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We consider statistical experiments associated with a Lévy process X = (X,),;,, observed along a deterministic scheme
(iu,, 1 <i<n). We assume that under a probability Pg, the r.v. X,, t >0, has a probability density function >o, which is regular
enough relative to a parameter 8 € (0, 00). We prove that the sequence of the associated statistical models has the LAN property at
each 0, and we investigate the case when X is the product of an unknown parameter 6 by another Lévy process Y with known

characteristics. We illustrate the last results by the case where Y is attracted by a stable process.

1. Introduction

This work is a part of an ambitious program consisting in the
estimation of the parameter 0 intervening in the stochastic
differential equation driven by a known Lévy process Y:

dX, = b(6, X)dt +a (6, X)dY,, (1)

These kinds of models are motivated by mathematical
finance problems ([1]). In this context, the property of local
asymptotic normality property (LAN) has become an im-
portant issue [2]. The LAN property is described as follows: a
sequence of families of probabilities (Py)y.e indexed by an
open set ® C R is said to have the LAN property at each
point 6, € ® with speed /n, if the sequence of probabilities
localized around 6,

n
<P90+n(‘”2)6)96{(5/ (6,+n-1)) EcO (2)

converges, in the sense of weak convergence of the asso-
ciated likelihood processes, to a Gaussian shift (Py ). p; See
Section 2 for a precise definition. The LAN property allows
to recover the so-called asymptotic Fisher information
quantity I(6,). This quantity is crucial in any estimation
procedure, since 1/I(8,) provides the lower bound of the
variance of any estimator of 6.

The LAN property was investigated by Akritas [3] in
models associated with Lévy processes X observed contin-
uously in time over the interval [0,n], » — co. He ob-
tained the property under the assumption of
differentiability, according to the parameter 0, of the
characteristics (bg, ¢y, v4) of X. With the same asymptotic,
Luschgy [4] obtained the local asymptotic mixed normality
(LAMN) property on models associated with semi-
martingales. As a notion, LAMN property is more general
than the LAN because it allows the Fisher information
quantity to be random. With the asymptotic
[0,n], n —> 00, the estimation methods do not seem to be
feasible in practice, for this reason, several recent works
focused on discretized schemes, i.e., observations of the
process X along the discrete scheme

X, 1<i<nn— oo. (3)

In practice, the most interesting case of the discretization
path u,, = 1/n turns out to be relatively difficult. The classical
case of a Brownian motion Y in (1) has been widely treated
[5]. Clément and Gloter [6] studied the LAN for the model in
(1), in the case where Y is a Lévy process attracted by a
symmetric stable process with index « € (1,2]. Ait-Sahalia
and Jacod [7], Masuda [8], and Kawai and Masuda [9, 10]
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studied LAN property for the model in (1) in case of constant
coeflicients, i.e.,

dX, = 0,dt + 6,dY,, (4)

Our investigation goes to same direction of Ait-Sahalia
and Jacod [11], who studied the LAN property and the
problem of estimation of the parameter (8, 6,) involved in
the model of a log-asset price X, solution of (3) with Y being
a standard symmetric stable process with index « € (0, 2].
Section 4 completes their situation in case where Y is a
general stable process, eventually mixed. The last direction
was initiated Rammeh [12] with observations according to
random schemes (T (i,n), 1 <i<n) for the scale model:

X = 6Y, (5)

where 0 is a real unknown real parameter, and Y is a
symmetrical standard a-stable process. Rammeh showed
that the LAN property always occurs, and his main argu-
ments strongly rely to the linearity in 0 to the fact that stable
processes have the temporal scaling property and to the
asymptotic behavior of the stable densities. Theorem 2
generalizes Rammeh’s results in the context of deterministic
discrete scheme T (i,n) = iu,,.

Because of the intricacy of the case (1), we first focus on
the following model, which contains (5) and intercepts (1):
we assume that for all 6 € ©, under Py, X is a Lévy process,
null at t = 0, such that its Lévy exponent is given by the so-
called Lévy-Khintchine formula:

[E[F"g [eiuXt] _ et(ﬂg(”)) %6 (u) = iuba _ o™

(6)
+ JR(‘ZW = 1= iuylly Jug(dy),

where by € R, ¢y € R,, and g is a positive measure on R
which integrates min (y?, 1).

For sake of clarity, we take © is the open interval R. As in
the precited literature, we will assume the following.

(i) The existence of densities gf, such that 9'—>gf is
regular enough,

(ii) The convergence, as n —> 00, of some integrals
. 0
depending on g, .

Theorem 1 and Corollary 1 provide conditions ensuring
the LAN property for the model (6), when the process X is
observed along the dlscrete scheme (3). Denoting g gu , the
logarithmic derivative of gu relative to 6, the asymptotic
Fisher information quantity at each 6 should satisfy

10 = Jim (@) @l 0dx € 0o ()

It is difficult to find Lévy processes fulfilling (7), and the
reasons are numerous, for instance, the existence of the
densities g?, the fact that they are not explicit in general, and
their degeneracy as t — 0. For these reasons, Corollary 1
focuses on the linear dependance (4) of the characteristics
relative to 6. In this case, we may assume, without loss of
generality, that ® contains a reference value, 1 for example,
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and the value 0 is excluded in order to avoid trivialities. In
this case, we only need to assume some regularities of the
functlon gu (x) and conditions of the kind (7) for 6 = 1. Let
h, gu and h,, be the logarithmic derivatives of f,, (x). The
asymptotlc Flsher information quantity should then satisfy

1(6) = é Tim [ (1425, 00)h, (0dx € (0,00)
(8)

The case of the discretization with constant path u,, =
u € (0,00) is quite obvious since the scale model (5)
becomes a regular i.i.d. one, that is, to say I (0) is finite and
nonnull. If u, — 0, the situation is more intricate be-
cause h,, degenerates when n — oco0. It turns out that even
the linear model (5) is falsely simple to handle. Intuitively,
one looks at special Lévy processes Y attracted by stable
processes on the sense of (10). The price to pay is to exhibit
refined controls on the probability density function of
Y,, t>0. In a second step, we restrict our attention to the
scale model (5). For simplicity’s sake, it is easier in this
case to express the probabilities (Py)g.e in the form (5)
rather than considering them as solutions of martingale
problems associated with the family of characteristics
(bg cp> Pg)gee because of the intricacy inherent in the
truncation functions [13]. Generic examples of Lévy
processes are stable processes. They characterized Lévy
exponent as follows. Let (a,3,9,6) € A = (0,2] x [-1,1] x
(0,+00) x R and

K(a) = all gy (a) + (e = 2)11(; (@),

(9)
R(a) = K@

(21

A stable process, with parameters («,f3,y,6), is a Lévy
process X = (SP1%),_ |, such that the corresponding Lévy
exponent is given by

() = idu — ylu|” exp (—infK (a)Sign (w)/2)), ifa#1,
v { i6u = ylul (1 +i28 loglulSign W)/m),  ifa= L.
(10)

The parameter « is the stability coefficient, 8 is the
skewness coeflicient, y is the scale coefficient, and § is the
drift parameter. The corresponding triplet (b,c,u) of
characteristics is given by

b=208+y sin(mBK ((a)/2))1l,y,,

c= \/2—)}11(7(:2’

1 (dx) = (C(, B, ) 1Lsg + C (o, =B, P) 1L o )|~ Pdx1l,,,
sin(%oc(l + f(oc)ﬁ)), ifatl,
ClaBy) = Vr(a+ 1)
1+p ifa=1.

