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,e public transportation network (PTN) provides mobility and access to community resources, employment, medical care,
infrastructures, and other resources in the city.,is research studies the process of the formation of links among nodes in different
real-world PTNs. We have found that this process may be appropriately explained by a generalized linear model (GLM) using
local, global, and quasilocal similarity indexes as explanatory variables. In modeling, the response variable was described by a
binomial probability density function, and the logit function was used as a link function. In the crossvalidation process, utilising a
downsampling approach, both average accuracy and area under the receiver operating characteristic curve (AUC) metrics
presented higher values than 0.99. ,e kappa parameter had magnitudes larger than 0.93 for most of the PTNs. In the final
validation stage, recall and specificity metrics took the value 1. Accuracy and precision parameters were larger than 0.99 and 0.87,
respectively, for the majority of PTNs. Only one of the PTNs required utilising a smoothed bootstrap approach in order to achieve
better results. ,e similarity measures with the greatest influence on the model were determined. We also assessed the impact of
link removal on the global efficiency of PTNs, considering several similarity indexes. Additionally, we find that most of the
networks show low local and global efficiencies (≤0.20), as well as travel times with a relevant variability, exhibiting standard
deviations larger than 790 seconds. Significant similarities exist between the cumulative probability distributions of the local
efficiency in all PTNs. With respect to the centrality measures, the eigenvector centrality presented a strong correlation with the
hub/authority centralities (>0.80), while the pagerank showed a moderate, high, or very high correlation with the degree in all
PTNs, >0.50.

1. Introduction

Link prediction methods have been the subject of research
[1–4], which suggests several mechanisms to detect hidden
connections. ,ese mechanisms take into account the path
information between pairs of nodes in order to estimate their
common neighbors. ,ey also consider a mutual informa-
tion perspective in order to evaluate the similarity index
between pairs of nodes. ,e conditional probability for the
existence of a link is calculated, given the common neighbor
of two nodes, as described in [5]. Finally, the weight of the
links are considered, developing the mechanisms described
in [6], which are based on the common neighbor, resource
allocation (RA) [7], and adamic adar (AA) [8] indexes. ,e

above is combined with the weighted mutual information
(WMI) [9] score estimated between node pairs. Reference
[10] suggests a new local information-based link prediction
method, tie connection strength index (TCS), concerning
the efficient paths between the target node-pair and their
common neighbor. An adaptable parameter is presented in
order to estimate the impact of the TCS and the topology of
the network on the similarity of pairs of nodes. Reference
[11] establishes a new type of triangle structure, which
consists of one seed node, one common neighbor, and
another node. Based on this, a new similarity index, named
TRA index by the authors, is proposed for link prediction.
,e authors integrate the new triangle structure and the idea
of RA [7] index [7]. Reference [12] proposed a new similarity
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measure based on the AA score, information related to
communities generated from the topological structure of the
network and the degree centrality. ,e link prediction al-
gorithms use two open implementations of a bulk syn-
chronous parallel programming model [13]. ,ey are
Apache Giraph and Apache Graphx. Reference [14] dem-
onstrates that similarities with respect to structural features
(eigenvectors) optimize the link prediction task in multiplex
networks. ,is is done using a layer reconstruction method
(LRM), which considers the unconnected node pairs in the
target layer as similar, provided that they are not only
analogous from the point of view of the target layer but also
from the perspective of other layers. Tests on real multiplex
networks show that LRM takes advantage of existing in-
formation redundancy in different layers.

,e application of link prediction methods in real con-
texts has also been analyzed. A great deal of research is done
on the analysis of social networks. Reference [15] carries out a
comprehensive review and discusses some link prediction
applications in social networks such as recommender systems,
community detection, anomaly detection, and influence
analysis. Because social networks are highly dynamic with the
come-and-go of nodes and links, some research considers
temporal aspects. Reference [16] characterizes the likelihood
of a link between two nodes from both existing connectivity
topology and the popularity of both nodes. Several datasets
are considered in order to test and calculate the performance
of algorithms. Reference [17] builds a linear model for in-
tegrating neighborhood similarity measures and node specific
information and uses an evolutionary algorithm to locate the
coefficients, which optimizes the prediction of links. ,e
authors assign different weights to each index using the
Covariance Matrix Adaptation Evolution Strategy (CMAES)
[18, 19]). In addition, the protein-protein interaction (PPI)
networks (PPI) have been examined using link prediction
methods. Reference [20] utilises the support vector machine
learning method for protein-protein interaction (PPI) pre-
diction. Features, often used in social networks, like some
similarity index, have been progressively put into practice to
make predictions in PPI [21, 22].

