�k

S
ak,bk,ck,dk ,

orY � S
α,β,1,0 ∘Z,

(71)

where the coefficients (ak, bk, ck, dk) vary in a set DN, the
processes Sak,bk,ck,dk are independent, and Sα,β,1 is indepen-
dent of the subordinator Z. We emphasize that in (71), Y

satisfies (13) and does not enjoy the scaling property (12)
anymore.

(i) If Y � 􏽐
N
i�k Sak,bk,ck,dk and the stability coefficients ak

are pairwise different, we have an asymptotic scaling
property; if i∧ � Argmin αi, 1≤ i≤N􏼈 􏼉 and
i∨ � Argmax αi, 1≤ i≤N􏼈 􏼉 and i � i∨ (respectively,
i∧), then

Yt − 􏽐
N
k�1 δt,ak

cit( 􏼁
1/ai
⟶d S

ai,bi,1,0
1 , as t⟶ 0(respectively, t⟶∞). (72)

)e last property will be useful in Subsection 4.2
when taking the path un⟶ 0 (respectively,
un⟶∞).

(ii) If Y � Sα,β,1,0 ∘Z, we assume that the subordinator Z

is itself attracted by a stable subordinator: for some
0< ϵ< 1 and some (deterministic) speed rt,

Zt

rt

⟶d S
ε,1,1,0
1 , as t⟶ 0(respectively, as∞). (73)

)e function t↦rt is necessarily a regularly varying
function of order 1/ϵ at 0 (respectively,∞): rt � t1/ϵl(t) and l

is slowly varying, i.e., (l(λt)/l(t))⟶ 1, ∀λ> 0. )en, there
exist β ∈ (− 1, 1) and c′ > 0, such that

Yt

r
1/α
t

⟶d S
εα,β′ ,c′,0
1 , as t⟶ 0(respectively, t⟶∞).

(74)

4.1.@eScaleModelsAssociatedwith StableProcessesHave the
LAN Property. )e following result is a first application of
Corollary 1.

Theorem 2. For the scale model (5), assume Y � Sα,β,c,δ is a
stable process, such that δ � 0 is null if α< 1 and |β| � 1.
Recall δt,α is defined in (12). Let the path un satisfy ln �

(cun)− 1/αδun,α⟶ l ∈ R and one of the following conditions:

(i) un⟶ L ∈ (0,∞)

(ii) un⟶ L � 0 and nRun⟶∞, for some R> 0
(iii) un⟶ L � +∞ and n− Sun⟶ 0, for some S> 0

@en, the sequence of sequence of filtered statistical scale
models En (15) have the LAN property with speed

�
n

√
at each

θ ∈ Θ. @e asymptotic Fisher information quantity is given by

I(θ) �
1
θ2

􏽚 (y + l)
2G′(y)

2

G(y)
dy − 1􏼢 􏼣, (75)

where G is the p.d.f. of S
α,β,1,0
1 .

Remark 3. If α ∈ (0, 1), then support of the law of S
α,β,c,δ
1 is

[δ,∞) (respectively, (− ∞, δ]) if β � 1 (respectively, β � − 1);
otherwise, the support is whole R. )e assumption δ � 0
ensures that the support of the law of S

α,β,c,δ
1 satisfies the

condition (C0) of Corollary 1. We are aware that the cases
nun⟶ 0 and un⟶∞ are not very realistic by the sta-
tistical point of view. )e most interesting cases are as
follows:

(a) un � u ∈ (0,∞), then L � u, and the assumptions of
)eorem 2 are satisfied. )is is an essentially trivial
result because we treat then a regular i.i.d. model.

(b) un � (u/n), u ∈ (0,∞), then L � 0, and the as-
sumptions of )eorem 2 are satisfied if and only if
one of the following holds:

(i) α< 1, δ � 0, and then, l � 0;
(ii) α � 1, β � 0, and then, l � δ/c;
(iii) α> 1, and then, l � 0.