(11)

See [14]. In model (6), a candidate for the unknown
parameter 0 could be any the parameters a, f3, y, or d. Since
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stable processes enjoy the scaling property, with §(a,t) =
t[0+ (2fB/n)y log(y)1l,;],

(S7979) 0%y (e 1) 4 57717) "

=0’
then a candidate for the unknown parameter in the model
(5) is clearly the parameter 6 = y"/%. For more account on
Lévy processes, the reader is referred to [13] or [15] and for
stable distributions, we suggest [16] and also [17]. Section 4
provides nontrivial examples of LAN models associated with
Lévy processes Y attracted by stable ones. That means that
there exist measurable functions b(t) € R,a(t)>0 and a
nondegenerate distribution v, such that

~ Y. —-b(t) 4
Yt:%t)() — v, ast — Oorast — co. (13)
a

In [18], Far focused on the LAMN property for the
model (5) discretized along the scheme iu,, = (i/n), 1 <i<n,
when the process Y is of the form Y = W + N, the sum of a
standard Brownian motion and an independent compound
Poisson process. She obtained LAMN property under the
condition that the Lévy measure v of N has no diffuse
singular part and that if v is absolutely continuous, then the
model has the LAN property. Our development in Section 5
constitutes a complement to Corollary 1 for the scale model
(5) and also to Far’s work [18] and illustrates how to build a
LAN scale model from another LAN scale model.

2. Definition of the LAN Property

In Section 3, we provide some theoretical results on models
associated with observations, at times iu,, u, >0, of the
process X, and to illustrate by some examples. To this end,
we consider the sequence of i.i.d. random variables and the
family of o-fields:

n
Xj = X, = Xju, 1)
gl =o(X}, 0<j<i-1)=o0(ju, 0<j<i).

Denoting #" =¥}, and #} = Z'[’nt], t € [0,1], we in-
troduce the sequence of filtered statistical models:

E' = (Q T (T retony (P9)968)' (15)
For any fixed 6, € ®, we denote
®n={66 R: 90+%e (9},
0 16
161, = 60+ (16)
Pz = P[a]nl%n,

and we introduce the statistical experiments localized
around 0,:

" (00) =( X", (e (Pheco, )

! ! ! ! ! (17)
& (90) :(Q »F s (gt)te[O,l]’ (Pe)e)e [R)’

where the last statistical experiment is a Gaussian Shift. By a
Gaussian shift, we mean, that for all 6 € R, Pé is the unique
probability on (Q', ') equivalent to P, on each &, and that
its associated likelihood process is the geometric Brownian
motion defined by

0 dPy|F,
e
AP, |7,

=exp{9 I(HO)XQ—gl(eo)t}, t e [0,1],
(18)

where (X});c(o, is a Wiener process, and then, under P,
the process (X, — t0/I(6;) ), s again a Wiener process.
The quantity I(6,) is called the asymptotic Fisher in-
formation quantity; it is a positive constant related to the
sequence of statistical experiments &" (6,) in (17) and has
to be determined. The asymptotic Fisher information
quantity is crucial in any estimation procedure. Indeed,
under the LAN property, 1/I(6,) is the lower bound of the
variance of any estimator 9, of 0,. More precisely,

HAJEK’s asymptotic convolution theorem says that if 9,
satisfies

4 "
3aw<\/ﬁ<9n —<90 +\/ﬁ>>|ﬂ3’e> — Ly, asn— oo,

(19)

then the distribution &, is the convolution product
Lo, = Lh + L3, where Z} = normal (0,1(6,)"") and Z3,
isa proba(iaility measure on R. See [19] for more.

Local asymptotic normality of the sequence of models E"
in (17), in a value 0, € O, is actually equivalent to the weak
functional convergence in time of the sequence of statistical
experiments &” (6,) to the Gaussian shift &' (6,) in (17). This
fact is explained as follows: let Z'" and Z™* be the like-
lihood processes defined, for all #,& € ®,, and at each time
t € [0,1], by

A P T S
(20)
e Tt [dpzl%’"],
NP2 P

with the convention (a/0) =0, if a € (0, +00). According to
[5], the likelihood process 7M1 of the statistical experiment
&" (0,) is represented by

ZMe = Hg;" (x7). (21)
j=1 gun

The notion of weak functional convergence in time was
introduced by Lecam [2] and developed by Strasser [19] and
Jacod [20]. It is expressed as follows: for every finite subset |
of R=U,,,0,, and every & € ©, we have

Saw( zm P ) Faw (Z”ﬁ) P! |,
(2"),5 P, ) — qe]|s 22)

asn — + 00,



in the sense of the weak convergence for the Skorohod
topology.

3. When Does LAN Property Hold for
Lévy Models?

Our aim is to give sufficient conditions on the p.d.f. >0 of X,
under Py, ensuring the LAN property for the sequence of
filtered statistical models E".
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3.1. LAN Property for the Model (6). In this section, we will
consider the model (6). If ¢y = 0, y, integrates |y|Al, and
Up (0, 00) = 0 (respectively, 4 (—00,0) = 0), then the support
of the distribution of X, is

dgt, 0o (respectively, (—co, dgt]), withdy = by - J- Y4 (dY). (23)
R

In all other cases, the distribution of X, has a support
equal to R. There are many situations in which for all
t>0, X, has a probability p.d.f. g¢(x) which is infinitely
differentiable in x. For instance, the latter holds if

C9>0,

24
or ifj min(yz, l)ye(dy) > Kge", (24)
lyl<e

for any ¢ € [0, 1] and for some Ky >0 and some « € (0,2),
see [21]. Later on, we may assume the following:

(HO): forall @ € ® and ¢ > 0, under Py, the support of the law of X, is an interval K,,

independent from 0, of the form K, = R or(—oo0, dt (25)

and X, hasap.d.f. xb—>gf) (x)which is of class C?, relative to 6.

