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In this paper, we investigated the effectiveness of price limit on stock market with the correlation study and complex network
technology. We proposed a time-migrated DCCA cross-correlation coefficient which is beneficial to detect the asynchronous
correlations of nonstationary time series. +e stock market network is constructed with the threshold method based on time-
migrated DCCA. +e effectiveness of the price limit during the stock market crash period is studied based on the time-migrated
DCCA stockmarket network.+e results indicate that the time-migrated DCCA ensures more relevant results than the equal-time
DCCAmethod. An interesting finding is that the price limit has different effects on the stock market network at different stages of
dynamic evolution. Market stabilization will be lowered and the systemic risk will be increased if the price limit is enhanced. Such
studies are relevant for a better understanding of the stock market and have a significant contribution to the stock market
in reality.

1. Introduction

It is believed that a number of systems could be described by
complex networks, including traffic systems, ecological
systems, and financial systems. +e applications of complex
networks have provided a new perspective for studying the
mechanisms of these systems. In essence, the stock market is
a typical complex network system since the vertices are
stocks in the financial market and some vertices are con-
nected by an edge if they have a relationship with each other.
In the stock market, the price of stock fluctuates frequently
with the dynamic evolution of the entire financial system.
Previous studies suggest that a stock market network could
be established based on the price correlations. From different
angles, people provided many effective complex network
construction methods such as minimum cost spanning tree
(MST), planar maximally filtered graph (PMFG), and cor-
relation threshold method. Huang and Tse used the cor-
relation threshold method to construct a stock correlation
network in order to analyze the information of stockmarkets

where the nodes are the stocks and the connections are
determined by the threshold of Pearson correlation (PCC)
[1, 2]. Originally, Mantegna used the Pearson correlation
and MSTmethod to build a stock network and revealed the
general hierarchical structure of the market [3]. Bonanno
et al. also used the method and found that stock market
networks present different hierarchical structures as the time
horizon changes [4]. Tumminello et al. also used the cor-
relation coefficient between stock price dynamics time series
and the PMFG method to generate stock networks [5].

Since the stock price correlations are widely used in the
popular methods mentioned above, the studies of dynamic
correlations and relationships become crucial for con-
structing the stock market complex network and analyzing
the economic features of the stock market. In previous
studies, there are some conventional methods to quantify the
correlations of stock price time series, such as Pearson
correlation, cross-correlation, and canonical correlation. But
it is known that financial data are highly nonstationary and
the conventional methods may not suited for it [6].
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Accordingly, it is important to investigate the time-migrated
or time-asynchronous correlations. To investigate the time
characters of financial series, Grey Relational Analysis [7],
Detrended Fluctuation Analysis (DFA), and Detrended
Cross-correlation Analysis (DCCA) [8] were proposed to
quantify the long-range power-law correlations of nonsta-
tionary time series.

Previous research has established that DCCA provides a
proper approach to quantitatively measure the long-range
cross-correlation of nonstationary time series. It inspires us
to investigate the time series of stock market using these
methods. To the best of our knowledge, there is still little
research to gain the insights into time-migrated or time-
asynchronous correlations of the stock market price series.
+erefore, we present a time-migrated DCCA correlation
coefficient in this paper. We not only calculate the DCCA
correlation coefficients of the stock market but also inves-
tigate the time-migrated relationships. In the field of stock
market regulation, price limit policy is widely used to
prevent stock prices from rising or falling too violently,
especially during the stock crash period. Once stock prices
hit the limit, they are not allowed to move beyond the limit.
+e price limit is supposed to give frenzied traders time to
cool off and save the price from “falling off a cliff” [9]. Many
of the stock exchanges adopt price limit to maintain the
stability and curb the overreaction of the stock market [10].
But there are other voices that the price limit is ineffective
and imposes serious costs to the stock market [11]. Rare
literature of price limit refers to the econometric analysis of
the stock market model. In that case, we also evaluate the
effectiveness of the price limit from the perspective of
complex network in this paper. In this context, this research
aims to address the following three questions:

(1) How to mining the time-migrated correlations of the
stock prices?

(2) What are the properties and community structures
of the stock market from the perspective of complex
network.

(3) How to evaluate the effectiveness of price limit re-
form on the stock market network.

To achieve this goal, we propose a time-migrated DCCA
method and study the correlations of Chinese stock market.
Lately, we apply the threshold method to construct stock
market networks for analyzing the effectiveness of the price
limit reform.