Proof. of )eorem 2. (1a) Recall that hn denotes the infi-
nitely differentiable p.d.f of S

α,β,c,δ
un

. Due to the scaling
property (12), we have the following representations: for all
k ∈ N and x ∈ support(hn),
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hn( 􏼁
(k)

(x) �
1

cun( 􏼁
(k+1)/α G

α,β,1,0
1􏼐 􏼑

(k) x − δun,α

cun( 􏼁
1/α

⎛⎝ ⎞⎠, (76)

where

Support hn( 􏼁 �

R+, if 0< α< 1, β � 1,

R− , if 0< α< 1, β � − 1,

R, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(77)

(1b) In [14, 17], we provided several properties of the
p.d.f. G � G

α,β,1,0
1 . For instance, there exist positive constants

A, B, C, D that depend explicitly on α, β, such that

G(x)

∼
0+

respectively, ∼
0−

􏼒 􏼓ξ(x), if β � 1(respectively, − 1)and 0< α< 1,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓χ(x), if β≠ − 1(respectively, 1)and 0< α< 2,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓η(x), if β � − 1(respectively, 1)and α � 1,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓ξ(x), if β � − 1(respectively, 1)and 1< α≤ 2.

(78)

where

χ(x) ≔
D

|x|
α+1,

ξ(x) ≔ B|x|
(2− α)/2(α− 1)

e
− A|x|α/(α− 1)

,

η(x) � C exp − e
π|x|/2

+
π|x|

4
􏼠 􏼡,

(79)

and f(x) ∼
l

g(x) means limx⟶l(f(x)/g(x)) � 1. Fur-
thermore, with the convention (0/0) � 0, the functions

Fk(x) ≔
G

(k)
(x)

G(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, k ∈ N, (80)

are continuous on support(hn), given by (77), and there exist
positive numbers a, b, c, depending explicitly on α and β and
k, such that

Fk(x)

∼
0+

respectively, ∼
0−

􏼒 􏼓a|x|
k/(α− 1)

, if β � 1(respectively, − 1)and 0< α< 1,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓b|x|
− k

, if β≠ − 1(respectively, 1)and 0< α< 2,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓c exp
kπ|x|

2
􏼠 􏼡, if β � − 1(respectively, 1)and α � 1,

∼
+∞

respectively, ∼
− ∞

􏼒 􏼓a|x|
k/(α− 1)

, if β � − 1(respectively, 1) and 1< α≤ 2.

(81)

From the last equivalences, we see that for any non-
negative integer s, we have the implication

0≤ r≤ k⟹ lim
|x|⟶∞

|x|
2(1− ρ)(1+α)

|x|
r
Fk( 􏼁

s
(G)

2(1− ρ) ∈ [0,∞).

(82)

)us, since 0< ρ< 1 − (1/(2(1 + α)))⇔2(1 − ρ)(1+

α)> 1, then

0≤ r≤ k,

0< ρ< 1 −
1

(α + 1)
⟹x↦ |x|

r
Fk(x)( 􏼁

s
G(x)

2(1− ρ) ∈ L
1
(dx).

(83)

(2)We need to verify the assumptions of Corollary 1, i.e.,
to check (C1):
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In � 􏽚 1 + x
hn
′

hn

(x)􏼢 􏼣

2

hn(x)dx⟶ I

� 􏽚 (y + l)
2 G′( 􏼁

2

G
(y)dy − 1 ∈ (0,∞), as n⟶∞,

(84)

and also (C2); there exists a ∈ (0, (1/2)), such that for
ρ ∈ (1/2), a, 1 − a{ }, one has

1
n

Jn(ρ) �
1
n

􏽚
jn( 􏼁

2

hn( 􏼁
2ρ (x)dx⟶ 0, jn(x)

� 1 + x
hn
′

hn

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 + 4x
hn
′

hn

(x) + x
2hn
″

hn

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦hn(x).

(85)

(3) )e scaling property (76) and the corresponding
change of variables give the following representation of the
quantity In in (84):

In � 􏽚 1 + y + ln( 􏼁
G′(y)

G(y)
􏼢 􏼣

2

G(y)dy. (86)

Using (82) and the fact that ln⟶ l ∈ R, we obtain

x↦ sup
n∈N

1 + y + ln( 􏼁
G′
G

(y)􏼢 􏼣

2

G(y) ∈ L
1
(dy),

lim
n⟶∞

In � 􏽚 1 +(y + l)
G′
G

(y)􏼢 􏼣

2

G(y)dy.

(87)

Developing the last expression, integrating by parts and
using the fact that G(y) and yG(y) both tend to 0 as y goes
to each endpoint of the support (77), we recover (84).

