
Research Article
A Job-Shop Scheduling Problem with Bidirectional Circular
Precedence Constraints

Pisut Pongchairerks

Industrial Engineering Program, Faculty of Engineering, �ai-Nichi Institute of Technology, Bangkok 10250, �ailand

Correspondence should be addressed to Pisut Pongchairerks; pisut@tni.ac.th

Received 17 June 2021; Revised 25 July 2021; Accepted 14 August 2021; Published 9 November 2021

Academic Editor: Jenq-Haur Wang

Copyright © 2021 Pisut Pongchairerks. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*is paper introduces a job-shop scheduling problem (JSP) with bidirectional circular precedence constraints, called BCJSP. In the
problem, each job can be started from any operation and continued by its remaining operations in a circular precedence-relation
chain via either a clockwise or counterclockwise direction. To solve BCJSP, this paper proposes a multilevel metaheuristic
consisting of top-, middle-, and bottom-level algorithms. *e top- and middle-level algorithms are population-based meta-
heuristics, while the bottom-level algorithm is a local search algorithm.*e top-level algorithm basically controls a start operation
and an operation-precedence-relation direction of each job, so that BCJSP becomes a JSP instance that is a subproblem of BCJSP.
Moreover, the top-level algorithm can also be used to control input parameters of the middle-level algorithm, as an optional extra
function. *e middle-level algorithm controls input parameters of the bottom-level algorithm, and the bottom-level algorithm
then solves the BCJSP’s subproblem. *e middle-level algorithm evolves the bottom-level algorithm’s parameter values by using
feedback from the bottom-level algorithm. Likewise, the top-level algorithm evolves the start operations, the operation-pre-
cedence-relation directions, and themiddle-level algorithm’s parameter values by using feedback from themiddle-level algorithm.
Performance of two variants of the multilevel metaheuristic (i.e., with and without thementioned extra function) was evaluated on
BCJSP instances modified from well-known JSP instances. *e variant with the extra function performs significantly better in
number than the other. *e existing JSP-solving algorithms can also solve BCJSP; however, their results on BCJSP are clearly
worse than those of the two variants of the multilevel metaheuristic.

1. Introduction

*e job-shop scheduling problem (JSP) [1, 2] and the open-
shop scheduling problem (OSP) [3, 4] are well-known in
practical applications. *ey are also interesting academic
topics since they are NP-hard problems [5]. *ey both in-
volve scheduling jobs onto machines in order to minimize
makespan, i.e., the schedule’s length. Each job consists of a
number of operations; each operation must be processed on
a predeterminedmachine with a given processing time. Each
machine cannot process more than one operation at a time,
and it cannot be stopped during processing an operation. To
complete each job in JSP, all of its operations must be
processed in the sequence from the first to the last opera-
tions. *is sequence is called an operation-precedence-

relation chain. *e operation-precedence-relation chain of
each job is very strict and, thus, cannot be changed. In
contrast to JSP, OSP has no operation-precedence-relation
chains. *is means all operations of each job in OSP can be
processed in any orders. *e job-shop scheduling problem
with bidirectional circular precedence constraints (BCJSP)
introduced in this paper is an intermediate problem between
JSP and OSP. It is a generalized JSP where the operation-
precedence-relation chain of each job is circular and
bidirectional.

BCJSP has a wide range of real applications, e.g., health
check-up service, automobile repair shop, and instrument
calibration service. In fact, when taking layouts and dis-
tances into account, many OSP’s applications become
BCJSP’s applications. *e health check-up service, as a
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BCJSP application, starts with multiple optional check-up
programs offered to hospital customers. An optional check-
up program consists of specific diagnoses, each of which is
provided in a different room. For customer satisfaction, the
best circular route of all diagnosis rooms has been pre-
determined by a hospital service manager for each check-up
program. *e manager may assign each customer to receive
any diagnosis of his chosen program as the first diagnosis.
However, the manager has to assign the customer to receive
his next diagnosis in a nearest predetermined room, and so
on. *e customer finishes his check-up activities after
successfully receiving all diagnoses of his chosen program.
Notice that if the diagnosis rooms are very close to each
other, the manager can then assign the customer to receive
all diagnoses in any orders. *en, this application fits with
OSP rather than BCJSP.

*ere are a number of JSP and OSP’s variants recently
presented in the literature, e.g., [6–11]. Some of them have
some partially similar properties to the BCJSP’s properties.
For example, the extended resource-constrained project
scheduling problem [12] allows processing its activities bi-
directionally, but not circularly. *e flexible job-shop
scheduling problem (FJSP) has more flexibility than JSP and
is also defined as a generalized form of JSP. However, the
flexibility of FJSP [13, 14] is due to a number of selectable
machines for each operation, while the flexibility of BCJSP is
due to the bidirectional circular precedence relations of
operations.

To solve BCJSP, this paper introduces a multilevel
metaheuristic (calledMUL) based on the adaptive parameter
control concept [15]. MUL consists of the top-level algo-
rithm (called TOP), the middle-level algorithm (called
MID), and the bottom-level algorithm (called BOT). In the
MUL’s top level, TOP controls the start operation and the
operation-precedence-relation direction of every job in
BCJSP. TOP is also usable to control the MID’s input pa-
rameters if requested. In the middle level, MID transfers the
start operation and the operation-precedence-relation di-
rection of every job given by TOP into BOT. However, the
MID’s main function is to control the BOT’s input pa-
rameters. In the bottom level, BOTuses the start operations
and the operation-precedence-relation directions to gen-
erate a JSP instance, which is a subproblem of the BCJSP
instance. BOT then acts as a local search algorithm for
solving the generated JSP instance. MID evolves the BOT’s
input-parameter values based on feedback from BOT, while
TOP evolves the operation-precedence-relation chains and
the MID’s input-parameter values based on feedback from
MID.

*e BOTcombined with MID is similar to the two-level
metaheuristic developed by [16]. A major difference of the
MID-BOT combination from the algorithm of [16] is in the
solution-decoding procedure. Once the MID-BOT combi-
nation is combined with TOP, they all together have become
MUL. MUL can be defined as an adaptive multistart iterated
local search algorithm for solving BCJSP. *ere are two
variants of MUL proposed in this paper, i.e., the base-
specification MUL (called MUL-B) and the top-specification
MUL (called MUL-T). *e only difference between the two

variants is in their TOP-MID relationships. In both MUL-B
and MUL-T, their TOPs control the start operation and the
operation-precedence-relation direction of every job. In only
MUL-T, its TOP also controls the MID’s input parameters.
Performance of MUL-B and MUL-T was evaluated on the
BCJSP instances, modified from the JSP instances of
[17, 18, 19]. On the BCJSP instances, MUL-B’s andMUL-T’s
results were compared with each other. Because the existing
JSP-solving algorithms can be used to solve BCJSP, their
results were also used in the performance comparisons. Note
that the existing JSP-solving algorithmsmean the algorithms
developed for solving JSP in the literature, e.g.,
[1, 2, 16, 20, 21].

*e remainder of this paper is divided into six sections.
Section 2 provides an overview of the relevant publications
of the research topic. Section 3 describes the job-shop
scheduling problem with bidirectional circular precedence
constraints (BCJSP). Section 4 presents the procedure of
MUL, where the procedures of BOT, MID, and TOP are
described in Sections 4.1–4.3, respectively. *e differences
between MUL-B and MUL-T, as the two variants of MUL,
are also described in Section 4. Section 5 presents the
experiment's results for MUL-B's andMUL-T's performance
evaluations. Section 6 then discusses the experiment's re-
sults. Finally, Section 7 concludes the research’s findings.

2. Related Works

Metaheuristics can be classified into two categories based on
their numbers of solutions used in each iteration, i.e., single-
point-based and population-based search algorithms [22].
As its name implies, a single-point-based search algorithm
starts with a single solution. *en, it moves from its current
solution to another solution repeatedly. Local search is a
well-known type of single-point-based search algorithms. A
local search algorithm improves its solution gradually within
a local region of the solution space. Although a local search
algorithm aims to find just a local optimal solution, the
algorithm with a good initial solution occasionally finds a
global optimal solution.

Iterated local search [23] is another well-known type of
single-point-based search algorithms. It can be defined as a
local search algorithm that can escape a local region of the
solution space. During its exploration, an iterated local
search algorithm uses a neighbor operator repeatedly to find
a local optimal solution. After that, it tries to escape the
current local region into another local region by using a
perturbation operator. In general, an iterated local search
algorithm starts with a single solution; however, some recent
variants, e.g., [24, 25], have multistart properties.

*ere are three operators, i.e., swap, insert, and inverse,
commonly used as a neighbor operator and a perturbation
operator [26]. To define these three operators, let h and v be
two different random integers from 1 to the number of
members in a solution-representing permutation. *e swap
operator is to swap between the twomembers in the h-th and
thev-th positions.*e insert operator is to remove a member
from the h-th position and then insert it back at the v-th
position. *e inverse operator is to inverse the sequence of
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all members from the h-th to thev-th positions. Some
iterated local search algorithms, e.g., [27, 28], use the swap
operator or insert operator multiple times as their pertur-
bation operators.

As mentioned, the population-based search algorithm
category is the alternative of the single-point-based search
algorithm category. A population-based search algorithm
starts with a set (i.e., a population) of solutions instead of a
single solution. At each iteration, a population-based search
algorithm evolves its population by using the information
from its previous iterations. Some population-based search
algorithms were purposely developed for solving discrete
optimization problems, such as genetic algorithm [29] and
ant colony optimization [30]. In contrast, some others were
intentionally developed for exploring in real-number search
spaces, such as particle swarm optimization [31], differential
evolution [32], and cuckoo search [33] algorithms.

A common drawback of most metaheuristics is that
there is no single set of input-parameter values performing
best for all problem’s instances. However, several techniques
can be applied for handling such a drawback. One of these
techniques is adaptive parameter control [15], where an
upper-level metaheuristic acts as a parameter controller for a
lower-level metaheuristic. (Note that upper-level meta-
heuristic is commonly called metaevolutionary algorithm
[15, 34].) In addition, an upper-level metaheuristic can be
applied to control parameters of a being-considered problem
for generating its simpler subproblems [35, 36]. For applying
the adaptive parameter control technique, the meta-
heuristics usually have only two levels [4, 15, 16, 37–39].
However, for solving highly complicated problems, theymay
require more than two levels [35, 36].