+e paper is organized as follows. Section 2 presents
dataset and methods employed in this study. Section 3 shows
the properties and community structures of the stock market
and provides effectiveness results of the price limit reform on
stability and systemic risk. Section 4 concludes the paper.
Finally, Data availability and References are also presented.

2. Materials and Methods

2.1. Stock Market Dataset. In this paper, we choose the CSI
300.+e CSI 300 dataset contains the daily close prices of the
300 large-scale stocks with good liquidity. +e CSI 300 index

usually covers about 60% of the Shanghai Composite and
Shenzhen Component. +e dataset of CSI 300 stock index is
from Mar 28th, 2012 to Mar 29th, 2019 (data source: Choice
Financial Terminal) which contains 1703 daily close prices of
the CSI 300 companies, including the 2015 market crash
period. +e samples of the close price series are presented in
Table 1.

To get a more stable price series, we calculate the return
price of the dataset by

ri(t) � ln
pi(t + 1)

pi(t)
 , (1)

where ri(t) is the return price of stock i at the day t, pi(t + 1)

and pi(t) are the close prices of stock i at the day t and the
day t − 1. +us, i ∈ [1, 300] and t ∈ [1, 1702]. +e daily
return prices of the stock 000415 are presented in Figure 1.
As is shown in Figure 1, the return price varies between [–1,
1] while the close price varies between [3.38, 28.28]. +us,
the return price has better properties to avoid the excessive
influence and nonstationarity of the dataset.

In this paper, we obtain the DCCA cross-correlation
coefficient and time-migrated DCCA cross-correlation co-
efficient with the return prices. For this purpose, we in-
troduce a brief theoretical description of the two methods.

2.2. DCCA Cross-Correlation Coefficient. Traditionally, the
DCCA cross-correlation coefficient is derived fromDFA and
DCCA [6, 12, 13]. +e DFA method is a common method
for investigating the long-range power-law self-correlations
of single time series, and the DCCA method has demon-
strated its usefulness to determine the long-range power-law
cross-correlations of two nonstationary time series [14]. One
step further, the DCCA cross-correlation coefficient is an
effective method to quantify the level of cross-correlation
between two nonstationary time series at different temporal
scales [15–17]. +e algorithm of DCCA correlation coeffi-
cient consists of five steps.

Step 1: Supposing that there are two stock price series
ξ(t) and η(t), we obtained two removing mean and
accumulated time sequences:

ξ′(t) � 

t

i�1
[ξ(i) − ξ],

η′(t) � 
t

i�1
[η(i) − η].

(2)

Where ξ and η are the mean value of time series ξ(t)

and η(t), t � 1, 2, . . . , T.
Step 2: We cut both time sequences ξ′(t) and η′(t) into
(N − s) overlapping segments ξk

′(t) and ηk
′(t), with k �

1, . . . , T − s and 0≤ s < T − 1. +e length of ξk
′(t) and

ηk
′(t) is s + 1.

Step 3: we calculate the local trend of each segment
ξk
′(t) and ηk

′(t) by a least-squares fit method, ξ
⌣

k(t) and
η⌣k(t). +en we define the detrended time series for each
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segment and calculate self-variance and covariance of
each residual by:

F
2
ξξ(i) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t) 

2
,

F
2
ηη(i) �

1
s + 1



s+1

t�1
η⌣i(t) − ηi

′(t) 
2
,

(3)

F
2
ξη(i) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t)  η⌣i(t) − ηi

′(t) . (4)

Where ξ
⌣

k(t) and η⌣k(t) are the fitting polynomials of
segment k. And ξ

⌣

i(t) − ξi
′(t) and η⌣i(t) − ηi

′(t) are the
detrended time series of the segment i, respectively.
Step 4: We obtain the detrended covariance function of
all segments by

FDFA−ξ(s) �
1

N − s


N−s

i�1
F
2
ξξ(i)⎛⎝ ⎞⎠

(1/2)

,

FDFA−η(s) �
1

N − s


N−s

i�1
F
2
ηη(i)⎛⎝ ⎞⎠

(1/2)

,

F
2
DCCA(s) �

1
N − s



N−S

i�1
F
2
ξη(i).