(4) Again, by the change of variables corresponding to
(76) and by the representation (85), one has

Jn(ρ) � cun( 􏼁
(2ρ− 1)/α

􏽚 1 + y + ln( 􏼁
G′
G

(y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 + 4 y + ln( 􏼁
G′
G

(y) + y + ln( 􏼁
2G″

G
(y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦

2

G(y)
2(1− ρ)dy. (88)

)anks to (83) and to the fact that ln⟶ l ∈ R, and it is
clear that if ρ ∈ (0, 1 − 1/2(α + 1)), then

sup
n∈N

1 + y + ln( 􏼁
G′
G

(y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 + 4 y + ln( 􏼁
G′
G

(y) + y + l
2
n

G″
G

(y)􏼠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼣

2

G(y)
2(1− ρ)⎡⎣ (89)

is integrable. Let ϵ ≔ (1/2) − (1/(2(α + 1))). To prove the
convergence (85), it is enough to have

ρ ∈ 0, ϵ +
1
2

􏼒 􏼓, (90)

lim
x⟶∞

u
(2ρ− 1)/α
n

n
� 0. (91)

(5) Now, we distinguish between the values of
L � limn⟶∞un.

(a) If L � 0 and if ρ≥ (1/2), then (91) is true. By as-
sumptions, we have (1/un)≤ nR, for large n. If
ρ< (1/2), then we have (91) as soon as
(R(1 − 2ρ)/α)< 1, which is equivalent to
ρ> (1/2) − (α/(2R)). )us, we only have to choose

ϵ′ � (ϵ∧α/(4R)) and a � (1/2) − ϵ′ to get (90) to
obtain (91) for ρ ∈ (1/2), a, 1 − a{ }.

(b) If L ∈ (0,∞), then (91) is always true.
(c) If L � +∞ and if ρ≤ (1/2), then (91) is true. As in

(5a), we have un ≤ nS for large n. If ρ> (1/2) then we
have (91) as soon as (S(2ρ − 1)/α)< 1, which is
equivalent to ρ< (1/2) + (α/(2S)). )us, we only
need to choose ϵ″ � (ϵ∧α/(4S)) and a � (1/2) − ϵ″
to obtain (90) and (91) for ρ ∈ 1/2, a, 1 − a{ }. □

4.2.@e Scale Models Associated with the Sum of Independent
Stables Processes Have the LAN Property. )is subsection
gives a second example which also generalizes the previous
one and achieves the situation (13). Define K(α) � 1 if α≤ 1
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and K(α) � (α − 2)/α and assume the following restrictions
on the skewness parameters:

Sa,b􏼐 􏼑: we haveN independent stable processes S
ak,bk,ck,0

, such that the parameters satisfy

(a) a1 < a2 < · · · < aN < 2 andD � ∩
N

k�1
ak,

2
1 + bkK ak( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦≠∅;

(b) bk � 0 if ak � 1 andB � max
bkK ak( 􏼁

K aN( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 1≤ k≤N􏼨 􏼩< 1.

(92)

Let Y � 􏽐
N
k�1 Sak,bk,ck,0 and Yi be the processes defined by

Y
i
t �

Yt

t
1/ai

, i � 1 or i � N and, t> 0. (93)

)e processes Yi satisfy the asymptotic scaling property
(72). Denote by Ht the p.d.f of Yt,

Ht � G
a1 ,b1 ,c1 ,0
t ∗ · · · ∗G

aN,bN,cN,0
t , (94)

and by Hi,t, the one of Yi
t. )en, hn � Hun

satisfies

hn( 􏼁
(k)

(x) � unci( 􏼁
− (k+1)/αi Hi,un

􏼐 􏼑
(k)

unci( 􏼁
− 1/ai x􏼐 􏼑. (95)

In [14, 17], we showed that the following functions H0
and H∞ given by

HL ≔
lim

t⟶∞
H1,t(x) � G

a1 ,b1 ,1,0
1 (x), if L � +∞,

lim
t⟶0+

HN,t(x) � G
aN,bN,1,0
1 (x), if L � 0,

⎧⎪⎪⎨

⎪⎪⎩

(96)

are well defined, and the above convergence holds uniformly
in x ∈ support(G

ai,bi,1,0
1 ) and still hold for the successive

derivatives. As one can guess, we are going to exploit identity
(95) and state the following result.

Theorem 3. Let (un)n be a sequence satisfying one of the
following conditions:

(i) un⟶ L ∈ (0,∞)

(ii) un⟶ L � 0, and there exists R> 0, such that
nRun⟶ +∞;

(iii) un⟶ L � +∞, and there exists S> 0, such that
n− Sun⟶ 0.