A two-level metaheuristic of [37] was developed for
solving JSP. It consists of the algorithms named UPLA and
LOLA in its upper and lower levels, respectively. LOLA is a
local search algorithm exploring in a solution space of pa-
rameterized-active schedules (hybrid schedules) [40–42],
where each parameterized-active schedule is decoded from
an operation-based permutation [29, 43]. UPLA is the
population-based search algorithm intentionally developed
for being a parameter controller. Its population consists of a
number of value combinations of input parameters of
LOLA. For updating an input-parameter-value combina-
tion, each input-parameter value is iteratively moved by a
sum of two changeable opposite-direction vectors. *e first
vector’s direction is toward the memorized best-found value,
whereas the second vector’s direction is away from it. *e
magnitudes of these two vectors are generated randomly
between zeros and their given maximum values.

*e two-level metaheuristic of [16] is a recent variant of
[37]. In this variant, MUPLA and LOSAP are the upper-level
and lower-level metaheuristics, respectively. LOSAP [16] is a
local search algorithm exploring in a probabilistic-based
hybrid neighborhood structure. To generate each neighbor
solution, LOSAP randomly uses one of the two pre-
determined neighbor operators by a preassigned probability.
(Other applications of randomly using one of two different
operators can be found in [44, 45].) Note that while LOLA’s
solution space is a set of parameterized-active schedules,

LOSAP’s solution space is just a set of semiactive schedules.
It means that the LOSAP’s search ability is mainly based on
its hybrid neighborhood structure, not based on a special
solution space like LOLA. LOSAP has many optional op-
erators proposed for being its perturbation and neighbor
operators. In addition, LOSAP uses a different criterion from
that of LOLA on accepting a new best-found solution.

MUPLA [16] is a population-based metaheuristic
designed to be a parameter controller for LOSAP. *us, its
population consists of a number of value combinations of
the LOSAP’s input parameters. Each input-parameter-value
combination contains specific values of the perturbation
operator, the scheduling direction, the ordered pair of two
neighbor operators, the probability of selecting a neighbor
operator, and the start solution-representing permutation. A
major change of MUPLA from UPLA is that each input-
parameter-value combination in its population includes a
specific start solution-representing permutation. *us, the
MUPLA combined with LOSAP acts as a multistart iterated
local search algorithm, while the UPLA combined with
LOLA is just an iterated local search algorithm.

3. Problem Definition

BCJSP is an intermediate problem between JSP and OSP;
however, it can be explained simpler as a JSP’s generalized
variant. BCJSP aims to find a feasible schedule that mini-
mizes makespan (i.e., a total length of the schedule). *e
problem comes with m given machines (i.e., M1, M2, . . .,
Mm) and n given jobs (i.e., J1, J2, . . ., Jn). At the beginning
(i.e., time 0), all jobs have already been arrived, and all
machines have not yet been occupied. Each job Ji (where
i� 1, 2, . . ., n) consists of m operations (i.e., Oi1, Oi2, . . .,
Oim). Each operation must be processed by a predetermined
machine with a predetermined processing time. Each ma-
chine cannot process more than one operation at a time, and
it cannot be stopped or paused during processing an op-
eration. In other words, an operation preemption is not
allowed. BCJSP differs from JSP in that an operation-pre-
cedence-relation chain of each job Ji (where i� 1, 2, . . ., n) is
circular and bidirectional, as shown in Figure 1.

Figure 1 shows the relationships of the operations Oi1,
Oi2, . . ., Oim of the job Ji in BCJSP. For each job Ji, let the
precedence relations of Oi1, Oi2, . . ., Oim be all together
connected as a circular chain. It means that any operation
from Oi1 to Oim can be selected as the start operation of the
job Ji (i.e., the operation processed first in the job Ji).*en, to
complete the job Ji, the remaining operations in the circular
chain must be processed one-by-one in either a clockwise or
counterclockwise direction. In Figure 1, the operations
connected together by green arrows present the circular
operation-precedence-relation chain in clockwise direction,
while those by blue arrows present the chain in counter-
clockwise direction.

A BCJSP instance can be divided into (2m)n JSP in-
stances as all of its subproblems. Each subproblem is gen-
erated from the BCJSP instance by assigning a specific start
operation and a specific operation-precedence-relation di-
rection into every job. To generate a subproblem, let Oik be
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the start operation of the job Ji, which is selected from any
operation of Oi1, Oi2, . . ., Oim. *en, let the operation-
precedence-relation direction of the job Ji be selected from
either clockwise or counterclockwise. If the clockwise di-
rection is selected, let the operation-precedence-relation
chain of the job Ji be Oik⇒Oik+1⇒ . . . ⇒Oim⇒ Oi1⇒ . . .

⇒Oik− 1; otherwise, let it be Oik⇒Oik− 1⇒ . . .

⇒Oi1⇒Oim⇒ . . .⇒Oik+1. In this paper,D⇒Emeans that
D must be finished before E can be started.

To clarify the above paragraph, consider a BCJSP instance
that has three machines (i.e.,M1,M2,M3) and two jobs (i.e., J1
and J2). Each job Ji (where i� 1 and 2) then consists of three
operations (i.e., Oi1, Oi2, and Oi3). To generate a subproblem,
there are six options for the job J1’s operation-precedence-
relation chain: (1) O11⇒O12⇒O13, (2) O12⇒O13⇒O11, (3)
O13⇒O11⇒O12, (4) O13⇒O12⇒O11, (5) O12⇒O11⇒O13,
and (6) O11⇒O13⇒O12. In addition, there are six options for
the job J2’s operation-precedence-relation chain: (1)
O21⇒O22⇒O23, (2) O22⇒O23⇒O21, (3) O23⇒O21⇒O22,
(4) O23⇒O22⇒O21, (5) O22⇒O21⇒O23, and (6)
O21⇒O23⇒O22. Of each job, the first three options are
generated in clockwise direction, while the last three options
are generated in counterclockwise direction. Based on the six
options of each job, this BCJSP instance can be divided into 36
JSP instances as all of its subproblems.

BCJSP is a generalization of JSP and is also much more
complex than JSP. Every single BCJSP instance can be divided
into (2m)n JSP instances as all of its subproblems. Because JSP
withm=n=3 has been proven to be NP-hard [5], BCJSP with
m≥ 3 and n≥ 3 thus belongs to a class of NP-hard problems. In
the literature, no algorithms excepting MUL-B and MUL-T
have been developed for BCJSP. Although the existing JSP-
solving algorithms without modifications can be used to solve
BCJSP, they may not perform well on BCJSP. *is is because,
with the same m and n, a solution space of BCJSP is much
larger than that of JSP.

4. Methods

As mentioned, MUL represents the proposed multilevel
metaheuristic for solving BCJSP. It consists of BOT, MID,
and TOP algorithms in its bottom, middle, and top levels,
respectively. BOT is a local search algorithm, modified
from LOSAP [16], for solving subproblems of the BCJSP
instance. Each subproblem is a JSP instance modified from
the BCJSP instance by assigning a specific start operation
and a specific operation-precedence-relation direction into
every job. MID, as a variant of MUPLA [16], is a pop-
ulation-based metaheuristic for controlling BOT’s input
parameters. Another function of MID is to transfer the start
operation and the operation-precedence-relation direction
of every job from TOP into BOT. TOP is a population-
based metaheuristic developed based on the framework of
MUPLA [16]. TOP is used to control the start operation
and the operation-precedence-relation direction of every
job in the BCJSP instance. If requested, TOP can also
control the MID’s input parameters as an extra optional
function.

In this paper, there are two variants of MUL, i.e., the
base-specification MUL (MUL-B) and the top-specification
MUL (MUL-T). MUL-B is the MUL whose TOP controls
only the start operation and the operation-precedence-re-
lation direction of every job in BCJSP. MUL-T is the MUL
whose TOP controls the start operation and operation-
precedence-relation direction of every job and also the
MID’s input parameters. *e details of BOT, MID, and TOP
are described in Sections 4.1–4.3, respectively.

4.1. BOT Algorithm. BOT is a local search algorithm for
solving subproblems of the being-solved BCJSP instance;
each subproblem is a JSP instance. BOT generates each
subproblem from the BCJSP instance by assigning a specific
start operation and a specific operation-precedence-relation
direction into every job. Let Ai and Bi represent the start
operation and the operation-precedence-relation direction,
respectively, of the job Ji (where i� 1, 2, . . ., n). For each job
Ji, Ai can be any operation selected from Oi1, Oi2, . . ., Oim; in
addition, Bi can be either a clockwise or counterclockwise
direction. In this paper, BOTreceivesAi and Bi from TOP via
MID.

To illustrate how to use Ai and Bi, assume A1 �O12,
A2 �O23, A3 �O31, B1 � counterclockwise, B2 � clockwise,
and B3 � counterclockwise be assigned into a 2-machine/3-
job BCJSP instance. By assigning A1 �O12 and
B1 � counterclockwise, the job J1’s operation-precedence-
relation chain becomes O12⇒O11⇒O13. By assigning
A2 �O23 and B2 � clockwise, the job J2’s operation-prece-
dence-relation chain becomes O23⇒O21⇒O22. By assign-
ing A3 �O31 and B3 � counterclockwise, the job J3’s
operation-precedence-relation chain becomes O31⇒
O33⇒O32. As a result, a subproblem of the BCJSP instance
in the form of JSP has successfully been generated.

Oim

Oi1

Oi2

Oi3

Oij

Oim − 1

Figure 1: A diagram of the operation-precedence-relation chain of
the job Ji in BCJSP.
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After BOT has successfully generated a JSP instance
(which is a subproblem of the BCJSP specified by Ai and Bi),
BOT acts as a local search algorithm for solving the JSP
instance. BOTuses operation-based permutations [29, 43] to
represent semiactive schedules, where an operation-based
permutation is a permutation with m repetitions of the
numbers 1, 2, . . ., n. However, the transformation into a
schedule for the BCJSP’s subproblem differs from the
transformation used by [29, 43] for the classical JSP. *e
difference is due to the specific order of operations in the
operation-precedence-relation chain assigned by Ai and Bi.
For example, on a 2-machine/3-job BCJSP instance, assume
a given permutation be (2, 1, 2, 3, 1, 1, 3, 3, 2). In addition,
assume A1 =O12, A2 =O23, A3 =O31, B1 =
counterclockwise, B2 = clockwise, and
B3 = counterclockwise. From the given permutation, BOT
constructs a semiactive schedule in the order of O23, O12,
O21,O31,O11,O13,O33,O32, andO22. Notice that the schedule
is not constructed in the order ofO21,O11,O22,O31,O12,O13,
O32, O33, and O23 like that used for the classical JSP.