(5)

Step 5: Finally, we calculate the DCCA cross-correla-
tion coefficient by

ρDCCA(s) �
F
2
DCCA(s)

FDFA−ξ(s)FDFA−η(s)
. (6)

+e DCCA cross-correlation coefficient is a function
of the time segment length s. As we can see, the
DCCA cross-correlation coefficient equals to Pearson
cross-correlation coefficient when s � 0. According
to the Cauchy–Schwarz inequality, the DCCA cross-
correlation coefficient ranges [–1, 1]. Like the
Pearson cross-correlation coefficient, the value of
ρDCCA(s) � 0 means there is no correlation between
the two time series. +e ρDCCA(s) � 1 means a full
positive correlation, whereas ρDCCA(s) � −1 means a
full negative correlation. A major advantage of
ρDCCA(s) is to measure the cross-correlations be-
tween two nonstationary time series at the different
segment length s [15]. It is more robust to con-
taminated noises and amplitude ratio than Pearson
correlation [18]. +ere are a number of ρDCCA ap-
plications in meteorology [19, 20], physiology
[21, 22], economy [13, 23], financial [14, 16, 24–26],
and other research areas.

2.3. Time-Migrated DCCA Cross-Correlation Coefficient.
Traditionally, the DCCA cross-correlation coefficient is
implemented by measuring the correlations of each
detrended segment synchronously. As is shown in equation
(4), we use the equal-time segment i of ξ(t) and η(t) in
Figure 2(a) when we calculate F2

ξη(i). However, it should be
further noticed that the price series have not only syn-
chronous relationships but also asynchronous relationships
in real-time stock markets. For example, there is a lead-lag
effect on the stock market, which means that stock prices of
some firms show a delayed or ahead temporal evolution
pattern to other firms’ stock prices [27–30]. Since a possible
delay between the stocks could be accounted in the time
series, we consider the following case in Figure 2(b): sup-
posing two time series ξ(t) and η(t) in the stock market, we
calculate the detrended correlations of each segment i in ξ(t)

and η(t), but in some cases, the segment i of ξ(t) may have a
relationship with segment j of η(t) in some cases. So we
consider these asynchronous relationships in the time-mi-
grated DCCA cross-correlation coefficient.

+e algorithm of time-migrated DCCA correlation co-
efficient consists of the following seven steps:

Step 1: We calculate removing mean and accumulated
time sequences of ξ(t) and η(t):

ξ′(t) � 
t

i�1
[ξ(i) − ξ],

η′(t) � 
t

i�1
[η(i) − η].

(7)

Where ξ and η are the mean value of time series ξ(t)

and η(t), t � 1, 2, . . . , T.
Step 2: We cut both two time sequences ξ′(t) and η′(t)

into (N − s) overlapping segments ξk
′(t) and ηk

′(t),
with k � 1, . . . , T − s and 0≤ s < T − 1. +e length of
ξk
′(t) and ηk

′(t) is s + 1.
Step 3: For the detrended time series of the segment i,
we calculate the time-migrated covariance of ξ

⌣

i(t) −

ξi
′(t) and η⌣j(t) − ηj

′(t), where i, j � 1, . . . , T − s.

F
2
ξη(i, j) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t)  η⌣j(t) − ηj

′(t) .

(8)

Step 4: We find the max value of F2
ξη

(i, j) for ξ′(t) by

F
2
max ξη(i) � max

1≤j≤N−s
F
2
ξη(i, j). (9)

Where i, j � 1, . . . , T − s and j∗ is the argument that
makes the equation (9) true:

j
∗
(i) � argmax

1≤j≤N−s

F
2
ξη(i, j). (10)
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Step 5: We calculate the detrended self-variance in each
segment i of ξ(t) by

F
2
ξξ(i) �

1
s



s+1

t�1
ξ
⌣

i(t) − ξi
′(t) 

2
. (11)

According to the Cauchy–Schwarz inequality, we cal-
culate detrended self-variance in the segment j∗(i) of
η(t):

F
2
η∗η∗(i) �

1
s



s+1

t�1
η⌣j∗(i)(t) − ηj∗(i)

′(t) 
2
. (12)

Step 6: We obtain the time-migrated detrended co-
variance function F2

tm−DCCA(s), FDFA−ξ(s) and FDFAη
(s)

by

F
2
tm−DCCA(s) �

1
N − s



N−s

i�1
F
2
max ξη,

FDFA−ξ(s) �
1

N − s


N−S

i�1
F
2
ξξ(i)⎛⎝ ⎞⎠

(1/2)

,

FDFA−η∗(s) �
1

N − s


N−S

i�1
F
2
η∗η∗(i)⎛⎝ ⎞⎠

(1/2)

.