For the scale model (5) with Y � 􏽐
N
k�1 Sak,bk,ck,0, assume

(Sa,b). )en, the sequence of filtered statistical scale models
En (15) have the LAN property with speed

�
n

√
at each value

θ ∈ Θ. With HL given in (95), the asymptotic Fisher in-
formation quantity has the following expression:

I θ0( 􏼁 �
IL

θ2
,

IL � 􏽚 y
2 HL
′( 􏼁
2
(y)

HL(y)
dy − 1.

(97)

Remark 4

(i) Let us briefly explain the nature of the assumption
in )eorem 3. In [17], conditions of type (Sa,b)

allowed us to show that Yi
t is distributed as an

α-stable variable mixed on the skewness and scale
parameters by other processes. More precisely, for
all t> 0, we have these identities in distribution: for
all α in the interior of the domainD (given in (Sa,b))
and for all t> 0, there exist a r.v. βt and ci

t, such that

Y
i
t�

d
S
α,βt ,c

i
t ,0

1 �
d

c
i
t􏼐 􏼑

1/α
S
α,βt ,1,0
1 . (98)

)e processes β and ci are

βt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤B,

C

t
α/ai

Zt ≤ c
i
t ≤

D

t
α/ai

Zt,

(99)

Where Zt � 􏽐
n
k�1 S

(ak/α),1,1,0
t is a sum of indepen-

dent standard stable subordinators, and the non-
negative numbers C<D depend only on
(α, a1, b1, c1, . . . , aN, bN, cN). In the case where
bkK(ak) is a constant for all k � 1, . . . , N, then
βt � b1K(a1), ci

t is distributed as a normalized sum
of independent stable subordinators, and the
converge in the following distribution holds.

βt, c
i
t􏼐 􏼑⟶

biK ai( 􏼁

K(α)
, S

ai/α( ),1,1,0
1􏼠 􏼡,

if i � 1 and t⟶∞, or if i � N and t⟶ 0.

(100)
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Furthermore, notice that the assumption (Sa,b) is
satisfied in the symmetrical cases

(ii) In general, when β, c, δ are r.v.’s lying in the set of
admissible parameters and F is the σ-field gener-
ated by them, we gave in [17] a structure of the
F-conditional Lévy process to (S

α,β,c,δ
r )r≥ 0. See also

[13] for the notion of the F-conditional Lévy
process. If β is deterministic, S

α,β,c,0
1 is simply dis-

tributed as c1/αS
α,β,1,0
1 , and with our construction, we

allow the same identity even if β is random and
correlated with c. We also considered in [17] the
densities of some families of mixed stable variables
(S

α,βt ,ct ,0
1 )t∈T and gave several examples when these

densities and their derivatives behave like the
proper stable densities and this uniformly in t ∈ T.

(iii) It is also possible to state a version of )eorem 3
with stable processes with drifts. It is enough to
strengthen the conditions on the asymptotic as
done in)eorem 2. We consider that)eorem 3 is
far from being exhaustive. It is produced in the
aim of illustrating the difficulty of this case. If one
wants to reduce the assumption (Sa,b) on the
coefficients, then additional controls on the
densities are needed.

Before tackling the proof of )eorem 3, we need the
following result borrowed from [17].

Theorem 4 (See [17]). Controls of the densities of some
mixed stable variables (S

α,βr,cr,0
1 )r∈R. Let (cr)r≥ 0 be a pure

jump subordinator characterized by

E e
− λc1􏽨 􏽩 � exp􏽚

(0,∞)
e

− λx
− 1􏼐 􏼑](dx), λ≥ 0. (102)

Assume ](x) � ](x,∞) � x− aL(x), where a ∈ (0, 1),
and L is a slowly varying function. For r, x> 0, define

vr ≔ sup t> 0: ](t)>
1
r

􏼚 􏼛,

]r(x) ≔ r] xvr,∞( 􏼁,

cr ≔
cr

vr

.

(103)

(a) If L is slowly varying at infinity and r⟶∞ or if L is
slowly varying at zero, then

]r(x)⟶
1
x

a, x> 0,

cr⟶
d

S
a,1,(Γ(1− a)/a),0
1 , as r⟶ 0 + .