We denote %, = K,, and we define, on the interior of
H ,» the following functions:

W ge
—0 0 9
h, = —log h,
9, &
2
W = a—he, (26)
n 2''n
o
_n12
o= lln,
Jn = iz + hz .

When the number y > 0 appears, it is always understood
that n is big enough so that y and —y are in ©,. For all
6€®,pe (0,1),and p' =1-p, we denote

I: = J iZ (x)dx,
K,

n

(27)
1, (x) = sup I,[f]”,
lel<y
i () 3 lebn .
Th(0) = SUPJ - (x:J" ) rdx =75 (x0)-
Kbils 7ol () (R () )
(28)

For statisticians, I is a familiar quantity and corre-
sponds to the Fisher information quantity at stage n. The
quantity J° (x) is less intuitive; it is a localized quantity
around the true value 0, and corresponds to the rest of
Taylor approximations at the order 1 of Hellinger integrals of
the model.

We are now able to state our first result, that is, the LAN
property for the model (6).

Theorem 1. Assume (HO) and the following conditions:
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(H1): lim IZ“ =1(6,) € (0, 00)and forall y >0, limsup T, (y) < + 0o,
n—00 n—+00
(H2): There existsa € (0, (1/2))such that forall y > 0, one has (29)
>
lim ]"—(X) =0 forpe{(1/2),a,1-a}.
n—s+00 n

Then, the sequence of sequence of filtered statistical
models E" (15), corresponding to (6), has the LAN property
at 0, with the speed +/n and the asymptotic Fisher infor-
mation quantity I(6,).

Remark 1

(i) Cauchy-Schwarz inequality gives %< [7;/2 (IGI]]U 2
and both conditions (H1) and (H2) are implied by

(H3): lim 12" = I(6,)and there existsa € (0, (1/2)), such that forall y > 0, one has
n—+00

limsup TZ (x)< +0o0 forp e {(1/2),a,1 -a}.

n—+00

(ii) Under different conditions and a different proof,
Masuda obtained ([8], Theorem 2.12) the same
conclusion as in Theorem 1.

Genon-Catalot and Jacod [5] exhibited discretized
models according to random sampling schemes
(T (i,n), 1<i<n) associated with a diffusion process X
driven by Brownian motions (with coefficients dependent on
0 and by an homogeneous way on X) and proved the LAMN
property under conditions similar to (HO), that is, differ-
entiability to the third order relative to 6 and integrability of
the densities of the processes. Their proofs have a general
vocation in the sense that they only use the Markovian
property of the processes and are based on a method of
approximation of the log-likelihood. Because of the intricate
form 16 of the likelihood processes, we show the weak
functional convergence of &"(6,) to &' (6,) via the con-
vergence of the Hellinger processes, and with a tool, one can
find in [20].

Proof of Theorem 1. Fix 0,. The Hellinger process of order
p € (0,1) between IP’,; and I]:"f', relative to (97;),6[0,1], is de-
terministic and has the form

7@ =p-p - 91@)(5) 6D

According to ([20], Theorem 5 3), it is enough to show
that the Hellinger processes ™ (p) between P, and P,
relative to (});c[0,)> satisfy the following: there ex1sts
ae€ (0,(1/2)), such that for every Vy,{eR,
p €{(1/2),a,1 —a}, and t € [0,1], and the convergence in
law

[I:DYI
T (p), —> H'(p),, asn— o0,  (32)

holds. We will use this method because in our framework,
the processes F" are also deterministic and have the

(30)

following quite simple form one can find in [5]: with |nt]
being the integer part of nt, we have

] (p), = LntJ(l - J% (hr[lq]")P(h,[,ﬂ”)l_P (y)dy).
(33)

n

(1) For p € (0,1), p'=1-p, take ® (u,v)—pu+p V=
wPv* , u,v>0, and observe that

e (p), = J% (Dp(hr[,m") hr[zﬂ”) (y)dy. (34)

n

According to (32) and (33), it is enough to show that
Vn, & € R, and p € {(1/2),a,1 — a}, and we have

: e 1€, _pP 2
lim nJ% @, (W W) (r)dy = 20~ 971 (6y).

n—=o00
n

(35)

(2) Assume (HO), (H1), and (H2) for a fixed

a € (0, (1/2)). Applying Taylor expansion at the first order

of O— (h0) for n € R and n big enough, we get for 7 € ©,,
the representation of (h, [l "¥ on H,;:

Pﬂk60p+P’7Vr1p (36)

h[’ﬂn _ h0 ,
(Y =) + 2y
where for all 0 € ©, the functions

Ko =B (WY& = (kY [%hﬁ . (EG)Z]

(Y [:_: - p'(zﬁ)z],

n

(37)

1 1 .
VI - J 0 [Kl7h0 — k] dr = J - DR gy,

(38)

M
N



are defined on the interior of % ,. Also, observe the following Because of (38) and (39), one has
relations:

K (WY = k0 (7Y = K2,
KoK = 1P, (39)
R (0Y =i - gt

71

v =y vie = 2L [ e[ (Y T ar
0

!

_n e[ e\ (160) e’ (! [,
_%J S [ e () ]dr+%J (1= ilhdr,

0

Using (36), finally write

!

U 2. 1 < nr ! ! 1
Vi (WY v <1 J (1= 0k, [k v Jar + " j (1= )i,
n 0 nlJo

(3) For all #7,& € R and n large enough, so that #,£€®,,, write
@ (R B8y = | ooy gt Myt | il &, €&
(1" ) = p hn+ﬁkn \Fv +p'| K +Wkn +ﬁvn

_[(hZo)P P’7kf’op+ V’H’][ heo Pfkﬂop /\’/_Evfp]

Then, use (39) and obtain

n, (LT, 1) = rpy

VI (Y vie] v e VE - (kY vee

0 pyEe L 100py 60 L 1000 v
—pp'nf[zn°+VZPViP + Klopyer +kn°PVZP].