BOT, as modified from LOSAP [16], improves its so-
lutions by using PT and PN. Let PT represent the pertur-
bation operator, and let PN≡ (PNf, PNs) represent the
ordered pair of the first neighbor operator (PNf ) and the
second neighbor operator (PNs). BOToffers five options for
PT, i.e., n-medium swap, n-large swap, n-medium inverse,
n-large insert, and n-medium insert. In addition, BOT
offers four options for PN≡ (PNf, PNs), i.e., (1-small in-
verse, 1-medium insert), (1-large swap, 1-large insert), (1-
medium swap, 1-medium insert), and (1-small swap, 1-
small insert).

In the names of the above-mentioned operators, the
number in front of the hyphen sign indicates the number of
repeated uses of the operator mentioned in back of the hyphen
sign. For example, the n-medium inverse operator is to use the
medium inverse operator n times on a permutation. In ad-
dition, the words small, medium, and large are used to restrict
the value of v from h (note that the uses of h and v for operators
are already reviewed in Section 2). Let h and v be two different
random integers within [1,mn], wheremn is the number of all
operations in the BCJSP instance.*ewords small andmedium
then provide additional limitations on generating v as follows: v
must be generated within [h − 4, h+4] for small, while v must
be generated within [h − 0.2mn, h+0.2mn] for medium. For
large, there are no additional limitations.

*e procedure of BOT is presented in Algorithm 1, and
its flowchart is presented in Figure 2. *e parameters and
abbreviations used in Algorithm 1 and Figure 2 are defined
as follows:

(i) Let m and n, respectively, be the number of all
machines and the number of all jobs in BCJSP.
*us,mn is the number of all operations in BCJSP.

(ii) Let Ai ∈ {Oi1, Oi2, . . ., Oim} represent the start
operation of the job Ji.

(iii) Let Bi ∈ {clockwise, counterclockwise} represent
the operation-precedence-relation direction of the
job Ji.

(iv) Let PT and P stand for the perturbation operator
and the start operation-based permutation,
respectively.

(v) Let PN≡ (PNf, PNs) represent the ordered pair of
the first neighbor operator (PNf ) and the second
neighbor operator (PNs).

(vi) Let PR be the probability of selecting the first
neighbor operator (PNf ) of PN. Consequently, the
probability of selecting the second neighbor op-
erator (PNs) is equal to unity minus PR.

(vii) Let P0 (which is a permutation with m repetitions
of the numbers 1, 2, . . ., n) stand for the current
best-found operation-based permutation.

(viii) Let Π0 be the permutation of mn operations
decoded from P0.

(ix) Let S0 stand for the current best-found schedule
decoded from Π0. In addition, let Makespan(S0)
represent the makespan of S0.

(x) Let P1 (which is a permutation with m repetitions
of the numbers 1, 2, . . ., n) stand for the current
neighbor operation-based permutation.

(xi) Let Π1 be the permutation of mn operations
decoded from P1.

(xii) Let S1 stand for the current neighbor schedule
decoded from Π1. In addition, let Makespan(S1)
represent the makespan of S1.

Although there are two proposed variants of MUL (i.e.,
MUL-B and MUL-T), the procedures of BOTs in MUL-B
and MUL-T are both identical to Algorithm 1. *e differ-
ences between MUL-B and MUL-T are in their MIDs and
TOPs.

4.2. MID Algorithm. MID is a population-based meta-
heuristic modified from MUPLA [16]. It is a channel to
transfer Ai and Bi (where i= 1, 2, . . ., n) from TOP into BOT.
However, a main function of MID is to be a parameter
controller for BOT. At the t-th iteration, the MID’s pop-
ulation contains Nmembers, i.e., C1(t), C2(t), . . ., CN(t). For
g � 1 to N, let Cg(t) ≡ (ptg(t), png(t), prg(t), pg(t)) rep-
resent a value combination of the BOT’s input parameters
PT, PN, PR, and P, respectively. Each of ptg(t + 1),
png(t + 1), and prg(t + 1) is updated from its old value via
two opposite-direction vectors. *e first vector’s direction is
toward the memorized best-found value, whereas the second
vector’s direction is away from it. Differently, pg(t + 1) is set
to the final operation-based permutation returned from the
BOT with Cg(t)-given input-parameter values.

*e procedure of MID is presented in Algorithm 2, and
its flowchart is presented in Figure 3. *e following list
presents the definitions of parameters and abbreviations
used in Algorithm 2 and Figure 3. In addition, the trans-
formation (i.e., decoding method) of each member of Cg(t)

is also given:

(i) Let n be the number of all jobs in BCJSP.
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(ii) Let N be the number of all members in the MID’s
population.

(iii) Let Cg(t) ≡ (ptg(t), png(t), prg(t), pg(t)) repre-
sent the g-th member (where g= 1, 2, . . .,N) in the
MID’s population at the t-th iteration. In addition,
let Score(Cg(t)) stand for the performance score of
Cg(t). Note that the lower the performance score,
the better the performance.

(iv) Let ptg(t) ∈R represent the perturbation operator
(PT) of BOT. Equation (1) is used to transform
ptg(t) into PT.

(v) Let png(t) ∈ R represent the ordered pair of the
first and second neighbor operators (PN) of BOT.
Equation (2) is used to transform png(t) into PN.

(vi) Let prg(t) ∈R represent the probability of
selecting the first neighbor operator (PR) of BOT.

Let r ← r + 1.

Start

Receive PT, PN, PR, P, A1, A2, …, An, B1, B2, …, Bn from MID.

Makespan(S1) 
< Makespan(S0)?

Makespan(S1) 
= Makespan(S0)?

Let P0 ← P1.
Let S0 ← S1.
Let r ← 0.

Yes

No

End

Generate a subproblem of the being-solved BCJSP instance by specifying Ai and 
Bi (i = 1, 2, …, n).

Generate an initial P0 by using PT on P.

Let r ← 0.

Let u ~ U[0, 1). 
If u ≤ PR, generate P1 by using PNf on P0. Otherwise, generate P1 by using PNs
on P0.

Yes

r < (mn)2/50?

Return P0 and S0 to MID.

Yes

No

No

Generate Π0 from P0. 
Construct S0 by assigning the operations in the order given by Π0 into a timetable.

Generate Π1 from P1. 
Construct S1 by assigning the operations in the order given by Π1 into a timetable.

Let P0 ← P1.
Let S0 ← S1.

Figure 2: A flowchart of BOT.
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In the transformation, let PR←prg(t) if
0≤prg(t)≤1; in addition, let PR← 0 if prg(t)< 0,
and let PR← 1 if prg(t)> 1.

(vii) Let pg(t) represent the start operation-based
permutation (P) of BOT, and let it be a member of
all possible operation-based permutations. In the
transformation, let P←pg(t).

(viii) For updating ptg(t + 1), let ypt and wpt be the
controlling weights of the maximum magnitudes
of the first and second vectors, respectively.
However, if ptg(t)= ptbest, let wpt be the con-
trolling weights of the maximum magnitudes of
both vectors.

(ix) For updating png(t + 1), let ypn and wpn be the
controlling weights of the maximum magnitudes
of the first and second vectors, respectively.
However, if png(t)= pnbest, let wpn be the

controlling weights of the maximum magnitudes
of both vectors.

(x) For updating prg(t + 1), let ypr and wpr be the
controlling weights of the maximum magnitudes
of the first and second vectors, respectively.
However, if prg(t)= prbest, let wpr be the con-
trolling weights of the maximum magnitudes of
both vectors.

(xi) Let P0 and S0, respectively, stand for the final
operation-based permutation and the final
schedule returned from BOT. In addition, let
Makespan(S0) stand for the makespan of S0.

(xii) Let Cbest≡ (ptbest, pnbest, prbest, pbest) and Sbest stand
for the best Cg(t) and the best S0, respectively, ever
found by the population. In addition, let Score(-
Cbest) stand for the performance score of Cbest.

(1) Receive values of BOT’s input parameters (i.e., PT, PN, PR, and P) from MID. In addition, receive Ai and Bi (where i� 1, 2, . . ., n)
from MID.

(2) To generate a subproblem of the BCJSP instance, let the start operation and the operation-precedence-relation direction be
assigned to every job by using Steps 2.1 to 2.4.
(2.1) Let i← 1.
(2.2) Let Oik←Ai.
(2.3) If Bi � clockwise, let the job Ji’s operation-precedence-relation chain be Oik⇒Oik+1⇒ . . .⇒Oim⇒Oi1⇒Oi2⇒ . . .⇒Oik− 1.
Otherwise, let it be Oik⇒Oik− 1⇒ . . . ⇒Oi1⇒Oim⇒Oim− 1⇒ . . . ⇒Oik+1.
(2.4) If i< n, let i← i+ 1 and repeat from Step 2.2. Otherwise, go to Step 3.

(3) Generate an initial P0 by using PT on P. *en, transform P0 into S0 by using Steps 3.1 and 3.2.
(3.1) Generate Π0 by changing the j-th repetition of the number i in P0 into the operation listed in the j-th order of the job Ji’s

operation-precedence-relation chain. (Note that the job Ji’s operation-precedence-relation chain is given in Step 2.)
(3.2) Construct S0 by assigning the operations in the order given by Π0 (from left to right) into a timetable. In the timetable, each

operation must be assigned to its predetermined machine at its earliest possible start time. (Note that the earliest possible
start time of each operation is the maximum between the completion time of its immediate-predecessor operation in its job
and the completion time of the current latest operation on its machine.)