(104)

(b) Moreover, assume that there exist 0< c≤ a≤ d< 1 and
K≥ 1, such that

y

x
􏼒 􏼓

a− c

≤
L(y)

L(x)
≤K

y

x
􏼒 􏼓

a− d

, 0<y< x. (105)

Let R′ >R> 0 and (c
p
r )t∈Rp

denote one of these
families:
R1 � R4 � (0, R], R2 � [R, R′], R3 � [R,∞), and
c1

r � c2
r � cr, c3

r � cr with L slowly varying at ∞,
and c4

r � cr, with L slowly varying at 0. Let
α ∈ (0, 2) and (βr)r≥ 0 be any family of r.v.’s, such
that supr≥0|βr|≤B, for some B ∈ [0, 1), (B � 0, if
α � 1). @en, the p.d.f. G

p
r of the mixed stable

variables S
α,βr,c

p
r

1 are infinitely differentiable and
satisfy the following: for all k ∈ N and all p, we have

0< liminf
|x|⟶∞

inf
r∈Rp

|x|
1+α d

G
p
r (x),

limsup
|x|⟶∞

sup
r∈Rp

|x|
1+αc

G
p
r (x)<∞,

limsup
|x|⟶∞

sup
r∈Rp,x∈R

x
k

G
p
r( 􏼁

(k)
(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

G
p
r (x)

<∞.

(106)

For all X> 0, p≠ 1, we have

(c) If (cr
′)r≥ 0 is a family of r.v.’s, such that

(cr/K)≤ cr
′ ≤Kcr for some K> 1 and all r≥ 0, then

the controls (106) and (17) remain true for the p.d.f.’s
obtained by replacing (cr, cr) by (cr

′, (cr
′/vr)), where

vr is given by (103).

Remark 5. If c is a pure jump a-stable subordinator, then
]r(x) � x− a, and the scaling property gives cr�

d
S

a,1,Γ(1− a)/a
1 .

Furthermore, if βr � β, r> 0, is deterministic, then
S
α,βr,cr

1 �
d
S
αa,β′ ,c′
1 , for some β′ ∈ (− 1, 1), c′ > 0. )e estimates

(106) and (17) are an immediate consequence of the behavior
of the stable densities given in the Proof of )eorem 2.

Example 1. )e following are examples of processes satis-
fying the conditions of )eorem 4. Let 0< b, b1, . . . , bN < 1,
and c, c1, . . . , cN > 0. Let c1, c2 be pure jump subordinators
whose Lévy measures are, respectively, equal to

]1(dx) � 􏽘

N

k�1

ci

x
bk+1 1lx>0dx,

]2(dx) �
c

x
b+1 1lx>0dx + δ1(dx).

(108)

)e process c1 is the sum of independent stable sub-
ordinators, and c2 is the independent sum of a stable
subordinator and a standard Poisson process. With b∨ �

max bi and b∧ � min bi, notice that

]1(x) �
L
∨
1(x)

x
b∨

�
L
∧
1(x)

x
b∧

,

]2(x) �
L2(x)

x
b

,

(109)

where L∨1 , L2 are slowly varying at 0, L1 is slowly varying at
∞, and
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0<y<x⟹
y

x
􏼒 􏼓

b∨− b∧
≤

L
∨
1(y)

L
∨
1(x)
≤ 1,

1≤
L
∧
1(y)

L
∧
1(x)
≤

y

x
􏼒 􏼓

b∧ − b∨
,

y

x
􏼒 􏼓

b/2
≤

L2(y)

L2(x)
≤ 2.

(110)

)e following result is a consequence of )eorem 4.

Corollary 2. Assume (Sa,b). Let Hi,t be the p.d.f of Yi
t,

i � 1, N, t> 0. Let T> 0, T1 � [T,∞), TN � [0, T), and

F
k
i,t(z) �

Hi,t􏼐 􏼑
(k)

(z)

Hi,t(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, k ∈ N, z ∈ R. (111)

)en, for every nonnegative integer s, we have

0≤ r≤ k,

0< ρ< 1 −
1

a1 + 1( 􏼁
⟹ sup

t∈Ti

|z|
r
F

k
i,t(z)􏼐 􏼑

s
Hi,t(z)

2(1− ρ) is integrable.
(112)

Proof. By Remark 5, notice that the Lévy measure of
subordinator Z in (99) has the required conditions.
According to )eorem 4 (c), these conditions imply that the
family (H1,t)t∈T1

behaves like (G3
r)r∈R3

and that (HN,t)t∈TN

behaves like (G4
r)r∈R4

with c � a1/α and d � aN/α. □

Proof of @eorem 3. We will check the assumptions of
Corollary 1, which consist in the convergence of the integrals

In � 􏽚 1 + z
Hi,un

􏼐 􏼑′

Hi,un

(z)⎡⎣ ⎤⎦

2

Hi,un
(z)dz,

Jn(ρ) � cun( 􏼁
(2ρ− 1)/α

􏽚 1 + z
Hi,un

􏼐 􏼑′

Hi,un

(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 + 4z
Hi,un

􏼐 􏼑′

Hi,un

(z) + z
2 Hi,un
􏼐 􏼑″

Hi,un

(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2

Hi,un
(z)

2(1− ρ)dz.