According to (41), we have where
nd)p(hy[l”]", h,[f]”) =pp' [AZ’E + BZ’E], (44)

1 1
AZ’E = J (1- r)i,[l”r]”dr +& J (1- r)i,[fr]”dr - 1151'2",
0 0

301
N e [ 6" ", 13 [fr]ﬂﬂ o T,
Bzfzﬁjo(l—r)kn [ +VZ”]dr+\/_J- (1= R T 4 v ar,

- nf[kﬂo*’vj’f" + K0op ey ]

Complexity

(40)

(41)

(42)

(43)

(45)
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(4a) We will now prove the following convergence that
will imply (35): for all #,& € R,

lim L{ AT (x)dx = %(;7 _O%1(8,),  (46)

n—~oo

lim I B (x)dx = 0. (47)

n—oo ) g,

(4b). To prove (46), we use both (26) and (37), and for all
p € (0,1) and 0 € ®, we have the representation and the

control.
ey

o (s)  sup |17 - 1% <2igiT, o (£ ‘X) —0 asn— o
kG,P <_Jn re(0,1]
n | = .
() (50)
We then can write
: 2 (! [r) 2 (! (ér) 6
j% Al (x)dx =7 jo (1-nI"dr+& Jo (1=r)I,;"dr — nél,°
' (51)
1 1
=i jo (1- r)(I,[f’r]” - Izo)dr +& J-O(l - r)(I,[lm" )dr - (11 + & - 2115) R
and clearly (50) implies (46). The latter implies
(4¢). To prove (47), we use same the same arguments as Trlp o
in (4b), the Taylor expansion at the first order of 9!—>k2’(” 2, sup j- |k,, " (x)k, P (x)'dx
: re(0,1] n
and the representation (54)
-[nr],, ’ - [nrl,, i 1, e N ! — ’
k,[j ]npkzo,p =k,[1’7 ]nPk;Lqr]n,p _%J ky[.mnpkim]np ds, /I (X)]uz (X)“L%]Z (0 =& ) = (.
pe(0,1),r€[01]. Using (48), we also have
(52)
By (48) and Cauchy-Schwarz inequality, we have the
following control, valid for all € [0, 1]:
j B Ok ()| dx
Ho
ey GO &2
SJ [nr] n ] (x)-
\lh[”r (x
Tr],p . Fils il lnrslp’
J%n & v (ofax < o J (1- )J%n e ot (x)‘dxds, (55)
[nrlp nrp' 0
and reproducing the method, we used to get (54), and we r:%pu J% |kn (x)V) (x)|dx§ 8, (0- (56)

obtain

Let n,€ € R, and let y = |5|VI§|. Using (26), (37), and
Taylor expansion at the first order of 6— (kg’(” 232, we obtain
the galloping control, valid for all € [0, 1]:

Ir[:mn _ Izo — Jy{ [k[qr (1/2) ( )2 _ kZO,(I/Z) (x)z]dx

27]7 1 - [nrs],,
\/_11 J JO kiﬂrs]"’(l/z) (.X)k?[:7 e (1/2) (x)dsdx.

Taking p = 1/2 in (48), applying Cauchy-Schwarz in-
equality and assuming (H1) and (H2) we obtain




According to (38) and (54), we also have

Inl

Kio? (V1 ()] dx <
j%| vy ofdes T

Furthermore, (38), (48), and Cauchy-Schwarz inequality
imply

J |V”P(x)vfp (x)|d <|’7‘Clj Jo(l—r)(l

Finally, according to (45), (54), (56)-(58), we obtain the
control

J.%nB” S (x)dx < e ’:/(i()

and we conclude with the fact that assumptions (H1) and
(H2) imply (47). |

3.2.LAN Property for the Scale Model (5). Asa consequence of
Theorem 1, we obtain a result for the scale model (5). The main
argument is that the r.v. Xt, t>0hasap.d.fg} under P, ifand
only if X, has the p.df. g% (x) = g! (x/6)/0 under P,. From
now on, the functions h,,, h,, and h,, denote, respectively, h!,
the p.d.f. of X,, under P, the first and the second derivatives of
h,. For 0 € ® ‘and n> 1, we have the expression
H (x) = 5@(%), = %, = support(h,).  (60)
Therefore, if we want (HO) to be satisfied, we need to
impose K =%, = RorR, orR_. Then, for all x € K, we

have
i, (x) 93 n<x>

.0 1, /x
Jn(x) = §Jn<§>s

(61)

o,

Complexity

(7r]p” )
k" (k% (x) | dxedr <2288 (4. (57)
N
e (x5 (x) Il
—s)J dxdsdr < X5 (y). (58)
hr[lm (x) hﬂfS]n (x) \/n X
=(112) - o
sif= a7 ) T (x)
T (y)ln_ WX I 59
Kn()d " > 1 (59)
where the functions i, := i} and j, := j} are given by
no
i,(x)=1 +xh—" (x)| h,(x),
’ (62)

! n

24 axthn (x) + ey (x)|h, (x).

Jn(x) =1, (x) + p p

n n

Making a change of variables, we see that the quantities
Ig and I, (y), defined in (27), satisty

1 . »
= ? JKI" (x)dx = -3,

0
n

I

I (63)

ey (1 C] )’ (|00| - (V)"
Using Cauchy-Schwarz inequality and again a change of

variables, we obtain the following: for all y > 0, the quantities
]Z (), p € (0,1), defined in (28), satisty

I,(p =

- [(] (x)Z ]’;LE]" (X)Z 172

W= s “ KR () dx] U KR (e dx]
- 1 jn () w0 1" (64)
" Khiex [| e, J ih, (x)7 o K (o

4p—10

X

U@L () = I

Jn 4
Kkh, (x)*




Complexity

Corollary 1. For the scale model (5), the sequence of
statistical models E" has the LAN property with speed \/n at
each 0 € O if the following conditions are satisfied:

(C0): under P, the support K of the law of X is either R or R, or R_. For all

t >0, ther.v. X, hasap.d.f. g (x) which is of class C? on the interior of K.

(C1): thesequence I, = J i, (x)dx satisfies
K

(65)
lim I,=1¢€ (0,00),

n—+00

1 1 1
(C2): thereexistsa € (0,—>such that lim —J,(p) =0 forpe {—,a, 1- a}.
2 n—o0 1 2

In this case, the asymptotic Fisher information quantity
is 1(6) = 1/6°.

Proof. It is immediate that (C0) implies (HO). Represen-
tation (63) shows that (C1) implies (H1) and (64) shows that
(C2) implies (H2). O

Remark 2. Since h,, is the p.d.f. of X, , then we should be
aware that the discretization path u, intervene in the as-
sumptions (C1) and (C2). In Theorem 2, we will see that in
some favorable cases, the effect of the path u, has a quite
negligible effect. In general, the LAN property depends
strongly on the asymptotic of u,,.

4. Examples of LAN Property for Lévy Processes
Attracted by Stable Processes

In this section, we provide some examples of Lévy processes
X satisfying the conditions of Corollary 1. This corollary
provides the LAN property for the scale model (5), X = 6Y,
under regularity and integrability conditions on the p.d.f. of
Y,, t >0. Unfortunately, these p.d.f,, if they exist, are not
explicit in general; for this reason, we focus on processes Y
which belong to the domain of attraction of stable processes.