(4) Find a local optimal schedule by using Steps 4.1 to 4.3.
(4.1) Let r← 0.
(4.2) Randomly generate u∼U[0, 1). If u≤PR, then generate P1 by using PNf on P0; otherwise, generate P1 by using PNs on P0.

*en, transform P1 into S1 by using Steps 4.2.1 and 4.2.2.
(4.2.1) GenerateΠ1 by changing the j-th repetition of the number i in P1 into the operation listed in the j-th order of the job Ji’s

operation-precedence-relation chain.
(4.2.2) Construct S1 by assigning the operations in the order given byΠ1 (from left to right) into a timetable. In the timetable,

each operation must be assigned to its predetermined machine at its earliest possible start time.
(4.3) Update P0, S0, and r by using Steps 4.3.1 to 4.3.3.

(4.3.1) If Makespan(S1)<Makespan(S0), let P0←P1 and S0← S1, and repeat from Step 4.1.
(4.3.2) If Makespan(S1)�Makespan(S0), let P0← P1 and S0← S1, and repeat from Step 4.2.
(4.3.3) If Makespan(S1)>Makespan(S0), let r← r+ 1. *en, repeat from Step 4.2 if r< (mn)2/50; otherwise, go to Step 5.

(5) Return P0 and S0 as the final (best-found) operation-based permutation and the final (best-found) schedule, respectively, to MID.

ALGORITHM 1: *e procedure of BOT.

Complexity 7



PT �

n-medium swap if ptg(t)< 0.20,

n-large swap if 0.20≤ptg(t)< 0.40,

n-medium inverse if 0.40≤ptg(t)< 0.60,

n-large insert if 0.60≤ptg(t)< 0.80,

n-medium insert if ptg(t)≥ 0.80,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

PN �

(1-small inverse, 1-medium insert) if png(t)< 0.25,

(1-large swap, 1-large insert) if 0.25≤png(t)< 0.50,

(1-medium swap, 1-medium insert) if 0.50≤png(t)< 0.75,

(1-small swap, 1-small insert) if png(t)≥ 0.75.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

In Algorithm 2, MID starts its procedure by receiving Ai,
Bi (where i= 1, 2, . . ., n), and its input-parameter values (i.e.,
ypt, ypn, ypr, wpt, wpn, and wpr) from TOP. MID assigns t← 1
and Score(Cbest)←+∞; then, it generates Cg(t) randomly.
To solve a BCJSP subproblem specified by Ai and Bi, MID
then starts a repeated loop by executing BOT N times. In the
g-th execution (where g= 1, 2, . . ., N), BOT is executed with
Cg(t)-given parameter values to return P0 and S0; then, let
Score(Cg(t))←Makespan(S0) and pg(t + 1)← P0. If MID
finds any Cg(t) better than or equal to Cbest, then let this
Cg(t) and its corresponding S0 become a new Cbest and a
new Sbest, respectively. After that, MID completes Cg(t + 1)

by using the two opposite-direction vectors to generate each

of ptg(t + 1), png(t + 1), and prg(t + 1). If the stopping
criterion is not met, MID assigns t← t+ 1 and starts the
repeated loop’s next round.

As mentioned earlier, there are two variants of MUL, i.e.,
the base-specification MUL (MUL-B) and the top-specifi-
cation MUL (MUL-T). *e difference between MUL-B and
MUL-T in their MIDs is given as follows. In MUL-T, the
input parameters (i.e., ypt, ypn, ypr, wpt, wpn, and wpr) of its
MID are controlled by TOP. *is means MID in MUL-T is
identical to Algorithm 2. Differently, these input-parameter
values of MID in MUL-B are constants. *e procedure of
MID in MUL-B is thus modified from Algorithm 2 by re-
moving ypt, ypn, ypr, wpt, wpn, and wpr from Step 1 and

(1) Receive A1, A2, . . ., An, B1, B2, . . ., Bn, ypt, ypn, ypr, wpt, wpn, and wpr from TOP.
(2) Let t← 1 and Score(Cbest)←+∞.
(3) Generate Cg(t) by randomly generating ptg(t), png(t), and prg(t)∼U[0, 1) and randomly generating pg(t) from any possible

operation-based permutation (g �1, 2, . . ., N).
(4) Evaluate Score(Cg(t)) and update pg(t + 1), Cbest, and Sbest by using Steps 4.1 to 4.6.

(4.1) Let g← 1.
(4.2) Transform Cg(t) into the values of PT, PN, PR, and P of BOT.
(4.3) Execute BOTwith the values of PT, PN, PR, and P (taken from Step 4.2) and the values of A1, A2, . . ., An, B1, B2, . . ., Bn (taken
from Step 1). *is is done for receiving P0 and S0 from BOT.
(4.4) Let Score(Cg(t))←Makespan(S0), and let pg(t + 1)← P0.
(4.5) If Score(Cg(t))≤ Score(Cbest), let Cbest←Cg(t), Score(Cbest)← Score(Cg(t)), and Sbest← S0.
(4.6) If g<N, let g←g+ 1 and repeat from Step 4.2. Otherwise, go to Step 5.

(5) Update ptg(t + 1), png(t + 1), and prg(t + 1), where g � 1, 2, . . ., N, by using Steps 5.1 to 5.3.
(5.1) Let g← 1.
(5.2) Generate ptg(t + 1), png(t + 1), and prg(t + 1) by below three equations, respectively. Let u1 and u2 ∼U[0, 1).

ptg(t + 1) �

ptg(t) + (0.02 + 0.01ypt)u1 − (0.005 + 0.01wpt)u2 if ptg(t)<ptbest,

ptg(t) − (0.02 + 0.01ypt)u1 + (0.005 + 0.01wpt)u2 if ptg(t)>ptbest,

ptg(t) + (0.005 + 0.01wpt)u1 − (0.005 + 0.01wpt)u2 if ptg(t) � ptbest.

⎧⎪⎨

⎪⎩

png(t + 1) �

png(t) + (0.02 + 0.01ypn)u1 − (0.005 + 0.01wpn)u2 if png(t)<pnbest,

png(t) − (0.02 + 0.01ypn)u1 + (0.005 + 0.01wpn)u2 if png(t)>pnbest,

png(t) + (0.005 + 0.01wpn)u1 − (0.005 + 0.01wpn)u2 if png(t) � pnbest.

⎧⎪⎨

⎪⎩

prg(t + 1) �

prg(t) + (0.02 + 0.01ypr)u1 − (0.005 + 0.01wpr)u2 if prg(t)<prbest,

prg(t) − (0.02 + 0.01ypr)u1 + (0.005 + 0.01wpr)u2 if prg(t)>prbest,

prg(t) + (0.005 + 0.01wpr)u1 − (0.005 + 0.01wpr)u2 if prg(t) � prbest.

⎧⎪⎨

⎪⎩

(5.3) If g<N, let g←g+ 1 and repeat from Step 5.2. Otherwise, go to Step 6.
(6) If the stopping criterion is not met, let t← t+ 1 and repeat from Step 4. Otherwise, return Sbest to TOP.

ALGORITHM 2: *e procedure of MID.
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changing ypt, ypn, ypr, wpt, wpn, and wpr in Step 5.2 to
constants. In this paper, the values of ypt, ypn, ypr, wpt, wpn,
and wpr of MID in MUL-B all are set to 0.5, as mentioned
again in Section 5.

4.3. TOP Algorithm. Like MID, TOP is developed based on
the framework of MUPLA [16].*emain function of TOP is
to control the start operation and the operation-precedence-
relation direction of every job in the being-solved BCJSP
instance. As previously mentioned, Ai and Bi represent the
start operation and the operation-precedence-relation di-
rection, respectively, of the job Ji (where i= 1, 2, . . ., n, and n
is the number of all jobs in BCJSP). After assigningAi and Bi,
the BCJSP instance has become a JSP instance that is a
subproblem of the BCJSP instance. In addition to the
main function, TOP can control the MID’s input parame-
ters, i.e., ypt, ypn, ypr, wpt, wpn, and wpr, as its optional extra
function.

At the τ-th iteration, the TOP’s population contains M
members, i.e., ζ1(τ), ζ2(τ), . . . , ζM(τ). For q= 1 to M, let
ζq(τ) ≡ ((α1q(τ), α2q(τ), . . . , αnq(τ)), β1q(τ), β2q(τ), . . . , βnq

(τ), c1q(τ), c2q(τ), . . . , c6q(τ)) represent a value combina-
tion of A1, A2, . . ., An, B1, B2, . . ., Bn, ypt, ypn, ypr, wpt, wpn,
and wpr, respectively. Each member of ζq(τ + 1), such as
α1q(τ + 1), is usually updated from its old value via two
opposite-direction vectors; however, it is occasionally
regenerated by a reinitialization. For the two opposite-di-
rection vectors, the first vector’s direction is toward the
memorized best-found value, whereas the second vector’s
direction is away from it.

*e procedure of TOP is presented in Algorithm 3, and
its flowchart is presented in Figure 4. *e following list
shows the definitions of parameters and abbreviations used
in Algorithm 3 and Figure 4. In addition, the transformation
(i.e., decoding method) of each member of ζq(τ) is also
given:

Let g ← 1.

Yes

No

g < N?

g < N?

g ← g + 1.

t ← t + 1.

g ← g + 1.

Receive A1, A2, …, An, B1, B2, …, Bn, ypt, ypn, ypr, wpt, wpn, and wpr from TOP.
Let t ← 1 and Score(Cbest) ← +∞.
Generate Cg(t) by generating ptg(t), png(t), and prg(t) ~ U[0, 1) and randomly
generating pg(t) from any possible permutation (g = 1, 2, …, N). 

Let Score(Cg(t)) ← Makespan(S0), and let pg(t + 1) ← P0.
If Score(Cg(t)) ≤ Score(Cbest), let Cbest ← Cg(t), Score(Cbest) ← Score(Cg(t)), 
and Sbest ← S0.

Transform Cg(t) into the values of PT, PN, PR, and P of BOT.
Execute BOT with the given PT, PN, PR, P, A1, A2, …, An, B1, B2, …, Bn in 
order to receive P0 and S0.

Let g ← 1.

Generate ptg(t + 1), png(t + 1), and prg(t + 1) by their generating equations.

Yes

No

Continue? Yes

No

End

Start

Return Sbest to TOP.