,is paper studies the link formation process in several
PTNs using various similarity measures, which have been
applied in a link prediction theoretical framework. ,e most
influential indexes in the pattern followed by link formation
between pairs of nodes are determined.

PTNs have been examined from different points of view.
,us, models have been implemented to analyze travel
behaviours. Reference [23] forecasts, based on surveys, some
characteristics related to the passenger flow. Reference [24]
implements a Bayesian network to detect the relationships
between travel happiness and several parameters that affect
travel behavior. Reference [24] checks pretravel informa-
tion-seeking behaviours of the passengers using data col-
lected during an extensive public transport on-board survey.
For this purpose, the authors implement a multivariate
binomial logistic regression model. ,e model takes into
account factors related to sociodemographics, aspects of the
travelers, characteristics of the trip, and devices used for
information consultation.

,e main novelty of our research is that it shows that the
link formation pattern in PTNs can be appropriately
explained by means of a generalized linear model (GLM),
which has local, quasilocal, and global similarity measures
between nodes as explanatory variables. ,e response var-
iable, which establishes whether or not a link exists between
pairs of nodes, is described by a binomial probability density
function. ,e link function used is the logit function.

Studies exist that analyze topological parameters in
PTNs (degree distributions, path length distribution, and
betweenness), as well as growth models. However there are
no analysis that we know of, which does this demonstration
on PTNs. Research exists, which has developed growth
models for PTNs, based on other considerations. Reference
[25] replicates some statistical features of PTNs, describing
their evolution in terms of adding routes in P-space. ,e
authors use a self-avoiding walk (SAW) as a route model. In
the aforementioned P-Space [26], one node symbolizes one
stop, and one link joins a pair of stops, if at least one route
exists that supports a direct service between them. Reference
[27] developed an area-based model of highway growth.
Specifically, a binary logit model in order to estimate the new
route growth probability of divided highways and secondary
highways using high-quality geographic information system
(GIS) data of land-use, population distribution, and highway
network for the Twin Cities Metropolitan Area from 1958 to
1990 was obtained in [28]. A growth model that iteratively
invested in constructing new links or incrementing the
capacity of those existing was implemented. ,e objective of
the research was to establish the impact the demand dis-
tributions and operational costs have on the evolution of a
PTN. ,e model considered parameters related to grid
geometry, demand characteristics, operating mode param-
eters (operational speed per mode, cost per km, and ca-
pacity). On the contrary, the model described in this paper
explains the appearance of links in PTNs based on exclu-
sively topological parameters.

,e PTNs also been studied as complex systems [29, 30]
describes a geospatial layout for distributing stops and uses a
maximum allowable walking distance in order to link the
routes. ,e PTNs are optimized, considering aspects as
efficiency and robustness. Reference [31] studies common
problems that have been found when a complex system
scheme is used for the analysis of the topology of a trans-
portation system (such as mechanisms for the evaluation of
the scale-freeness, metrics for the analysis of the network
structure, and examination of the vulnerability of the net-
works using methods with an unacceptable computational
time). ,e vulnerability of the PTNs has also been analyzed
in depth [26, 32].

,is paper studies the impact that the removal of links,
with certain similarity characteristics, has on the global
efficiency of PTNs. ,e relationships between similarity
characteristics and the local efficiency of nodes are also
checked. Other research has analysed the effect that the node
elimination has on the global efficiency of PTNs [33], and the
robustness of PTNs has been examined from other points of
view, such as the evolution of the giant component when
several nodes are deleted [26, 33]. ,e fault propagation
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[20, 26] from nodes with certain topological characteristics
(highest betweenness, degree, eigenvector centralities, and
pagerank) has also been analyzed. However, a detailed study
of the effect on the global efficiency in PTNs when certain
links are removed according to similarity indexes analysed in
this research has not been found.