We recall that a process S*#1 is stable, if it is a Lévy
process with Lévy exponent given in (10). In the case

a € (0,1) and 6 >0, the process §®L¥9 ig a subordinator, i.e.,
a positive increasing the Lévy process, and the distribution of
S0 50, has a support equal to [8t,00). In all cases,
S‘:’l’y’é, t>0, has a p.df. Gf"/s 70 \which is infinitely differ-
entiable and is explicit only for the particular values
(o, B) = ((1/2),1), (1,0), (2,0). These values correspond,
respectively, to the first passage times of the Brownian
motion, the Cauchy process, and the Brownian Motion.
Otherwise, G‘tx’ﬁ 7 s be expressed only as the inverse Fourier
transform of exp ¢ (u). As announced, the introduction, we
focus in this section on the case where the Lévy processes Y,
in the scale model (5), is attracted by a stable process, i.e.,
satistying (13). Bertoin and Doney [22] showed that if (10)
holds, then the process Y is attracted by a stable one, and
then, the following holds:

(i) There exists b € R, a € (0,2], and a slowly varying
function I(¢t) (i.e, a function satisfying
(I(At)/1(t)) — 1, YA > 0), such that b(t) = bt and
a(t) =tV (¢t)

(ii) v(dx) = G(x)dx, where G is the p.d.f. of some stable
I.v. S‘f’ﬁ’y’o, Bel-1,1],y>0;

(iii) The p.d.f. G, of Y,, t >0, is infinitely differentiable
and satisfies

(Gt)(k) (x) — G®(x), uniformlyin x € Support(G), t —> Oort —> 0o,k € N. (66)

(iv) The convergence in (13) can be entirely expressed
with the behavior of the tail of the Lévy measure of Y
or by the existence of a Brownian component.

Observe that the p.d.f. h, of Y, is represented by
x—-b(u,)
a(u,), xeR.

As in (8), let us denote by Gun and G the logarithmic
derivative of G, and log G, respectively. After the change of

h(x) = Gun< (67)

variable x+a(u,)x +b(u,), the asymptotic Fisher infor-
mation quantity in (63) takes the form

2
I= lim J [1 +<x + ZEZ"%)G% (x)] G, (x)dx.

n—=o00

I
1(9) =?)

(68)

The convergence (66) does not ensure that I (0) is finite
and nonnull; it only ensures that if it happens, then
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= lim (b(u")> exists,

A\ (1) -
1= [ 1+ 4+ DE@IG () € 0.00).
The stronger control
limsup ‘x@uﬂ (x)| <00, (70)

|x|—00,n-—00

is sufficient to prove (69), but it is hard to obtain. In [14, 17],
we provided controls for the p.d.f. G, (x) in the space var-
iable x and uniformly in small or big time ¢, the processes

N
Y = Z Sak,bk,ck,dk)
i (71)
orY = §%P0, 7,

N
Yt - Zkzl at,ak d  .a,b;1,0
It Lk=l Tba 9@ o
1/a; 1
(vit)

1

>

The last property will be useful in Subsection 4.2
when taking the path u, — 0 (respectively,
u, — 09).

(ii) IfY = §%P106 7, we assume that the subordinator Z
is itself attracted by a stable subordinator: for some
0<e<1 and some (deterministic) speed r,,

Z, d
—

&1,1,0
Sy
Ty

, ast — O(respectively,asco). (73)

The function t—r, is necessarily a regularly varying
function of order 1/€ at 0 (respectively, co): r, = tY*I(¢) and ]
is slowly varying, i.e., (I(At)/L(t)) — 1, VA > 0. Then, there
exist € (=1,1) and y’ >0, such that

Y d e, y',0

1/ta — 5 -
t

, ast — O(respectively,t — 00).

(74)

4.1. The Scale Models Associated with Stable Processes Have the
LAN Property. The following result is a first application of
Corollary 1.

Theorem 2. For the scale model (5), assume Y = S*P19 js g
stable process, such that § =0 is null if a<1 and |B| = 1.
Recall {S}"" is defined in (12). Let the path u, satisfy l, =
(yu,)” %6, o — | € R and one of the following conditions:
(i) u, — L € (0,00)
(i) u,, — L = 0 and nfu,, — oo, for some R>0
(iii) u, — L = +co and n~Su,, — 0, for some S >0

Complexity

where the coefficients (ay, by, ¢, d,) vary in a set Dy, the
processes S%ocd are independent, and S*#! is indepen-
dent of the subordinator Z. We emphasize that in (71), Y
satisfies (13) and does not enjoy the scaling property (12)
anymore.

(i) IfY = Y7, $%becedi and the stability coefficients ay
are pairwise different, we have an asymptotic scaling
property; if i, = Argmin{a;, 1<i<N} and
i, = Argmax{a;, 1<i<N} and i =i, (respectively,
i,), then

ast — 0 (respectively,t — ©0). (72)

Then, the sequence of sequence of filtered statistical scale
models E" (15) have the LAN property with speed \/n at each
0 € ©. The asymptotic Fisher information quantity is given by

_ 1 ,G' () B
1(9)_62“(y+1) Gy 1) (75)

where G is the p.d.f. of S‘lx’ﬂ’l’o_

Remark 3. If « € (0, 1), then support of the law of S‘f’ﬁ’y’s is
[, 00) (respectively, (00, 6]) if § = 1 (respectively, § = —1);
otherwise, the support is whole R. The assumption § =0
ensures that the support of the law of S™7° satisfies the
condition (C0) of Corollary 1. We are aware that the cases
nu,, — O0andu,, — 00 are not very realistic by the sta-
tistical point of view. The most interesting cases are as
follows:

(a) u, = u € (0,00), then L = u, and the assumptions of
Theorem 2 are satisfied. This is an essentially trivial
result because we treat then a regular i.i.d. model.

(b) u, = (u/n), u € (0,00), then L=0, and the as-
sumptions of Theorem 2 are satisfied if and only if
one of the following holds:

(i) a< 1,6 =0, and then, [ = 0;
(ii) @ = 1,4 = 0, and then, I = 8/y;
(iii) @ > 1, and then, [ = 0.