Figure 3: A flowchart of MID.
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(i) Let m and n, respectively, be the number of all
machines and the number of all jobs in the being-
solved BCJSP.

(ii) Let Ai and Bi, respectively, stand for the start
operation and the operation-precedence-relation
direction of the job Ji.

(iii) Let M be the number of all members in the TOP’s
population.

(iv) Let ζq(τ) ≡ ((α1q(τ), α2q(τ), . . . , αnq(τ)), β1q

(τ), β2q(τ), . . . , βnq(τ), c1q(τ), c2q(τ), . . . , c6q(τ))

represent the q-th member (where q= 1, 2, . . ., M)
in the TOP’s population at the τ-th iteration. In
addition, let Score(ζq(τ)) stand for the perfor-
mance score of ζq(τ). Note that the lower the
performance score, the better the performance.

(v) Let αiq(τ) ∈R represent Ai (where i= 1, 2, . . ., n).
To transform αiq(τ) into Ai, let k← the integer part
of mαiq(τ)+ 1. After that, reassign k← 1 if k< 1,
and reassign k←m if k>m. Finally, let Ai←Oik.

(vi) Let βiq(τ) ∈R represent Bi (where i= 1, 2, . . ., n). In
the transformation, let Bi← clockwise if βiq

(τ)< 0.5, and let Bi← counterclockwise otherwise.

(vii) Let c1q(τ), c2q(τ), c3q(τ), c4q(τ), c5q(τ), and
c6q(τ) ∈R represent the MID’s ypt, ypn, ypr, wpt,
wpn, and wpr, respectively. In their transforma-
tions, let ypt← c1q(τ), ypn← c2q(τ), ypr← c3q(τ),
wpt← c4q(τ), wpn← c5q(τ), and wpr← c6q(τ).

(viii) Let Sbest and Makespan(Sbest) stand for the best
schedule returned from MID and its makespan,
respectively.

Transform ζq(τ) into the values of A1, A2, …, An, B1, B2, …, Bn, ypt, ypn, ypr,
wpt, wpn, and wpr.
Execute MID with the given A1, A2, …,An, B1, B2, …, Bn, ypt, ypn, ypr,wpt,wpn,
and wpr in order to receive Sbest.

Let q ← 1.

Let q ← 1.

Yes

No

q < M?

q < M?

q ← q + 1.

q ← q + 1.

τ ← τ + 1.

Receive information of the being-solved BCJSP instance from the user.
Let τ ← 1 and Score(ζbest) ← +∞.
Generate ζq(τ) (q= 1, 2, …, M) by assigning αiq(τ), βiq(τ), and γkq(τ)
~ U[0, 1) (i = 1, 2, …, n; k = 1, 2, …, 6).

Let Score(ζq(τ)) ← Makespan(Sbest).
If Score(ζq(τ)) ≤ Score(ζbest), let ζbest ← ζq(τ), Score(ζbest) ← Score(ζq(τ)), 
and Z ← Sbest.

If τ mod 25 = 0, generate αiq(τ + 1), βiq(τ + 1), and γkq(τ + 1) ~ U[0, 1) 
(i = 1 to n; k = 1 to 6). Otherwise, generate them by their generating equations.

Yes

No

Continue? Yes

No

End

Start

Return Z to the user.

Figure 4: A flowchart of TOP.
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(ix) Let ζbest≡ (α1best, α2best, . . ., αnbest, β1best, β2best, . . .,
βnbest, c1best, c2best, . . ., c6best) be the best ζq(τ) ever
found by the population. In addition, let
Score(ζbest) stand for the performance score of ζbest.

(x) Let Z represent the best schedule ever found by the
TOP’s population.

In Algorithm 3, TOP starts its procedure by receiving
information of a BCJSP instance from the user. TOP assigns
τ← 1 and Score(ζbest)←+∞; then, it generates ζq(τ) ran-
domly. After that, TOP starts a repeated loop by executing
MIDM times. In the q-th execution (where q= 1, 2, . . .,M),
MID is executed with ζq(τ)-given parameter values to return
Sbest; then, let Score(ζq(τ))←Makespan(Sbest). If TOP finds
any ζq(τ) better than or equal to ζbest, then let this ζq(τ) and
its corresponding Sbest become a new ζbest and a new Z,
respectively. After that, TOP chooses to update each
member of ζq(τ + 1) by either the two opposite-direction
vectors or the reinitialization. If the stopping criterion is not
met, TOP assigns τ← τ + 1 and starts the repeated loop’s
next round.

As mentioned, there are two variants of MUL, i.e., MUL-
B and MUL-T. *e difference between MUL-B and MUL-T
in their TOPs is given as follows. In MUL-T, ζq(τ) of its
TOP’s population consists of αiq(τ), βiq(τ), and ckq(τ). *is
means TOP in MUL-T is identical to Algorithm 3. In MUL-
B, ζq(τ) of its TOP’s population consists of only αiq(τ) and
βiq(τ). It means that ζq(τ) of TOP inMUL-B is equivalent to

(α1q(τ), α2q(τ), . . . , αnq(τ), β1q(τ), β2q(τ), . . . , βnq(τ)).
*us, the procedure of TOP in MUL-B is modified from
Algorithm 3 by removing ckq(τ) from Step 3; removing ypt,
ypn, ypr, wpt, wpn and wpr from Steps 4.2 and 4.3; and
removing ckq(τ + 1) and its generating equation from
Step 5.2.

5. Results

*e performance of the two proposed variants of MUL (i.e.,
MUL-B and MUL-T) was evaluated via an experiment on 53
BCJSP instances. *ese BCJSP instances were modified from
the well-known JSP instances, i.e., FT06, FT10, and FT20
instances of [17]; LA01 to LA40 instances of [18]; and ORB01
to ORB10 instances of [19]. *e modification of each in-
stance was done by letting the operation-precedence-rela-
tion chains of all jobs be circular and bidirectional. In this
paper, let BCFT06, BCFT10, and BCFT20 represent the
BCJSP instances modified from FT06, FT10, and FT20,
respectively. Let BCLA01 to BCLA40 represent the BCJSP
instances modified from LA01 to LA40, respectively. *en,
let BCORB01 to BCORB10 represent the BCJSP instances
modified from ORB01 to ORB10, respectively. For each
BCJSP instance, let its original JSP instance stand for the JSP
instance later modified to become it. For example, FT06 is
the original JSP instance of BCFT06.

Because of the BCJSP’s novelty, no algorithms excepting
MUL have intentionally been developed for BCJSP. *us, to

(1) Receive information of the being-solved BCJSP instance from the user.
(2) Let τ ← 1 and Score(ζbest)←+∞.
(3) Generate ζq(τ), where q� 1, 2, . . ., M, by randomly generating αiq(τ), βiq(τ), and ckq(τ)∼U[0, 1) (i� 1, 2, . . ., n; k� 1, 2, . . ., 6).
(4) Evaluate Score(ζq(τ)) and update ζbest and Z by using Steps 4.1 to 4.6.

(4.1) Let q← 1.
(4.2) Transform ζq(τ) into the values of A1, A2, . . ., An, B1, B2, . . ., Bn, ypt, ypn, ypr, wpt, wpn, and wpr.
(4.3) Execute MID with the values of A1, A2, . . ., An, B1, B2, . . ., Bn, ypt, ypn, ypr, wpt, wpn, and wpr taken from Step 4.2. *is is done
for receiving Sbest from MID.
(4.4) Let Score(ζq(τ))←Makespan(Sbest).
(4.5) If Score(ζq(τ))≤ Score(ζbest), then let ζbest← ζq(τ), Score(ζbest)← Score(ζq(τ)), and Z← Sbest.
(4.6) If q<M, then let q← q+ 1 and repeat from Step 4.2. Otherwise, go to Step 5.

(5) Update ζq(τ + 1), where q� 1, 2, . . ., M, by using Steps 5.1 to 5.3.
(5.1) Let q← 1.
(5.2) If τmod 25� 0, then randomly generate αiq(τ + 1), βiq(τ + 1), and ckq(τ + 1)∼U[0, 1), where i� 1, 2, . . ., n and k� 1, 2, . . ., 6.
Otherwise, generate αiq(τ + 1), βiq(τ + 1), and ckq(τ + 1) by below three equations, respectively (i� 1, 2, . . ., n and k� 1, 2, . . ., 6).
Let u1 and u2 ∼U[0, 1).

αiq(τ + 1) �

αiq(τ) + 0.025u1 − 0.01u2 if αiq(τ)< αi best,

αiq(τ) − 0.025u1 + 0.01u2 if αiq(τ)> αi best,

αiq(τ) + 0.01u1 − 0.01u2 if αiq(τ) � αi best.

⎧⎪⎨

⎪⎩

βiq(τ + 1) �

βiq(τ) + 0.025u1 − 0.01u2 if βiq(τ)< βi best,

βiq(τ) − 0.025u1 + 0.01u2 if βiq(τ)> βi best,

βiq(τ) + 0.01u1 − 0.01u2 if βiq(τ) � βi best.

⎧⎪⎨

⎪⎩

ckq(τ + 1) �

ckq(τ) + 0.025u1 − 0.01u2 if ckq(τ)< ck best,

ckq(τ) − 0.025u1 + 0.01u2 if ckq(τ)> ck best,

ckq(τ) + 0.01u1 − 0.01u2 if ckq(τ) � ck best.

⎧⎪⎨

⎪⎩

(5.3) If q<M, then let q← q+ 1 and repeat from Step 5.2. Otherwise, go to Step 6.
(6) If the stopping criterion is not met, then let τ ← τ + 1 and repeat from Step 4. Otherwise, return Z to the user.

ALGORITHM 3: *e procedure of TOP.
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evaluate the performance of MUL-B and MUL-T, their
performance was compared with each other and with the
performance of the existing JSP-solving algorithms.Without
modifications, the existing JSP-solving algorithms can solve
BCJSP as well. However, they hardly find good solutions for
BCJSP.*is is because, for each BCJSP instance, the solution
space of its original JSP instance is just a subset of its whole
solution space. Consequently, for each BCJSP instance, the
JSP-solving algorithms cannot return better solutions than
the optimal solution of its original JSP instance. *is is the
reason that the original JSP instance’s optimal solution is
used as the best possible result from all JSP-solving algo-
rithms on each BCJSP instance.