(13)

Step 7: Finally, we calculate the time-migrated DCCA
cross-correlation coefficient by

ρtm−DCCA(s) �
F
2
tm−DCCA(s)

FDFA−ξ(s)FDFA−η∗(s)
. (14)

We calculate the relationships asynchronously in the
time-migrated DCCA cross-correlation coefficient. We get
the maximum of F2

ξη(i, j) to detect the time-migrated re-
lationships of two stocks in order to maximize the corre-
lation detection ability. According to the Cauchy–Schwarz
inequality, the time-migrated DCCA cross-correlation co-
efficient is also a set of dimensionless coefficient ranging
from −1 to 1. A higher value of DCCA cross-correlation
coefficient means a closer relationship with each other.

+e DCCA cross-correlation coefficient provides a
proper approach to measure equal-time relationships be-
tween two nonstationary time series, but the time-migrated
DCCA cross-correlation coefficient is also available for
measuring relationships between two nonstationary time
series with asynchronous relationships. +ey are both di-
mensionless coefficients that can be compared with other
nondimensional methods, such as Pearson coefficients.

2.4. Stock Market Network Model. In the upper subsection,
we studied the equal-time DCCA cross-correlation coeffi-
cient and the time-migrated DCCA cross-correlation co-
efficient. It is now well established from a variety of studies
that a network could be constructed from the Pearson
correlation coefficient matrix of the complex system

[1, 2, 4, 31–33]. In this section, we apply the threshold
method to construct stock market networks with these two
methods. Additionally, we compare the topology properties
and community structures of the stock networks. First we
calculate the equal-time DCCA cross-correlation coefficient
ρij

DCCA(s) and time-migrated DCCA cross-correlation co-
efficient ρij

tm−DCCA(s) of the entire return price pairs in the
dataset on a different time scale s. +en we obtain the
maximum value when s � s∗ by

ρij

DCCA−max � max
s�s∗

ρij

DCCA(s), i, j ∈ [1, 300],

ρij

tm−DCCA−max � max
s�s∗

ρij

tm−DCCA(s), i, j ∈ [1, 300],
(15)

where ρij

DCCA−max and ρij

tm−DCCA−max are the max coefficients
between stocks i and j.

+en a metric distance of stock i and j can be translated
into connection weight by [3, 4, 32]

D
ij

DCCA �

��������������

2 1 − ρij

DCCA−max 



,

w
ij

DCCA �
1

D
ij

DCCA

,

D
ij

tm−DCCA �

�����������������

2 1 − ρij

tm−DCCA−max 



,

w
ij

tm−DCCA �
1

D
ij

tm−DCCA

.

(16)

In both cases, we get 300×300 matrix of connection
weights WDCCA and Wtm−DCCA.

Finally, we set a certain threshold value θ to construct the
stock market network. Let the Graph G � (V, E) represents
stock market network, where the node vi ∈ V represents
stock i and edge eij ∈ E represents the connections of the
stock i and stock j. +e set of connections is established by

E �
eij � 1, i≠ j andwij > θ,

eij � 0, i � j.

⎧⎨

⎩ (17)

+e complex network construction algorithm is given by
Algorithm 1. We get different connection topologies with
different values of threshold θ.

3. Results and Discussion

In this study, we construct the stock market complex net-
work based on the threshold method with two sets of co-
efficient matrices. Previous research has established certain
applications of the complex network in economics: rela-
tionships [34], contagion [35–37], risk [38–41] and so on
[42, 43], but few studies are based on the policy effect. So in
order to quantify the effectiveness of price limit reform, we
first analyze statistical characteristics of the coefficients and
network properties; then we make an econometric analysis
about the bailout strategy such as price limit reform base on
the stock market network in this section.
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3.1. StatisticalAnalysis. Based on the methods and dataset of
Section 2, we calculate the correlation matrices with the two
methods and examine the distributions of the empirical,
respectively. It is crucial to ρtm−DCCA−max and ρDCCA−max with
proper values of time segment length s. As is shown in
Figure 3, a clear spike of ρtm−DCCA−max and ρDCCA−max appears
with smaller value of s and the curves tend to flat as s in-
creases. So we choose segment length 1≤ s≤ 15 to analyze
the relatively short term correlation coefficients.