Proof. of Theorem 2. (1a) Recall that h, denotes the infi-
nitely differentiable p.d.f of Sz;ﬂ "° Due to the scaling
property (12), we have the following representations: for all
k € N and x € support(h,,),
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(1b) In [14 17] we provided several properties of the

(k) _ 1 «,3,1,0 (k) [ X =0y
(h,)" (x) = W(Gl ) e [ (76 pdfG= G ®_ For instance, there exist positive constants
(i) (yu) A,B,C,D that depend explicitly on a, 3, such that
where
R,, if0<a<l,f=1,
Support(h,) =4 R_, if0<a<l,f=-1, (77)
R, otherwise.
- <respectively, - )E(x), if B = 1(respectively, — 1)and0 < a < 1,
~ (respectwely, ~ )X (x), if B# — 1(respectively,l)and0< a <2,
G(x)" - (78)
~ (respectlvely, ~ )r](x), if = —1 (respectively, 1)and o = 1,
+ -0
<respect1vely, )f (x), if B = —1(respectively,1l)and1<a<2.
100
where and f(x) ~ g(x) means lim__ ,(f(x)/g(x))=1. Fur-
thermore, with the convention (0/0) = 0, the functions
X =—om ®
G
x| R = (’)‘) . keN, (80)
X
£(x) = Blx| 392D AR (79)
are continuous on support (h,,), given by (77), and there exist
axl2 | TElx] positive numbers a, b, ¢, depending explicitly on a and 3 and
n(x) =C exp| —e + ) k, such that
- <respect1vely, - )alxlkl(“ D if B = 1(respectively, — 1)and0<a < 1,
(respectwely, )blxl if f# — 1 (respectively, 1)and 0 < a < 2,
oo Z
Fy (x) (81)
. kﬂxl . .
~ (respecnvely, )c exp if = —1(respectively, l)and a = 1,
+00 -
<respect1vely, )a|x|k/(“ b if = —1(respectively,1)and  <a <2.
+00

From the last equivalences, we see that for any non-
negative integer s, we have the implication

03rsk=>| llim x| (1" F ) (G)2 P € [0, 00).
X[—>00
(82)
Thus, since 0<p<1l-(1/(2(1+a)))e2(1-p)(1+
a) > 1, then

0<r<k,

0<p<l- — x> (x| F (%))°G ()17 € L' (dw).

1
(a+1)

(83)

(2) We need to verify the assumptions of Corollary 1, i.e.,
to check (C1):
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’ 2
I - J [1+x%(x)] h, (x)dx — I

n

N2
- J (y+l)2% (»)dy - 1 € (0, 00),

asn — oo,
(84)

and also (C2); there exists a € (0, (1/2)), such that for
p €{(1/2),a,1 — a}, one has

Complexity

(3) The scaling property (76) and the corresponding
change of variables give the following representation of the

quantity I, in (84):
G (»)

I,,=J[l+(y+ln)G(y)

Using (82) and the fact that [, — [ € R, we obtain

2
] G(y)dy. (86)

G, 7
X sup [1 +(y+ln)E (y)] G(y) € L (dy),

1 1 [ () . " (87)

= [ a0 0 o,

" nJ (k) . G
T 1= [ 1+ 04D 0] GOy
b ool by b
=1+ X ()| +]2+ 4xh_ (x) +x n ()| |h, (x). Developing the last expression, integrating by parts and
! § " using the fact that G(y) and yG(y) both tend to 0 as y goes
(85) to each endpoint of the support (77), we recover (84).
(4) Again, by the change of variables corresponding to
(76) and by the representation (85), one has
G 2 G G" 2

Tu(e) = () | { L (r+L) G 0N+ a0 S D+ () e <y)H GOy (58)

Thanks to (83) and to the fact thatl, — [ € R, and it is
clear that if p € (0,1 —1/2(a + 1)), then

2

G
1+(y+ln)6(y) +

sup {
neN

is integrable. Let € := (1/2) — (1/(2(a + 1))). To prove the
convergence (85), it is enough to have

1
pE <0,e+§>, (90)
(2p-1)/a
lim “n - 0. (91)
X—>00 n

(5) Now, we distinguish between the values of
L =lim u

n—oo“'n*

(a) If L=0 and if p> (1/2), then (91) is true. By as-
sumptions, we have (1/u,)<n®, for large n. If
p<(1/2), then we have (91) as soon as
(R(1-2p)/a)<1, which is equivalent to
p> (1/2) — (a/ (2R)). Thus, we only have to choose

G/
2+4(y+ln)6 (y) +<y+ln— (y)

" 2
:© ] Glyp i (89)

€ = (ena/(4R)) and a = (1/2) — €' to get (90) to
obtain (91) for p € {(1/2),a,1 — a}.

(b) If L € (0, 00), then (91) is always true.

(c) If L = +oo and if p< (1/2), then (91) is true. As in
(5a), we have u, <n® for large n. If p> (1/2) then we
have (91) as soon as (S(2p—1)/a)<1, which is
equivalent to p< (1/2) + (a/(2S)). Thus, we only
need to choose €’ = (eAa/(4S))anda = (1/2) —€"
to obtain (90) and (91) for p € {1/2,a,1 — a}. O

4.2. The Scale Models Associated with the Sum of Independent
Stables Processes Have the LAN Property. This subsection
gives a second example which also generalizes the previous
one and achieves the situation (13). Define K (&) = 1 if a <1
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and K (a) = (a — 2)/a and assume the following restrictions
on the skewness parameters:

(Sa’b): we have N independent stable processes §%be%0 such that the parameters satisfy

N
(a)a; <a,< - <ay<2andP = N

(b)b, =0ifa; =1andB = max{

LetY = ¥, §%Y%® and Y? be the processes defined by
Y
Y, =<4 i=1lori=Nand,t>0. (93)
t i
The processes Y' satisfy the asymptotic scaling property
(72). Denote by H, the p.d.fof Y,,

,by5¢1,0 basens0
Ht:Gfl PRt g L *GfN NN (94)

and by H;,, the one of Yi. Then, h, = H, satisfies

(1) ® () = () * % (H,, )P (e "), (95)

In [14, 17], we showed that the following functions H,,
and H, given by

lim Hy,(x) =GP (), if L= +oo,
Hy = o ansby,1,0
IE%JrHN’t(x) =GV (x), ifL=0,
(96)

are well defined, and the above convergence holds uniformly
in x € support (G?i’hi’l’o) and still hold for the successive
derivatives. As one can guess, we are going to exploit identity
(95) and state the following result.

Theorem 3. Let (u,), be a sequence satisfying one of the
following conditions:

(i) u, — L € (0,00)
(ii)) u, — L =0, and there exists R>0, such that

Ry, — + oo;

(iii) u, — L = +00, and there exists $>0, such that
nSu, — 0.

For the scale model (5) with Y = ¥, $%t0, assume
(S,p)- Then, the sequence of filtered statistical scale models
E" (15) have the LAN property with speed +/n at each value
0 € ®. With H,; given in (95), the asymptotic Fisher in-
formation quantity has the following expression:

S
1 (1+[pK (ay))

b K (ay)
K (aN)

13
+J; (92)
1sksN]»<1.
I
1(90)_6_2’
(H;)' () 7
H/ y
I :J Pl gy -1
L y HL(y) y
Remark 4

(i) Let us briefly explain the nature of the assumption
in Theorem 3. In [17], conditions of type (S,;)
allowed us to show that Y! is distributed as an
a-stable variable mixed on the skewness and scale
parameters by other processes. More precisely, for
all t > 0, we have these identities in distribution: for
all  in the interior of the domain & (given in (S,;))
and for all £ > 0, there exist a r.v. f, and y!, such that

VASTATOL(y]) st °8)

t

The processes 8 and y' are

[B| <B.

cC__, D (99)
Wzt <y < WZt,
_xn (ap/a),1,1,0 . .