*e settings of MUL-B and MUL-T for the experiment
are summarized as follows:

(i) MUL-B andMUL-Twere coded in C# and executed
on an Intel® Core™ i5-3320M CPU processor @
2.60GHz with RAM of 4GB (3.87GB usable).

(ii) In each of MUL-B andMUL-T, let the population of
MID consist of two members (i.e., N= 2 in Algo-
rithm 2), and let MID be stopped after the 10-th
iteration (i.e., t= 10 is the maximum iteration in
Algorithm 2).

(iii) In only MUL-B, the constant value of 0.5 was
assigned to the MID's input parameters ypt, ypn, ypr,
wpt, wpn, and wpr.

(iv) In each of MUL-B andMUL-T, let the population of
TOP consist of two members (i.e., M= 2 in Algo-
rithm 3), and let TOP be stopped if it could not find
an improving solution (a better solution) within 100
consecutive iterations.

(v) Each of MUL-B and MUL-Twas executed for three
runs on each BCJSP instance with different random
seed numbers.

Reasons for the above-mentioned parameter settings
are given as follows. For limiting MUL-B’s and MUL-T’s
computational time, the population sizes of their MIDs and
TOPs were set to 2, the smallest possible size. With the
same reason, their MIDs were set to stop after their 10-th
iterations. However, for avoiding premature stops, their
TOPs were set to stop after 100 consecutive iterations
without finding a better solution. For performing as well as
MUPLA [16], the parameters ypt, ypn, ypr, wpt, wpn, and wpr

of MID in MUL-B were set to 0.5. *is made the equations
in Step 5.2 of Algorithm 2 become identical to those of
MUPLA [16].

*e experiment’s results on the 53 BCJSP instances are
presented in Table 1. Terms and abbreviations used in Ta-
ble 1 and in its discussion are defined as follows:

(i) Let a solution and a solution value stand for a
schedule and a schedule’s makespan, respectively.

(ii) For each BCJSP instance, let its original JSP in-
stance mean the JSP instance that was later
modified to become it. For example, LA01 is the
original JSP instance of BCLA01.

(iii) Let Ins column present the name of each BCJSP
instance.

(iv) Let JSP Opt column present the optimal solution
value of the original JSP instance of each BCJSP
instance. *e values in this column were given by
published articles, e.g., [20, 21].

(v) For each of MUL-B and MUL-T, let Best and Avg
stand for its best final solution value and its average
final solution value, respectively, over three runs.

(vi) Let UB stand for the upper bound of the optimal
solution value of each BCJSP instance. UB in this
paper is a minimum among the values of JSP Opt,
Best of MUL-B, and Best of MUL-T.

(vii) For each of MUL-B andMUL-T, let %BD stand for
a percent deviation of its Best from UB, and let %
AD stand for a percent deviation of its Avg from
UB.

(viii) For each JSP Opt, let %JD stand for its percent
deviation from UB.

(ix) For each of MUL-B and MUL-T, let Avg Iters
column present the average number of iterations
used until stopped on each instance. In paren-
theses, this column presents the average minimum
number of iterations required to find the last
improving solution. Note that the number of it-
erations used by each of MUL-B and MUL-T
means the number of iterations used by its TOP.

(ix) For each of MUL-B and MUL-T, let Avg time
column present an average computational time
consumed until stopped on each instance in HH:
MM: SS form. In parentheses, this column presents
an average minimum computational time required
to find the last improving solution.

Table 2 then summarizes the results shown in Table 1. In
Table 2, the 53 BCJSP instances are classified into nine
categories based on the numbers of machines (m) and the
numbers of jobs (n). Terms and abbreviations used in Table 2
are defined as follows:

(i) Category column presents each category of the 53
BCJSP instances in the form m× n, where m is the
number of machines and n is the number of jobs.

(ii) Members column presents all instances that are
members of each category. *en, No. of Ins column
presents the number of all instances in each category.

(iii) Let Avg %JD stand for an average %JD over all
instances in each category.

(iv) For each of MUL-B and MUL-T, let Avg %BD and
Avg %AD stand for an average%BD and an average
%AD, respectively, over all instances in each
category.

(v) For each of MUL-B and MUL-T, let Avg Iters column
present the average number of iterations used until
stopped. In parentheses, this column presents the
average minimum number of iterations required to
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Table 1: Experiment’s results.

Ins UB JSP Opt %JD
MUL-B MUL-T

Best %BD Avg %AD Avg iters Avg time Best %BD Avg %AD Avg iters Avg time

BCFT06 47 55 17.02 48 2.13 49.3 4.89 178 (78) 0:00:10
(0:00:04) 47 0.00 48.7 3.62 217 (117) 0:00:12

(0:00:06)

BCFT10 739 930 25.85 780 5.55 786.0 6.36 150 (50) 0:07:21
(0:02:25) 739 0.00 756.0 2.30 183 (83) 0:08:56

(0:04:14)

BCFT20 1119 1165 4.11 1119 0.00 1119.0 0.00 101 (1) 0:08:18
(0:00:03) 1119 0.00 1119.0 0.00 101 (1) 0:08:15

(0:00:04)

BCLA01 666 666 0.00 666 0.00 666.0 0.00 112 (12) 0:00:29
(0:00:03) 666 0.00 666.0 0.00 112 (12) 0:00:30

(0:00:03)

BCLA02 635 655 3.15 635 0.00 635.0 0.00 114 (14) 0:00:30
(0:00:03) 635 0.00 635.0 0.00 103 (3)

0:00:27
(0:00:
00.4)

BCLA03 588 597 1.53 588 0.00 588.0 0.00 115 (15) 0:00:30
(0:00:04) 588 0.00 588.0 0.00 103 (3) 0:00:26

(0:00:01)

BCLA04 537 590 9.87 537 0.00 537.0 0.00 135 (35) 0:00:38
(0:00:10) 537 0.00 537.0 0.00 190 (90) 0:00:55

(0:00:25)

BCLA05 593 593 0.00 593 0.00 593.0 0.00 101 (1) 0:00:26
(0:00:00.3) 593 0.00 593.0 0.00 103 (3) 0:00:26

(0:00:01)

BCLA06 926 926 0.00 926 0.00 926.0 0.00 101 (1) 0:02:21
(0:00:01) 926 0.00 926.0 0.00 101 (1) 0:02:22

(0:00:01)

BCLA07 869 890 2.42 869 0.00 869.0 0.00 101 (1) 0:02:22
(0:00:01) 869 0.00 869.0 0.00 101 (1) 0:02:14

(0:00:01)

BCLA08 863 863 0.00 863 0.00 863.0 0.00 101 (1) 0:02:35
(0:00:01) 863 0.00 863.0 0.00 101 (1) 0:02:40

(0:00:01)

BCLA09 951 951 0.00 951 0.00 951.0 0.00 101 (1) 0:02:38
(0:00:02) 951 0.00 951.0 0.00 101 (1) 0:02:30

(0:00:01)

BCLA10 958 958 0.00 958 0.00 958.0 0.00 101 (1) 0:02:22
(0:00:01) 958 0.00 958.0 0.00 101 (1) 0:02:21

(0:00:01)

BCLA11 1222 1222 0.00 1222 0.00 1222.0 0.00 101 (1) 0:07:15
(0:00:05) 1222 0.00 1222.0 0.00 101 (1) 0:06:51

(0:00:03)

BCLA12 1039 1039 0.00 1039 0.00 1039.0 0.00 101 (1) 0:08:38
(0:00:06) 1039 0.00 1039.0 0.00 101 (1) 0:08:46

(0:00:03)

BCLA13 1150 1150 0.00 1150 0.00 1150.0 0.00 101 (1) 0:08:12
(0:00:05) 1150 0.00 1150.0 0.00 101 (1) 0:08:02

(0:00:05)

BCLA14 1292 1292 0.00 1292 0.00 1292.0 0.00 101 (1) 0:07:02
(0:00:03) 1292 0.00 1292.0 0.00 101 (1) 0:06:43

(0:00:04)

BCLA15 1207 1207 0.00 1207 0.00 1207.0 0.00 101 (1) 0:07:27
(0:00:05) 1207 0.00 1207.0 0.00 101 (1) 0:07:21

(0:00:03)

BCLA16 798 945 18.42 798 0.00 806.0 1.00 162 (62) 0:08:00
(0:03:11) 810 1.50 814.0 2.01 153 (53) 0:07:20

(0:02:37)

BCLA17 717 784 9.34 735 2.51 735.0 2.51 141 (41) 0:07:04
(0:02:00) 717 0.00 731.7 2.05 234 (134) 0:11:43

(0:06:47)

BCLA18 765 848 10.85 765 0.00 775.7 1.40 191 (91) 0:09:25
(0:04:20) 768 0.39 777.7 1.66 168 (68) 0:08:22

(0:03:23)

BCLA19 783 842 7.54 783 0.00 802.3 2.46 184 (84) 0:09:25
(0:04:21) 801 2.30 808.0 3.19 248 (148) 0:12:17

(0:07:18)

BCLA20 810 902 11.36 812 0.25 823.0 1.60 157 (57) 0:07:35
(0:02:48) 810 0.00 828.7 2.31 182 (82) 0:08:59

(0:04:01)

BCLA21 967 1046 8.17 981 1.45 985.7 1.93 212 (112) 1:05:44
(0:34:46) 967 0.00 979.7 1.31 181 (81) 0:55:07

(0:24:20)

BCLA22 900 927 3.00 911 1.22 925.3 2.81 172 (72) 0:54:31
(0:23:14) 900 0.00 905.0 0.56 150 (50) 0:47:03

(0:15:45)

BCLA23 1032 1032 0.00 1032 0.00 1032.0 0.00 141 (41) 0:43:54
(0:12:49) 1032 0.00 1032.0 0.00 141 (41) 0:42:37

(0:13:01)

BCLA24 932 935 0.32 938 0.64 948.3 1.75 180 (80) 0:55:37
(0:24:16) 932 0.00 950.3 1.96 174 (74) 0:54:07

(0:23:12)

BCLA25 907 977 7.72 918 1.21 935.0 3.09 226 (126) 1:09:46
(0:39:20) 907 0.00 927.0 2.21 253 (153) 1:17:00

(0:46:58)

BCLA26 1218 1218 0.00 1218 0.00 1218.0 0.00 146 (46) 2:35:48
(0:47:58) 1218 0.00 1218.0 0.00 119 (19) 2:09:40

(0:20:37)

BCLA27 1207 1235 2.32 1218 0.91 1222.0 1.24 162 (62) 2:58:45
(1:08:36) 1207 0.00 1222.7 1.30 162 (62) 3:02:29

(1:10:44)
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find the last improving solution. Note that the number
of iterations used by each of MUL-B and MUL-T
means the number of iterations used by its TOP.