We display the statistical results of DCCA and time-
migrated DCCA in contrast to the PCC in Figure 4 and
Table 2. +e details of PCC coefficient could be obtained in

[1, 31]. It can be seen in Figure 4 that the ρDCCA distribution
plot has a shape similar to the ρPCC distribution, and the
time-migrated DCCA has a bigger mean value and kurtosis
value than DCCA and PCC. It tells us we get a bigger
correlation in most cases and the distribution is more
concentrated. +e time-migrated DCCA method could
ensure more relevant results than the other two methods. In
Figure 4, it is easy to see a more concentrated distribution of
time-migrated DCCA which is more sensitive to the
changing of threshold θ. As a result, the constructed network
based on the time-migrated DCCA is more representative
with threshold θ.
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Figure 1: Closing prices and return prices of stock 000415.

Table 1: Close prices of three stocks in four trading days.

Stock code Major business May 13, 2016 May 16, 2016 May 17, 2016 May 18, 2016 May 19, 2016
000100 Electronic equipment 3.36 3.38 3.36 3.3 3.3
000157 Special equipment 4.12 4.13 4.11 4.06 4.05
000166 Securities service 8.06 8.08 8.06 8.07 8.03
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Table 2 compares an overview of the three coefficients. It
can be seen from Table 2 that statistics of DCCA and PCC
are more similar to each other. +e mean value of time-
migrated DCCA is larger than DCCA and PCC, which
means time-migrated DCCA detects more relationships of
the dataset. +e maximum of time-migrated DCCA is
smaller than DCCA and PCC and the minimum is larger,
which means the time-migrated DCCA has a smaller range.
+e smaller STD means a higher level data concentration of
time-migrated DCCA and more sensitive to the threshold θ.

3.2. Network Properties and Community Structure

3.2.1. Evaluation of Coefficients. +e next section of the
survey is concerned with network properties. First we an-
alyze the giant component of the network with a different

threshold θ. +e giant component is an important quantity
representing the largest fraction of the complex network,
which is a measurement of the network effectiveness [44]. In
Figure 5, we can see that the giant components of the DCCA
stock network and time-migrated network decrease as the
threshold θ increases. Especially when threshold θ increases
from 1.32 to 2, the giant component of time-migrated DCCA
network drops from 0.98 to 0.02 sharply. It is because most
of the ρTM−DCCA are distributed in this range. As a result, the
stock market networks are scale-free. In addition, we in-
troduce the dataset of Shanghai and Shenzhen A-shares
(2016–2018) to testify the applicability of the stock network
model. We find that the stock market network is still scale-
free and these statistics are also available for further research.
We think that the network model remains robust across
different periods and datasets.
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Figure 3: Some samples of ρtm−DCCA−max and ρDCCA−max at different time scales s.
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Figure 2: (a) Principles of DCCA cross-correlation coefficient (synchronous correlations). (b) +e possible scenario of time-migrated
DCCA cross-correlation coefficient (asynchronous correlations).
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To construct the stock market network, we need a proper
threshold θ to determine the edge connectivity of the nodes.
We divide all the ρTM−DCCA and ρDCCA into three conditions
according to different thresholds by Table 3, suggested in
[15]. In this paper, we consider that the pair of nodes have
strong correlations if the ρTM−DCCA has a greater value (more
than 1.62). Here we choose the threshold θTM−DCCA � 1.62
and θDCCA � 1.25 to construct the stock networks, which
represents the stock network with connections. +erefore,
about 33% of total nodes are included in the stock networks
according to the threshold θTM−DCCA � 1.62 and
θDCCA � 1.25. Other isolated nodes are removed. +en, the
connected nodes of the stock works are 106 and 101, the
number of connections are 646 and 203. Finally, the average
node degree is 12.189 and 4.02, average clustering coefficient
is 0.066 and 0.77. With the threshold θ defined, we describe

the network parameters in Table 4. +e average degree of
time-migrated DCCA network is much bigger than DCCA.
In the time-migrated DCCA network, a smaller community
has a bigger average degree which means that stocks in a
smaller community have denser connections with each
other.

3.2.2. Evaluation of Coefficients. In this section, we wish to
compare the community structure of the stock market
network. It helps us to analyze the relationships and network
structure for further research. We apply the algorithm of
Blondel to detect communities of the stock network which
has been widely used in complex network analysis [45].
+ere are several advantages of the Blondel algorithm. +e
algorithm is a heuristic method that is fast and good for
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Figure 4: Distributions of time-migrated DCCA, DCCA and PCC coefficients.