Where Z, = Y7, S, is a sum of indepen-
dent standard stable subordinators, and the non-
negative numbers C<D depend only on
(a,a;,by,¢p5...,an,by,cy). In the case where
biK (a) is a constant for all k=1,...,N, then
B, = b,K (a,),y! is distributed as a normalized sum
of independent stable subordinators, and the
converge in the following distribution holds.

N biK(a;) (ala)110
(ﬂt’))t) ( K(a) » Sy ’

ifi=1andt — oo,orifi = Nandt — 0.
(100)
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Furthermore, notice that the assumption (S, is
satisfied in the symmetrical cases

(ii) In general, when f3,y, § are r.v.’s lying in the set of
admissible parameters and  is the o-field gener-
ated by them, we gave in [17] a structure of the
F-conditional Lévy process to (%P )rso- See also
[13] for the notion of the F-conditional Lévy
process. If 8 is deterministic, S'f’ﬁ 0 is simply dis-
tributed as y/ "‘S‘f’ﬁ 1%, and with our construction, we

allow the same identity even if f# is random and

correlated with y. We also considered in [17] the
densities of some families of mixed stable variables

(S‘f’ﬁ eredy - and gave several examples when these

densities and their derivatives behave like the

proper stable densities and this uniformly in t € T.

(iii) It is also possible to state a version of Theorem 3
with stable processes with drifts. It is enough to
strengthen the conditions on the asymptotic as
done in Theorem 2. We consider that Theorem 3 is
far from being exhaustive. It is produced in the
aim of illustrating the difficulty of this case. If one
wants to reduce the assumption (S,;) on the
coefficients, then additional controls on the
densities are needed.

Before tackling the proof of Theorem 3, we need the
following result borrowed from [17].

Theorem 4 (See [17]). Controls of the densities of some
mixed stable variables (S‘f’ﬁ”y”o),e% Let (y,),s, be a pure
jump subordinator characterized by

0,00

Assume v(x) =v(x,00) = x ?L(x), where a € (0,1),
and L is a slowly varying function. For r,x >0, define

1
Vv, = sup{t >0: v(t) >;},

v, (x) = rv(xv,, 00), (103)
— _Yr
Yr = V_r

(a) If L is slowly varying at infinity and r — oo or if L is
slowly varying at zero, then

1
v (x) — — x>0,
* (104)

_ d 1, (T (1-a)/a),0
y, —5 sy,

asr — 0 +.

(b) Moreover, assume that there exist 0 <c<a<d<1and
K >1, such that

L(y) y

) st Gex() oeyex a0y

Complexity

Let R">R>0 and (yf),.x denote one of these
families: !

R, =R, = (0,R],R, = [R,R'],Ry = [R,00), and
yL =92 =1y, vy} =7, with L slowly varying at oo,
and y! =79, with L slowly varying at 0. Let
a € (0,2) and (B,),s, be any family of r.v.’s, such
that sup,.,|p,| <B, for some B e [0,1), (B=0, if
a=1). Then, the p.df. G? of the mixed stable
variables S‘f’ﬁ”y’ are infinitely differentiable and
satisfy the following: for all k € N and all p, we have

0< liminf inf [x|"**G? (x),
|x|—00 r€R,

limsup sup |x|'"*“G? (x) < 00,

|x|—co r€R, (106)
k

. | (G)) Y ()

limsup sup —5——

|x|—0c0 reR,,xeR Gr (X)

For all X >0, p# 1, we have

Q) If (y)yso is a family of rv.)s, such that
(y,/K) <y, <Ky, for some K>1 and all r >0, then
the controls (106) and (17) remain true for the p.d.f.’s
obtained by replacing (y,,y,) by (y,, (y,/v,)), where
v, is given by (103).

Remark 5. If y is a pure jump a-stable subordinator, then

v, (x) = x™%, and the scaling property gives ?riS?’l’m’“)/“.

Furthermore, if fB,=f,r>0, is deterministic, then
S‘f’ﬁ"?’gslfa’ﬁ V', for some p' € (=1,1),9' >0. The estimates
(106) and (17) are an immediate consequence of the behavior
of the stable densities given in the Proof of Theorem 2.

Example 1. The following are examples of processes satis-
tying the conditions of Theorem 4. Let 0<b,b;,...,by <1,
and ¢,cy,...,cy >0. Let y',9? be pure jump subordinators
whose Lévy measures are, respectively, equal to

N
v, (dx) = Z —b:ﬂ 11, .,dx,
k=1%

(108)

v, (dx) = % 1,ydx + 8, (dx).

The process y' is the sum of independent stable sub-
ordinators, and y? is the independent sum of a stable
subordinator and a standard Poisson process. With b,, =
max b; and b, = min b;, notice that

Ly (x) _Ly(x)

M =TaT
* (109)
() = 29,
X

where LY, L, are slowly varying at 0, L, is slowly varying at
00, and
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Corollary 2. Assume (S,y). Let H;, be the p.d.f of Y,

y\h _Li ()
0<y<xz<;) Smﬁ > i=1,N,t>0. Let T>0,T, = [T,00), Ty = [0,T), and
(k)
H; (2)
] /1\(y)<<z)b/\’bv (110) Ftt(Z)z%" kGN,ZG R. (111)
TLU(0) T \x !
b/2
(Z) SII: Ey ; <2 Then, for every nonnegative integer s, we have
X 5 (x
The following result is a consequence of Theorem 4.
0<r<k,
b s (112)

0<p<l = sup (|z|rFi)t (z)) H;, (2?1 P s integrable.

- (611 + 1) teT,

Proof. By Remark 5, notice that the Lévy measure of
subordinator Z in (99) has the required conditions.
According to Theorem 4 (c), these conditions imply that the
family (H,,);cr, behaves like (G}),cx, and that (Hy,)er,
behaves like (G,),cp, with ¢ = a,/a and d = ay/a. |

, 2
I - J [1 + Z(Ii—) (z)] H,, (2)dz,

iU,

’ 2
1+27(II?”“) (2)

iu

+

J(p) = (wn)(zp_l)/aj {

n

The latter is guaranteed by Corollary 2, since the
functions F¥, satisfy

sup (IzI'Fy, ) (H,,, )

neN

200 11 (dg),

(114)
for s€{0,1,2,3,4},r €{0,1,...,k},0<k<2, and p<1-
(1/(a; + 1)). The rest is obtained by reproducing the Proof
of Theorem 2. O

Remark 6. Notice that the main argument for proving
Theorem 3 is the behavior of the densities uniformly in time.
Theorem 4 provides many other examples. For example,
with the same proof as in Theorem 3, one could state a
version with stable processes time changed by any inde-
pendent “nice” subordinator. The time change process could
be the sum of a stable subordinator and a Poisson process
(Remark 5). Finally, it appears that more investigation
concerning the behavior in small time of p.d.f’s of Lévy
processes attracted by stable processes is crucial for statistical
purposes.