(vi) For each of MUL-B and MUL-T, let Avg time
column present an average computational time
consumed until stopped. In parentheses, this col-
umn presents an average minimum computational
time required to find the last improving solution.

(vii) In the competition between MUL-B and MUL-T,
let W, D, and L in W-D-L present the numbers of
instances won, drawn, and lost, respectively. On

each instance, MUL-B is judged to win MUL-T if
theMUL-B’s%BD is better than theMUL-T’s%BD,
and vice versa. In addition, they are judged to draw
if their %BDs are equal.

Figure 5 presents the rates of solution improvements over
iterations of MUL-B andMUL-T. In making the figure, Avg-%
AD-over-iteration plots andAvg-%BD-over-iteration plots were
plotted and compared with Avg %JD. Let Avg %JD be calcu-
lated from an average%JD over 53 instances. For each ofMUL-
B andMUL-T, let Avg-%AD-over-iteration plot andAvg-%BD-
over-iteration plot present the average %AD over 53 instances

Table 1: Continued.

Ins UB JSP Opt %JD
MUL-B MUL-T

Best %BD Avg %AD Avg iters Avg time Best %BD Avg %AD Avg iters Avg time

BCLA28 1216 1216 0.00 1216 0.00 1217.7 0.14 223 (123) 4:03:14
(2:16:13) 1216 0.00 1216.0 0.00 177 (77) 3:13:08

(1:24:44)

BCLA29 1105 1152 4.25 1105 0.00 1105.0 0.00 152 (52) 2:46:47
(0:55:04) 1105 0.00 1115.0 0.90 188 (88) 3:26:20

(1:37:06)

BCLA30 1355 1355 0.00 1355 0.00 1355.0 0.00 101 (1) 1:43:32
(0:00:51) 1355 0.00 1355.0 0.00 101 (1) 1:39:45

(0:00:36)

BCLA31 1784 1784 0.00 1784 0.00 1784.0 0.00 101 (1) 7:50:40
(0:02:52) 1784 0.00 1784.0 0.00 101 (1) 8:55:01

(0:04:44)

BCLA32 1850 1850 0.00 1850 0.00 1850.0 0.00 102 (2) 10:21:25
(0:07:08) 1850 0.00 1850.0 0.00 102 (2) 10:30:37

(0:10:30)

BCLA33 1719 1719 0.00 1719 0.00 1719.0 0.00 101 (1) 9:13:34
(0:07:22) 1719 0.00 1719.0 0.00 101 (1) 9:35:45

(0:06:18)

BCLA34 1721 1721 0.00 1721 0.00 1721.0 0.00 101 (1) 10:45:44
(0:06:43) 1721 0.00 1721.0 0.00 101 (1) 11:06:51

(0:08:12)

BCLA35 1888 1888 0.00 1888 0.00 1888.0 0.00 101 (1) 7:31:40
(0:02:25) 1888 0.00 1888.0 0.00 101 (1) 8:07:04

(0:04:14)

BCLA36 1186 1268 6.91 1186 0.00 1210.7 2.08 196 (96) 3:59:35
(1:52:51) 1207 1.77 1218.0 2.70 177 (77) 3:40:50

(1:37:49)

BCLA37 1247 1397 12.03 1247 0.00 1271.3 1.95 220 (120) 4:36:09
(2:24:27) 1292 3.61 1295.3 3.87 171 (71) 3:38:52

(1:33:27)

BCLA38 1114 1196 7.36 1165 4.58 1173.0 5.30 198 (98) 4:11:10
(2:04:43) 1114 0.00 1145.0 2.78 195 (95) 4:15:04

(2:07:00)

BCLA39 1186 1233 3.96 1186 0.00 1196.0 0.84 195 (95) 4:06:29
(1:57:48) 1191 0.42 1192.7 0.56 214 (114) 4:26:56

(2:19:38)

BCLA40 1150 1222 6.26 1156 0.52 1182.3 2.81 166 (66) 3:24:58
(1:24:33) 1150 0.00 1179.3 2.55 145 (45) 2:58:02

(0:56:47)

BCORB01 789 1059 34.22 812 2.92 818.3 3.71 248 (148) 0:12:31
(0:07:30) 789 0.00 810.3 2.70 150 (50) 0:07:45

(0:02:35)

BCORB02 763 888 16.38 763 0.00 783.0 2.62 164 (64) 0:08:24
(0:03:19) 797 4.46 803.7 5.33 173 (73) 0:09:01

(0:03:47)

BCORB03 741 1005 35.63 741 0.00 764.3 3.14 192 (92) 0:09:29
(0:04:28) 773 4.32 780.7 5.36 333 (233) 0:16:43

(0:11:39)

BCORB04 831 1005 20.94 839 0.96 849.7 2.25 163 (63) 0:08:01
(0:03:07) 831 0.00 839.3 1.00 217 (117) 0:10:54

(0:05:48)

BCORB05 705 887 25.82 705 0.00 717.3 1.74 213 (113) 0:10:26
(0:05:42) 727 3.12 729.0 3.40 180 (80) 0:08:51

(0:03:56)

BCORB06 817 1010 23.62 822 0.61 835.3 2.24 136 (36) 0:06:40
(0:01:43) 817 0.00 832.3 1.87 187 (87) 0:09:27

(0:04:21)

BCORB07 353 397 12.46 356 0.85 358.7 1.61 201 (101) 0:09:45
(0:04:58) 353 0.00 358.0 1.42 155 (55) 0:07:35

(0:02:42)

BCORB08 671 899 33.98 675 0.60 684.3 1.98 208 (108) 0:10:14
(0:05:19) 671 0.00 683.3 1.83 186 (86) 0:09:19

(0:04:10)

BCORB09 772 934 20.98 773 0.13 792.0 2.59 154 (54) 0:07:50
(0:02:42) 772 0.00 789.3 2.24 179 (79) 0:09:15

(0:04:01)

BCORB10 780 944 21.03 812 4.10 825.7 5.86 193 (93) 0:09:30
(0:04:34) 780 0.00 788.7 1.12 266 (166) 0:13:24

(0:08:19)
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and the average %BD over 53 instances, respectively, from the
first to the 350-th iterations. One obstacle of plotting each plot
was that each algorithm was usually stopped before the 350-th
iteration, as shown in Table 1. To deal with the obstacle, since
the algorithms were stopped, the last values of %AD and %BD
had been used in the plots until the 350-th iterations.

6. Discussion

6.1. Result Comparisons of MUL-B and MUL-T with Other
Algorithms. As mentioned previously, no existing

algorithms excepting MUL-B and MUL-T have been de-
veloped to solve BCJSP.*is means no other existing BCJSP-
solving algorithms could be used for comparison against
MUL-B and MUL-T. It is the cause that, in this research, the
MUL-B’s and MUL-T’s results were compared against JSP
Opt. For each BCJSP instance, JSP Opt in Table 1 denotes the
optimal solution value of its original JSP instance. (Note that,
for example, FT06 is the original JSP instance of BCFT06.)
Rather than comparison with many JSP-solving algorithms,
let JSP Opt be a representative of the best possible result from
all existing JSP-solving algorithms on BCJSP.

As shown in Table 1, MUL-B returns better solution
values than JSP Opt on 32 instances, equivalent values on
20 instances, and worse values on one instance. *is
means MUL-B performs better than the best performance
of the existing JSP-solving algorithms on 32 instances, has
equivalent performance on 20 instances, and has worse
performance on one instance. MUL-T returns better so-
lution values than JSP Opt on 33 instances, equivalent
values on 20 instances, and worse values on none of the
instances. *is means MUL-T performs better than the
best performance of the existing JSP-solving algorithms
on 33 instances, has equivalent performance on 20 in-
stances, and has worse performance on none of the
instances.

Note that, in Table 1,%JD,%BD, and%AD represent the
percent deviations from UB of JSP Opt, Best, and Avg, re-
spectively. One-sided paired t tests conclude that the pop-
ulation mean %BDs of MUL-B and MUL-T are both
significantly better than the population mean %JD (with p

values of 4×10− 7 and 3×10− 7, respectively). Moreover, the
population mean %ADs of MUL-B and MUL-T are also
significantly better than the population mean %JD (with p
values of 10×10− 7 and 5×10− 7, respectively). As an

Table 2: A summary of experiment’s results.