Input:An empty complex network graph of stock market G � (V, E),+e sets of the stock market nodes vi ∈ V, +e weight matrix
of the stock market wij ∈W, +e connection matrix of the stock market eij ∈ E, +e threshold θ, where i, j � 1, . . . , N;
Output: +e complex network graph of stock market
G(V, E);

(1) for each vi ∈ V do
(2) add node vi to V and update G � (V, E)

(3) end
(4) for each eij and wij do
(5) if i≠ j and wij > θ then
(6) set eij � 1 and add edge eij to E

(7) update G � (V, E);
(8) end
(9) end

ALGORITHM 1: Complex network construction algorithm on stock market.
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large-scale networks. It is shown to outperform all other
known community detection methods in terms of compu-
tation time in literature [45]. +e algorithm is divided into
two phases that are repeated iteratively. +e first phase
repeats the nodes allocation process until the maximum of
the modularity is attained. +e second phase consists in
building a new network whose nodes are in the communities
found during the first phase. A separating layout is used to
reveal communities in stock market networks. As is shown
in Figures 6-7, different node colors represent different
communities and node label sizes reflect the node degree.
Intuitively, nodes in the same community are stocks be-
longing to the same industry classification in the DCCA
stock network in Figure 6. +at matches our expectations. It
is because the stock companies belonging to the same in-
dustry classification interact more frequently with each other
and usually have closer relationships in reality. +e

communities of time-migrated DCCA are density connected
in comparison with DCCA.

+e statistic details are shown in Table 5. We present 5
main communities in the DCCA network while 3 main
communities in time-migrated DCCA in Table 5. We can see
that the community sizes of time-migrated DCCA network
are larger than DCCA. What stands out in the table is that
the major business of DCCA network concentrated in one or
two fields, but the major business of time-migrated DCCA
network distributed in more than six fields. +ese findings
suggest that the time-migrated DCCA network contains
more relevant information than the DCCA network. Intu-
itively, the stock market networks can reflect important
properties of the real stock market. +is inspires us of a new
idea: the stock network model could be helpful to analyze the
effectiveness of the stock market policy according to the
dynamic evolution process of the complex network system.
Denser connections could give us more information about
the relationships. +us, we use the time-migrated DCCA
stock network model to conduct our analysis on the ef-
fectiveness of price limit policy (Table 6).

3.3. Simulation Results of Price Limit. In this section, we
attempt to provide some insight into the effectiveness of
price limit by simulating the dynamic evolution of time-
migrated DCCA stock network model. After evaluating the
market stability and risk level under price limit and other
situations, we find that the price limit has different effects at
different stages of stock network evolution.

3.3.1. Experimental Indicators

May–Wigner Stability <eorem. May established a model for
measuring the stability of a large complex ecosystem [46].
+e theorem was approved and improved by researchers
[47, 48]. +e May–Wigner Stability theorem is used to in-
vestigate the stability of the financial system such as stock
market complex systems [49, 50]. As a generalized stability
indicator, the May–Wigner stability theorem is defined by 3
permanents: the size of the network N, the density of
connections D, and the average interaction strength a [50].

NS �
����
N D

√
a, (18)

where NS represents the network stability. +e system is
considered stable when NS< 1 and a smaller value of NS

means the network is more stable. By definition, the density
of connections D (graph density) and average interaction
strength a (average node degree) in our research are given by

D �
m

c
2
N

,

a �
m

N
,

(19)

where m is the number of connections and C2
N is the

maximum number of possible connections. +e network
stability factor has the following formula:
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Figure 5: Giant components of time-migrated DCCA and DCCA
coefficients.

Table 2: Statistical analysis of Time-migrated DCCA, DCCA, and
PCC.

Statistics Time-migrated DCCA DCCA PCC
Mean 0.6892 0.2769 0.2572
Max 0.8803 0.8900 0.8918
Min 0.4116 −0.0159 −0.0241
STD 0.0659 0.1234 0.1227
Skewness −0.6612 0.5650 0.6173
Kurtosis 3.7184 3.4296 3.5463

Table 3: Correlation conditions of time-migrated DCCA and
DCCA.