(113)

)e latter is guaranteed by Corollary 2, since the
functions Fk

i,t satisfy

sup
n∈N

|z|
r
F

k
i,un

􏼐 􏼑
s

Hi,un
􏼐 􏼑

2(1− ρ)
∈ L

1
(dz), (114)

for s ∈ 0, 1, 2, 3, 4{ }, r ∈ 0, 1, . . . , k{ }, 0≤ k≤ 2, and ρ≤ 1−

(1/(a1 + 1)). )e rest is obtained by reproducing the Proof
of )eorem 2. □

Remark 6. Notice that the main argument for proving
)eorem 3 is the behavior of the densities uniformly in time.
)eorem 4 provides many other examples. For example,
with the same proof as in )eorem 3, one could state a
version with stable processes time changed by any inde-
pendent “nice” subordinator.)e time change process could
be the sum of a stable subordinator and a Poisson process
(Remark 5). Finally, it appears that more investigation
concerning the behavior in small time of p.d.f.’s of Lévy
processes attracted by stable processes is crucial for statistical
purposes.

5. How to Build a LAN Model from Another
LAN Model?

In this section, we investigate to which extent the choice of
the asymptotic is crucial. Assume we start from a LAN
model associated to the observations of a Lévy process X

along a discretization scheme iun, 1≤ i≤ n. Can we affirm
that the model associated to the observations of X + 􏽥X,
where 􏽥X is another independent Lévy process, also enjoys
the LAN property with the same discretization scheme? We
need some preliminaries and two lemmas to answer the last
question.

Consider two independent Lévy processes Y and N

defined on some probability space (Ω, F,P) with values in
the Skorohod space Ω � D(R+,R) (when the processes Y

and N are seen as infinite-dimensional random variables).
Assume that N is a nondrifted compound Poisson process
with Lévy measure ], and consider the process 􏽥Y ≔ Y + N.
Recall that the increment process Xn of X, observed along a
scheme un, is defined in (14) by

Complexity 15



X
n
j � X(j+1)un

− Xjun
, 0≤ j≤ n − 1. (115)

For θ ∈ Θ, suppose we observe Xn � θYn, 􏽥X
n

� θ􏽥Y
n, and

let

Pθ � Law(θY|P),

􏽥Pθ � Law(θ􏽥Y|P).
(116)

)e probability measure Pn
θ (respectively, 􏽥P

n

θ and the
scale models En (respectively, 􏽥E

n) correspond to X (re-
spectively, 􏽥X) as in (15) and (16).

Recall that if Q, Q′ are two probability measures on some
sample space, then the total variation distance ‖Q − Q′‖ is
the quantity

Q − Q′
����

���� � sup
ϕ∈Φ

EQ(ϕ) − EQ′(ϕ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Φ � ϕ: Ω⟶ [− 1, 1],ϕmeasurable􏼈 􏼉.

(117)

Lecam’s lemma [2] is as follows:

Lemma 1. For every probability measures Q, Q′, R, R′, we
have the inequality

􏽚 1∧
dR

dQ
−
dR′

dQ′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
d Q + Q′( 􏼁≤ Q − Q′

����
���� + 2 R − R′

����
���� + 2 Q − Q′

����
���� R + R′
����

����􏼐 􏼑
1/2

. (118)

We also have the following result.

Lemma 2. If limn⟶∞nun � 0, then limn⟶∞supθ∈Θ
‖Pn

θ − 􏽥P
n

θ‖ � 0.