2 +4z L;Il”) (z) + sz(?{i,u,,) (2)

Proof of Theorem 3. We will check the assumptions of
Corollary 1, which consist in the convergence of the integrals

) (113)

] H,, (2)*"""dz.

n

iu, iU,

5. How to Build a LAN Model from Another
LAN Model?

In this section, we investigate to which extent the choice of
the asymptotic is crucial. Assume we start from a LAN
model associated to the observations of a Lévy process X
along a discretization scheme iu,, 1<i<n. Can we affirm
that the model associated to the observations of X + X,
where X is another independent Lévy process, also enjoys
the LAN property with the same discretization scheme? We
need some preliminaries and two lemmas to answer the last
question.

Consider two independent Lévy processes Y and N
defined on some probability space (Q, F,P) with values in
the Skorohod space QO = D (R+,R) (when the processes Y
and N are seen as infinite-dimensional random variables).
Assume that N is a nondrifted compound Poisson process
with Lévy measure 7, and consider the process Y := Y + N.
Recall that the increment process X" of X, observed along a
scheme u,, is defined in (14) by
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X=X, ~ Xjup, 0<sjsn-1L (115)
For 0 € ©, suppose we observe X" = 0Y", X" = 67", and
let
Py = Law (6Y|P),
(116)

By = Law (7 |P).

The probability measure Pj (respectlvely, P, and the
scale models E" (respectively, E ) correspond to X (re-
spectively, X) as in (15) and (16).

drR dR'
dQ dQ’

Jl/\

We also have the following result.

Lemma 2. If lim
1P - Pll =

ooy, =0,  then lim, |, supgee

Proof. Since

1@+ Q) <|Q-Q| +2Jr- K| +(2]Q- Q||+ R)".

Complexity

Recall that if Q, Q" are two probability measures on some
sample space, then the total variation distance [|Q — Q'| is
the quantity

|Q-Q'|| = sup|Eq (¢) - Eq (9)],
g (117)
={¢: Q —> [-1,1], ¢ measurable}.

Lecam’s lemma [2] is as follows:

Lemma 1. For every probability measures Q,Q',R,R’, we
have the inequality

(118)

= *"(d )
=k (119)

= 0) >e P

@(Nun € dy) = ¢ (B

ﬁ(Nun

and since N has stationary and independent increments, we
have

9% = Bl = suplEe; 6 (01 - 5[4 01| = suplp, [ (X")] - B, [4(x")]
¢ed 0 [

= sup|[E ¢(6Y")]
Ped

= sup|E [¢ (6Y")] -
¢ed

<2P(N"#0)=2(1-

<2(1-B(N, 0))

A
III
e \./

It is now clear that [|[Ph — [ﬁ’gll goes to 0, uniformly in 6 as
nu,, — 0.

Now, we are able to complete Far’s problem [18], which
treats the case where Y is a Brownian motion and where the
discretization path is u, = 1/n, i.e., lim, ,nu, = 1. O
Theorem 5. Assume lim,_, nu, = 0. If the scale model (5)
E" associated to the process X has the LAN property wzth
speed \/n in a point 0, € ©, then so is the scale model E"

associated to the process X.

Proof of Theorem 5. (1) Fix 8, € ®, and ] is a finite subset of
R and & € R. We shall prove that the weak functional

gaw(Z"IP?g]n) — 3aw<<Z"”‘r> €]|Pé>:>$aw(zn|ﬂ5?ﬂn) — Sfaw<<Z""E> €]Iﬂﬂ’g), asn — 00,
n n

- Eg[g(67") |—sup|[E [6(6Y™)] -

Es[¢(Y" +N")

Es[¢(0(Y" + N"))]|

$(Y") = (Y + N"))ly— | (120)

)| = sup|[E

) 2(1-P(N ji1y,, - Nj, =0, V0<j<n))

u,

convergence (22) of the likelihood processes (Z” ’75) oy of E”
yields the one of the likelihood processes (Z"") ne Of E,.
The expression of the likelihood processes is given by (21)
and for more convenience, we denote them from now on by

z;‘:(zz'“f) :

neJ

=n snné

Z =(z, > ,
nej

z;=<z}’7f> , telo,1].
neJ

(121)

We need to show the following convergence in laws:

(122)
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or equivalently, for every K-Lipschitz function
f:D(R,, R/) — R, bounded by a constant C > 0, we need
to show that
Jim Ew [£(2)] = Eglf(Z)]= lim Ex [£(Z)] = Enlf (2] (123)
(2) For such functions f, we will control the difference:
b, (2]~ 5, [1(2)] =B, L@ -5, @) o(E5 @15 [AZ)]) 29
In virtue of Lemma 2, we have
[E[F"’[‘ﬂ [f(Z")]- [E”[“ﬂ [f(zn)] SCsup"Pg - "52" — 0, asn— oo. (125)
" 0c®
For every £> 0, we have
E~T€J [f Zn) f( )] IE~” |:( (Zn) f( )) Z"—iﬂlgs] + [E~n |:(f(Z ) f( )) Zn_?l>s
(126)
Ex [f(2")] - f(Z")|<eK +2CP}y (|12 - Z"| > ¢).
5 (2] - £(2")|<e 0.(12" - Z']>e)
With representation (21), observe that Z" and Z" are a  and using Markov in equality, we obtain
step process, time-dependent, up to |nt], t € [0, 1]. Then,
denoting
:inf{lstns.t. VnEI,fER},
(127)
Pra,( ) = Pl (120 - Za] >¢) = P[Eh('z? -Zj|>e Vlg]‘”)
(128)
E~n INZ2, - Z.,|].
=% P, [ 22~ 2 ]
Applymg Lemma 1 with R=P7, ,Q=P, R = lim sup P
[I?"M]H,Q’ =P 5, » We obtain ! n—00 JfIZR s ( ) (130)

B [1nZ2 -2 [3||u:>9 - Byl +(2lPs - B3l) ).
(129)

and then, Lemma 2 gives

The latter, together with (126), allows to conclude that

5~ 1@)) -0

lim Epn

(131)
[€n D
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