Correlation condition Weak Medium Strong
Giant component 1.0–0.7 0.7–0.4 0.4–0.02
ρTM−DCCA 1.32–1.5 1.5–1.62 1.62–2.0
ρDCCA 0.78–0.96 0.96–1.08 1.08–1.76
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√
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N
�

m
(3/2)

N
�����
N − 1

√ . (20)

So we can calculate the network stability NS(t) at time t.
In this study, we focus on the dynamic changes of the

stock network. If the NS(t) changes rapidly, it means that
the stability of the stock network varies dramatically, which
represents a more volatile market. In order to measure the
instability of the complex network, we define a dimen-
sionless evaluation factor stability variation SV as follows:

SV �

���������������������


n
t�1(NS(t) − NS(t))/n 



NS(t)
, (21)

where NS(t) is the network stability of time t and a smaller
value of SV means a milder stability fluctuation.

Systemic Risk Evaluation. An important area of risk man-
agement is the systemic risk evaluation. Studying the cor-
relation coefficient matrix is an important topic of systemic
risk evaluation [51]. We perform eigenvector technique on
the stock network to measure the systemic risk. Using this
approach, researchers have been able to evaluate the risk
contributions of the stocks and calculate the systemic risk
[44, 52, 53, 54, 55]. In this study, we evaluate risk contri-
butions based on the eigenvector centrality:

Ri �
1
λ



N

j�1
Rjgij, i, j � 1, . . . , N, (22)

where Ri is the risk contribution of stock i, which is defined
to be proportional to the weighted sum of all the stocks
connected to stock i. N is the total number of nodes in the
stock network. gij is the element of correlation coefficient
matrix G, which represents the ρTM−DCCA of stock i and stock
j. It could be also expressed as in matrix form according to
the eigenvector centrality theory:

G R
→

� λR
→

, (23)

where λ is the eigenvalue corresponding to the eigenvector.
+en we compute the average of the risk contribution of all
the stocks in the network and obtain the systemic risk of the
whole stock market network at time t.

NR(t) �
1
N



N

i�1
Ri, i � 1, . . . , N. (24)

And we evaluate the systemic risk under each conditions
by

NR �
1
T



T

t�1
NRt, t � 1, . . . , T. (25)

3.3.2. Simulation Results. +e fluctuations of the stock
prices play an important role in the price discovery process,
which provides crucial information on economic [56]. From

Figure 6: Topology graph of the DCCA stock network. Different
node colors represent different communities and node and label
sizes reflect the node degree.

Figure 7: Topology graph of the time-migrated DCCA stock
network. Different node colors represent different communities
and node label sizes reflect the node degree.

Table 4: Network parameters of time-migrated DCCA and DCCA
stock networks.

Parameters θTM−DCCA � 1.62 θDCCA � 1.25

Number of nodes 300 300
Connected nodes 106 101
Number of connections 646 203
Average node degree 12.189 4.02
Graph density 0.116 0.04
Graph diameter 4 6
Average path length 2.283 1.796
Average clustering coefficient 0.066 0.77
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the perspective of price limit, the stock price is frenzied and
the price discovery ability is weakened if a stock hits price
limit [9, 11]. It leads to marketfailure somehow. At this
point, we assume such an evaluation model: if the stock price
i hits the price limit as it loses functionality, then node i will
be removed from the network.

+e simulation experiment is arranged as follows. First
we calculate the stability factor and systemic risk factor
NS(t) at time t(t � 1, . . . , T). And we enhance price limit to
analyze effectiveness of the time limit. +en we set the target
removing and random removing strategy as the control
group. Details of targeted removing and random removing
strategy could be obtained in [57, 58]. Finally, we get the
results of stability analysis and systemic risk analysis.

Figure 8 presents an overview of NS(t) of the time scale t

for the four situations. Generally, we notice that all the
stability factors exhibit a downward trend as evolution of the
network because the number of nodes decreases faster than
the edges. Especially we can see the following:

Targeted Removal: +e nodes of the stock network are
removed in accordance with the sequence from the
biggest degree value to the smallest, which is called
targeted removal of the most important nodes [58].
From Figure 8, we can see that the network stability of
targeted removal curve (green line) drops off sharply at
the begging of the time step. +us, this result indicates
that the stock network is extremely vulnerable to tar-
geted removal of the most important nodes.

Random Removal: +e nodes of the stock network are
removed in a random order. Figure 8 shows that
network stability factor of random removal (red line)
has a relatively milder dynamic pattern compared to
targeted removal. +is indicates that the stock network
is resistant to random removal.

Table 5: Community Properties of DCCA stock market network.