Proof. Since

P Nun
∈ dy􏼐 􏼑 � e

− ](R)un 􏽘

∞

k�0

u
k
n

k!
]∗k(dy),

P Nun
� 0􏼐 􏼑≥ e

− ](R)un ,

(119)

and since N has stationary and independent increments, we
have

P
n
θ − 􏽥P

n

θ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � sup
ϕ∈Φ

EPn
θ
[ϕ(X)] − E􏽥P

n

θ
[ϕ(X)]

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � sup
ϕ∈Φ

EPθ
ϕ X

n
( 􏼁􏼂 􏼃 − E􏽥Pθ

ϕ X
n

( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

� sup
ϕ∈Φ

EP ϕ θY
n

( 􏼁􏼂 􏼃 − EP ϕ θ􏽥Y
n

􏼐 􏼑􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � sup
ϕ∈Φ

EP ϕ θY
n

( 􏼁􏼂 􏼃 − EP ϕ θ Y
n

+ N
n

( 􏼁( 􏼁􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� sup
ϕ∈Φ

EP ϕ θY
n

( 􏼁􏼂 􏼃 − E
P ϕ Y

n
+ N

n
( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � sup

ϕ∈Φ
EP ϕ Y

n
( 􏼁 − ϕ Y

n
+ N

n
( 􏼁( 􏼁1lNn ≡ /0􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ 2P N
n ≠ 0( 􏼁 � 2 1 − P N

n ≡ 0( 􏼁( 􏼁 � 2 1 − P N(j+1)un
− Njun

� 0, ∀0≤ j≤ n􏼐 􏼑􏼐 􏼑

≤ 2 1 − P Nun
� 0􏼐 􏼑

n
􏼐 􏼑≤ 2 1 − e

− ](R)nun􏼐 􏼑.

(120)

It is now clear that ‖Pn
θ − 􏽥P

n

θ‖ goes to 0, uniformly in θ as
nun⟶ 0.

Now, we are able to complete Far’s problem [18], which
treats the case where Y is a Brownian motion and where the
discretization path is un � 1/n, i.e., limn⟶∞nun � 1. □

Theorem 5. Assume limn⟶∞nun � 0. If the scale model (5)
En associated to the process X has the LAN property with
speed

�
n

√
in a point θ0 ∈ Θ, then so is the scale model 􏽥E

n

associated to the process 􏽥X.

Proof of)eorem 5. (1) Fix θ0 ∈ Θ, and J is a finite subset of
R and ξ ∈ R. We shall prove that the weak functional

convergence (22) of the likelihood processes (Zn,ηξ)η∈J of En

yields the one of the likelihood processes (􏽥Z
n,ηξ

)η∈J of 􏽥En.
)e expression of the likelihood processes is given by (21),
and for more convenience, we denote them from now on by

Zn
t � Z

n,ηξ
k􏼒 􏼓

η∈J
,

􏽥Z
n

t � 􏽥Z
n,ηξ
t􏼒 􏼓

η∈J
,

Zt
′ � Z

′,ηξ
t􏼒 􏼓

η∈J
, t ∈ [0, 1].

(121)

We need to show the following convergence in laws:

Law Z
n
|P

n
[ξ]n

􏼐 􏼑⟶Law Z′
,ηξ

􏼒 􏼓
η∈J

|Pξ′􏼠 􏼡⟹Law 􏽥Zn
|􏽥P

n

[ξ]n
􏼐 􏼑⟶Law Z′

,ηξ
􏼒 􏼓

η∈J
|Pξ′􏼠 􏼡, as n⟶∞, (122)
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or equivalently, for every K-Lipschitz function
f: D(R+,RJ)⟶ R, bounded by a constant C> 0, we need
to show that

lim
n⟶∞

EPn
[ξ]n

f Zn
( 􏼁􏼂 􏼃 � EPξ′

f Z′( 􏼁􏼂 􏼃⟹ lim
n⟶∞

E􏽥P
n

[ξ]n

f 􏽥Zn
􏼐 􏼑􏽨 􏽩 � EPξ′

f Z′( 􏼁􏼂 􏼃. (123)

(2) For such functions f, we will control the difference:

EPn
[ξ]n

f Zn
( 􏼁􏼂 􏼃 − E􏽥P

n

[ξ]n

f 􏽥Zn
􏼐 􏼑􏽨 􏽩 � EPn

[ξ]n

f Zn
( 􏼁􏼂 􏼃 − E􏽥P

n

[ξ]n
f Zn

( 􏼁􏼂 􏼃􏼠 􏼡 + E􏽥P
n

[ξ]n

f Zn
( 􏼁􏼂 􏼃 − E􏽥P

n

[ξ]n

f 􏽥Zn
􏼐 􏼑􏽨 􏽩􏼠 􏼡. (124)

In virtue of Lemma 2, we have

EPn
[ξ]n

f Zn
( 􏼁􏼂 􏼃 − E􏽥P

n

[ξ]n
f 􏽥Zn

􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤C sup

θ∈Θ
P

n
θ − 􏽥P

n

θ

����
����⟶ 0, as n⟶∞. (125)