Category Members No.
of Ins

Avg
%JD

MUL-B MUL-T
Avg
%BD W-D-L Avg

%AD
Avg
iters

Avg
time

Avg
%BD W-D-L Avg

%AD
Avg
iters

Avg
time

5×10 BCLA01–05 5 2.91 0.00 0-5-0 0.00 115 (15) 0:00:31
(0:00:04) 0.00 0-5-0 0.00 122

(22)
0:00:33
(0:00:06)

5×15 BCLA06–10 5 0.48 0.00 0-5-0 0.00 101 (1) 0:02:28
(0:00:01) 0.00 0-5-0 0.00 101

(1)
0:02:25
(0:00:01)

5× 20 BCFT20,
BCLA11–15 6 0.69 0.00 0-6-0 0.00 101 (1) 0:07:49

(0:00:05) 0.00 0-6-0 0.00 101
(1)

0:07:40
(0:00:04)

6× 6 BCFT06 1 17.02 2.13 0-0-1 4.89 178 (78) 0:00:10
(0:00:04) 0.00 1-0-0 3.62 217

(117)
0:00:12
(0:00:06)

10×10
BCFT10,

BCLA16–20,
BCORB01–10

16 20.53 1.16 6-0-10 2.69 178 (78) 0:08:51
(0:03:54) 1.01 10-0-6 2.49 200

(100)
0:09:59
(0:04:45)

10×15 BCLA21–25 5 3.84 0.90 0-1-4 1.92 186 (86) 0:57:54
(0:26:53) 0.00 4-1-0 1.21 180

(80)
0:55:11
(0:24:39)

10× 20 BCLA26–30 5 1.31 0.18 0-4-1 0.28 157 (57) 2:49:37
(1:01:44) 0.00 1-4-0 0.44 149

(49)
2:42:16
(0:54:45)

10× 30 BCLA31–35 5 0.00 0.00 0-5-0 0.00 101 (1) 9:08:37
(0:05:18) 0.00 0-5-0 0.00 101

(1)
9:39:04
(0:06:48)

15×15 BCLA36–40 5 7.30 1.02 3-0-2 2.60 195 (95) 4:03:40
(1:56:52) 1.16 2-0-3 2.49 180

(80)
3:47:57
(1:42:56)

All All 53 instances 53 8.09 0.59 9-26-18 1.36 149 (49) 1:40:03
(0:21:05) 0.41 18-26-9 1.21 154

(54)
1:40:49
(0:19:22)
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Figure 5: Avg %ADs and Avg %BDs over iterations of MUL-B and
MUL-T compared with Avg %JD.
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interpretation, the two variants of MUL outperform the
existing JSP-solving algorithms on BCJSP.

A cause for the above-mentioned results is that MUL-B
and MUL-T can both explore the whole solution space of
the BCJSP instance, while the existing JSP-solving algo-
rithms can explore only the original JSP instance’s solution
space. For each BCJSP instance, the solution space of its
original JSP instance is just a small subset of its whole
solution space. *en, a BCJSP instance usually has multiple
better solutions than the optimal solution of its original JSP
instance. Consequently, MUL-B and MUL-T both possibly
find better solutions than the original JSP instance’s op-
timal solution, whereas the existing JSP-solving algorithms
cannot.

6.2. Result Comparisons between MUL-B and MUL-T. As
shown in Tables 1 and 2, MUL-T performs slightly better
than MUL-B in the average solution quality. Over 53 in-
stances, Avg %BD of MUL-T (i.e., 0.41%) is slightly better
thanAvg %BD of MUL-B (i.e., 0.59%). Likewise,Avg %AD of
MUL-T (i.e., 1.21%) is slightly better thanAvg%AD ofMUL-
B (i.e., 1.36%). However, based on one-sided paired t tests,
no sufficient evidence suggests that the population mean %
BD of MUL-T is better than that of MUL-B (with p value of
0.24). In addition, no enough evidence suggests that the
population mean %AD of MUL-T is better than that of
MUL-B (with p value of 0.19).

By counting the instances won in Table 1, the out-
performance of MUL-T over MUL-B can be detected more
clearly. On each instance, let MUL-T be judged to win
MUL-B if the MUL-T’s %BD is lower than the MUL-B’s %
BD, and vice versa. Over 53 instances, MUL-Twins MUL-B
on 18 instances, draws on 26 instances, and loses on nine
instances. As noticed, the number of instances won by
MUL-T (i.e., 18) is twice of the number of instances won by
MUL-B (i.e., 9). Although a proportion of drawn instances
(i.e., 26 out of total 53) is very high, most of the drawn
instances are small or easy to solve (e.g., the instances in the
5×10, 5×15, 5× 20, and 10× 30 categories in Table 2). To
determine whether the total number of all instances won by
MUL-T is greater than that by MUL-B, a one-sided bi-
nomial test was conducted at a significance level of 0.1. Let a
sample size be the number of instances not drawn from the
total 53 instances (i.e., 27). *e test’s result concludes that,
from all not-drawn instances, the number of all instances
won by MUL-T is significantly greater than that by MUL-B
(with p value of 0.061).

As mentioned previously, the main difference between
MUL-B and MUL-T is in their TOPs. *e MUL-B’s and
MUL-T’s TOPs both control the start operations and the
operation-precedence-relation directions in BCJSP. How-
ever, only TOP of MUL-T additionally controls the MID’s
input parameters as the extra function. *e outperformance
of MUL-T over MUL-B abovementioned indicates that this
extra function can enhance the performance of MUL. *is
means the MID’s performance can be enhanced by using
TOP to control its input parameters. Once the MID's per-
formance has been enhanced, MID can provide better input-

parameter values for BOT. Consequently, BOT can find
better solutions.

6.3. Number of Iterations and Computational Time
Consumed. For MUL-B and MUL-T, the numbers of used
iterations directly affect computational time spent.*emore
the number of iterations used, the longer the computational
time consumed. Table 1 presents the average number of
iterations and the average computational time of the three
runs of each algorithm. For each instance, Avg Iters and Avg
time columns present the average number of iterations and
the average computational time, respectively, used until the
stopping criterion is met. (Note that the stopping criterion
was to stop when TOP could not find an improving solution
within 100 consecutive iterations.) In parentheses, Avg Iters
and Avg time columns show the average minimum number
of iterations and the average minimum computational time,
respectively, required to find the last improving solution. A
summary of the data from Table 1 just-mentioned can be
found in Table 2.

As mentioned above, the stopping criterion for each
algorithm was to stop when its TOP could not find an
improving solution within 100 consecutive iterations. *e
purpose of using this stopping criterion is to avoid a pre-
mature stop for each algorithm. However, it probably results
in an unnecessary high consumption of the number of it-
erations and of computational time. For example, on
BCLA34, MUL-B and MUL-T both find their best-found
solutions at their first iterations; however, they have to
proceed until the 101-st iterations. For computational time
on BCLA34, the both algorithms find their best-found so-
lutions within 10 minutes; however, they have to stop after
around 11 hours. Such cases also happen on many other
instances, not only BCLA34.

Because the given stopping criterion causes a very long
computational time, the user should not wait until MUL-B
and MUL-Tmeet their stopping criteria. *e user can break
off the algorithms' executions at any time to receive their
current best-found solutions. To choose a breaking-off time,
the user may use information from the values in parentheses
of Avg Iters and Avg time columns in Table 1. Avg Iters
column indicates that, on more than 50% of all instances, the
algorithms find their last improving solutions within 55
iterations; on all instances excepting BCORB03, they find
their last improving solutions within 170 iterations.Avg time
column indicates that, on more than 50% of all instances, the
algorithms find their last improving solutions within 4.5
minutes; on all instances, they find their last improving
solutions within 145 minutes.

As suggested from Avg Iters column, MUL-B and MUL-
T should be broken off during the 55-th to the 170-th it-
erations. In addition, as suggested from Avg time column,
they should be broken off during the 4.5-th to the 145-th
minutes. *us, as a minimum requirement, the user should
break off each algorithm at the 55-th iteration or the 4.5-th
minute of computational time, whichever comes first. If an
optimal or near-optimal solution is required, the user is
suggested to break off each algorithm at the 170-th iteration
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or the 145-th minute of computational time, whichever
comes first. Moreover, the user may decide to break off each
algorithm at any iteration index during the 55-th to the 170-
th iterations or at any time during the 4.5-th to the 145-th
minutes. *e decision is made based on his trade-off be-
tween the computational time and the possibility of finding
an improving solution. Note that the computational time in
the above suggestions may be changed if the user’s computer
has a different specification from the computer used in this
research.

6.4. Solution Improvement Rate over Iteration. Since started,
Avg-%AD-over-iteration plots and Avg-%BD-over-iteration
plots of MUL-B and MUL-T in Figure 5 have already been
below Avg %JD (i.e., 8.09%). At their first iterations, Avg %
AD of MUL-B, Avg %AD of MUL-T, Avg %BD of MUL-B,
and Avg %BD of MUL-T are 6.72%, 6.67%, 5.03%, and
4.53%, respectively. Since then, the values of the four plots
have still been reduced continuously. *e four plots in the
mentioned order finally become 1.36%, 1.21%, 0.59%, and
0.41%, respectively, at their final values. Obviously, all their
final values are much lower thanAvg %JD.*is meansMUL-
B and MUL-T perform better than the JSP-solving algo-
rithms on BCJSP because Avg %JD is the best possible result
of the JSP-solving algorithms.

All given plots in Figure 5 behave similarly to each other
in their patterns. *ese plots can be divided into three
periods based on their similar patterns. *e first period of
each plot, where the value is reduced very quickly, is ap-
proximately started from the first iteration to the 55-th it-
eration. *e second period, where the value is reduced
gradually, is approximately started from the 55-th iteration
to the 170-th iteration. *e third period, where the value is
reduced hardly, is approximately started from the 170-th
iteration onwards. After the 170-the iteration, the plot has
become more and more stable. *e patterns of the plots
emphasize that the user should break off each algorithm
during the 55-th to the 170-th iterations, where the number
of more iterations is a trade-off for the higher possibility of
finding an improving solution.

7. Conclusions

MUL is the multilevel metaheuristic developed to solve the
job-shop scheduling problem with bidirectional circular
precedence constraints (BCJSP). MUL consists of TOP,
MID, and BOT algorithms in its top, middle, and bottom
levels, respectively. TOP is the population-based meta-
heuristic developed to control the start operation and the
operation-precedence-relation direction of each job in
BCJSP. If requested, TOP can also control the MID’s input
parameters. MID is the population-based metaheuristic
developed to control the BOT’s input parameters. BOT
generates a subproblem of the BCJSP instance, in the form of
JSP, by using the start operations and the operation-pre-
cedence-relation directions given by TOP. BOT then acts as
a local search algorithm to solve the generated subproblem.
*e population in MID is evolved by the feedback from

BOT, while the population in TOP is evolved by the feedback
from MID. In this paper, there are two proposed variants of
MUL, i.e., MUL-B and MUL-T. *ese two variants both use
their TOPs to control the start operation and the operation-
precedence-relation direction of each job. However, only
MUL-Tadditionally uses its TOP to control the MID’s input
parameters. Because MUL-B and MUL-Twere intentionally
developed for BCJSP, they perform much better than the
existing JSP-solving algorithms on BCJSP. When comparing
the two MUL variants, MUL-Toutperforms MUL-B slightly
in the average solution quality and significantly in the
number of instances won.
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