DCCA communities
(θDCCA � 1.25) Community A Community B Community

C Community D Community E

Nodes 18 17 13 8 6

Major business Securities service (17),
pharmaceutical industry (1)

Mining industry (15),
special equipment (2) Banking (13) Civil

engineering (8)
Aerospace

equipment (6)
Edges 77 26 39 12 11
Average node degree 8.56 3.059 6.000 3.000 3.667
Average path length 1.49 2.58 1.5 1.71 1.26
Graph density 0.503 0.191 0.500 0.429 0.733

Table 6: Community properties of the time-migrated DCCA stock market network.

Time-migrated DCCA
communities
(θTM−DCCA � 1.62)

Community A Community B Community C

Nodes 48 36 22

Major business

Securities service (9), banking (8),
manufacturing (7), mining industry
(4), pharmaceutical industry (3), real

estate (3), energy industry (3),
chemical industry (2), others (9)

Manufacturing (9), pharmaceutical
industry (4), securities service (3),

banking (2), real estate (2),
transportation (2), information

technology (2), civil engineering (2),
others (10)

Mining industry (5), securities
service (3), transportation (3),
information technology (3),

banking (2), others (6)

Edges 132 163 85
Average node degree 5.5 7.7 9.5
Average path length 2.24 1.72 1.97
Graph density 0.117 0.368 0.259
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Figure 8: Network stability NS(t) in different situations.
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2015 Market Crash: +e 2015 stock market began in
June and lasted until August. About one thousand
stocks hit the price limit. +e stock market lost ap-
proximately 30 percent around the market crash. For
the market crash simulation, we remove the node i if
the stock i hits the price limit (10%) during the 2015
market crash. We can see that (blue line) the network
factor of market crash drops at the beginning and a
platform zone appears in the middle time, reflecting the
actual situation of actual situation.
Price Limit Hit: In contrast to stock with 10% price
limit, the price limit is set to 5% for investigating the
network stability performance with an enhanced price
limit level. In Figure 8, we find that the price limit hit
(magenta line) drops more gently than market crash in
the beginning, which means the network stability. +en
the network stability factor of price limit hit presents a
more precipitous drop than market crash afterward. It

means that the price limit hit could prevent violent
variation, but also may lead to more violent variations
afterwards.

In this case, it is possible to conclude that the cooling-off
effect is significant when the price limit is first implemented,
but themagnet effect also exists at the same time which takes
the dominant in later time steps.

Figure 9 provides the normalized SV of different situ-
ations. Actually, price limit group indicates more the sta-
bility changes on average than the other three groups. It
means that the price limit may cause stability changes in the
stock market.

Figure 10 presents the systemic risk NR to compare the
difference of the four situations. From Figure 10, we can see
that systemic risk of targeted removal is higher than the
random removal. And the price limit has the largest systemic
risk. From the statistical results of systemic risk evaluation,
we draw the conclusion that changing price limit has an
effect on the market stabilization, and the systemic risk
increases if the price limit is enhanced.

4. Conclusion

In this paper, we investigated the effectiveness of price limit
on stock market based on the correlation study and complex
network technology. Firstly, we proposed a time-migrated
DCCA cross-correlation coefficient based on the DCCA
cross-correlation coefficient. +e time-migrated DCCA
cross-correlation coefficient is suitable for nonstationary
time series and detecting the time-migrated correlations,
which ensure more relevant results than the DCCA method.
Furthermore, we apply the threshold method to construct
the stock networks and compare the topology properties and
community structure of the stock network. We find that the
time-migrated DCCA and DCCA stock network has dif-
ferent statistical properties and communities structures. And
this fact has given us the opportunity to study the effec-
tiveness of the price limit, especially during the stock market
crash period. Finally, we simulated the dynamic evolution of
the stock network under different situations. An interesting
finding is that the price limit has different effects at different
stages of evolution. We draw the conclusion that changing
the price limit has an effect on market stabilization and the
systemic risk, and the market stabilization will be lowered
and the systemic risk will be increased if we enhance the
price limit. We believe that such studies are relevant for a
better understanding of the stock market and may lead to a
better insight into the policy influence on the stock markets
in further work. For example, the stock market network
model could be helpful to evaluate the price limit perfor-
mance in different situations. It may also contribute to risk
management and stability regulation, which has a significant
contribution to the stock market in reality.

Data Availability

All data used in this study are available from the Choice
Financial Terminal and http://choice.eastmoney.com.
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