For every ε> 0, we have

E􏽥P
n

[ξ]n
f Zn

( 􏼁 − f 􏽥Zn
􏼐 􏼑􏽨 􏽩 � E􏽥P

n

[ξ]n
f Zn

( 􏼁 − f 􏽥Zn
􏼐 􏼑􏼐 􏼑1l

Zn− 􏽥Z
n􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε

􏼢 􏼣 + E􏽥P
n

[ξ]n
f Zn

( 􏼁 − f 􏽥Zn
􏼐 􏼑􏼐 􏼑1l

Zn− 􏽥Z
n􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε

􏼢 􏼣

E􏽥P
n

[ξ]n

f Zn
( 􏼁􏼂 􏼃 − f 􏽥Zn

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ εK + 2C􏽥P

n

[ξ]n
Zn

− 􏽥Zn􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε􏼐 􏼑.

(126)

With representation (21), observe that Zn and 􏽥Zn are a
step process, time-dependent, up to ⌊nt⌋, t ∈ [0, 1]. )en,
denoting

τn
� inf 1≤ j≤ n s.t. Zn

j − 􏽥Zn

j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> ε, ∀η ∈ J, ξ ∈ R􏼚 􏼛,

(127)

and using Markov in equality, we obtain

􏽥P
n

[ξ]n
Zn

− 􏽥Zn􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε􏼐 􏼑 � 􏽥P

n

[ξ]n
Zn
τn − 􏽥Zn

τn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε􏼐 􏼑 � 􏽥P

n

[ξ]n
Zn

i − 􏽥Zn

j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> ε, ∀ 1≤ j≤ n􏼒 􏼓

≤
1
ε
E􏽥P

n

[ξ]n

1∧ Zn
τn − 􏽥Zn

τn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

(128)

Applying Lemma 1 with R � Pn
[η]n

, Q � Pn
[ξ]n

, R′ �
􏽥P

n

[η]n
, Q′ � 􏽥P

n

[ξ]n
, we obtain

E􏽥P
n

[ξ]n

1∧ Zn
τn − 􏽥Zn

τn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩≤ 2 sup

θ∈Θ
3 P

n
θ − 􏽥P

n

θ

����
���� + 2 P

n
θ − 􏽥P

n

θ

����
����􏼐 􏼑

1/2
􏼔 􏼕,

(129)

and then, Lemma 2 gives

lim
n⟶∞

sup
η∈J,ξ∈R

􏽥P
n

[ξ]n
Zn

− 􏽥Zn􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε􏼐 􏼑 � 0. (130)

)e latter, together with (126), allows to conclude that

lim
n⟶∞

EPn
[ξ]n

f Zn
( 􏼁 − f 􏽥Zn

􏼐 􏼑􏽨 􏽩 � 0. (131)
□
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cretely sampled Lévy processes,” Econometrica, vol. 76, no. 4,
pp. 727–761, 2008.

[12] H. Rammeh, LPMA CNRS-UMR 7599, PhD thesis, University
of Paris, Paris, France, 1994.

[13] J. Jacod and A. N. Shiryaev, Limit theorems for Stochastic
ProcessesSpringer, Berlin Heidelberg, NY, USA, 1987.

[14] W. Jedidi, “Stable Processes, Mixing, and Distributional
Properties. I,” @eory of Probability and its Applications,
vol. 52, no. 4, pp. 580–593, 2008.

[15] P. Protter, In Stochastic Integration and Differential Equations,
Springer Verlag, Berlin, Heidelberg, Germany, 1990.

[16] V. M. Zolotarev, One Dimentional Stable LawsTransactions of
the American Mathematical Society, Providence, RI, USA,
1986.

[17] W. Jedidi, “Stable Processes, Mixing, and Distributional
Properties. II,” @eory of Probability & Its Applications,
vol. 53, no. 1, pp. 81–105, 2009.

[18] H. Far, LPMA CNRS-UMR 7599,PhD thesis, Paris, France.
[19] H. Strasser, Mathematical @eory of Statistics, Statistical Ex-

periment and Asymptotic Decision @eoryWalter de Gruyter.,
New York, NY, USA, 1985.

[20] J. Jacod, “Convergence of filtered statistical models and
Hellinger processes,” Stochastic Processes and their Applica-
tions, vol. 32, no. 1, pp. 47–68, 1989.

[21] J. Picard, “Density in small time for Lévy processes,” ESAIM:
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