,is paper also examines the correlation between some
centrality measures and relates them to other traffic flow
characteristics. Some research exists [34–37] that analyze the
correlations between centrality measures in networks of
different types. However, we focus on the study of cen-
tralities in PTNs and relate them to the flow of vehicles.
,ese characteristics, that we know, have not been previ-
ously studied specifically in the PTNs presented here.
Moreover, the networks analyzed here are of very different
sizes and nationalities, which suggests that they can also
operate differently, bringing generality to the analysis. ,e
correlation between centrality measures can explain some of
the patterns found in PTN, when a target attack or a fault
propagation is suffered by them [26].

,e same applies to the study of travel times. It has been
shown that, in general, the size, complexity, and variability of
available routes in PTNs produce trip times that are highly
different between routes. We also study the local efficiency,
demonstrating that there are commonalities between PTNs
with respect to this feature.

,e PTNs studied are AVL, CFL, RGTR, and TICE in
Luxembourg, which has 1,372 nodes and 340,684 links;
Island Transit in USA, which has 358 nodes and 5,946 links;
Lanta in USA, which consists of 2,150 nodes and 91, 583
links; Linja-Karjala Oy in Kuopio, Finland, which has 551
nodes and 63,339 links; Metlink in New Zealand, which has
3007 nodes and 355621 links; Prague Public Transit Com-
pany (PPTC), Regional Organiser of Prague Integrated
Transport (ROPIT) in Prague, which consists of 5,152 stops
and 1,602,778 links; STAR in France, which consists of 1,415
stops and 9,477,213 links; ,under Bay Transit in Ontario,
Canada, which consists of 825 nodes and 78,247 links;
TransAntofagasta in Chile, which has 650 nodes and 58
724,362 links; and finally, Sage in California, which has 31
stops and 66 links. It can be observed that the networks are of
small, medium, and large sizes.

,e vulnerability of AVL, CFL, RGTR, TICE; Linja-
Karjala Oy, STAR; ,under Bay Transit; and Trans-
Antofagasta networks was analyzed in [26].

,e objectives of this research were as follows:

(1) To analyze whether a GLM, which has as input
variables certain measures of similarity between
nodes, can correctly explain the formation of links.
To establish which of the measures have greater
significance in this process.

(2) To detect the influence that the links can have on the
global efficiency of the network, according to their
similarity characteristics.

(3) To find common features in the networks that allow
to characterize their efficiency and trip times).

(4) To determine the relationships that may exist be-
tween some centrality measures (eigen vector, pag-
erank, betweenness, hub, and authority), as well as
with other traffic flow characteristics.

2. Materials and Methods

2.1. Overview of Used Resources. Information related to the
stops and routes based on the studied networks, which is
available on the websites, was utilised. Several programs in R
[38] and Python [39] were specifically implemented to carry
out this research, using the R.3.6.0 and 3.8.3 version, re-
spectively. ,e networks and igraph packages were used. In
addition, the proxfun, caret, nortest, stats, vip, and rose
packages in R were utilised.

,e programmes specifically developed to perform this
research allowed:

Processing of information related to the PTNs to be
able to work with it (routes, stops, stop times, trips, and
calendars) (in Python, ProcessPTNInf.py).
Construction and simplification of the graphs that
describe a PTN. Obtaining the similarity measures
between nodes (in R, ConstGraphCalcSim.R).
Estimation of centralities (in R and python, Calc-
Centralities.py and CalcCentralities.R).
Building of a binary classification model, evaluating
their results (in R, ModelingPTN.R).
Obtaining frequency and cumulative probability dis-
tributions related to efficiency and trip times (in R,
CalcDistr.R).
Get graphs showing the results (in R, DrawGraphs.R).

,ese programs followed the typical development life
cycle with phases of specification, detailed design, coding,
and testing.

2.2. Overview of Used Methods

2.2.1. Generalized Linear Models. ,is is the generalized
linear model (GLM) we have used for the simulation of link
formation in PTNs.

Consider the response Yi and the set of independent
variables Xi � (xi1, xip) for i � 1, . . . , n. A GLM consists of
both a random and a systematic component, as well as a link
function.

Regarding the random component, it is assumed that
Yi, 1 ≤ i ≤ n, are independent random variables described by
a probability density function from the exponential family:

f(y; θ, ϕ) � exp
yθ − b(θ)

a(ϕ)
+ c(y,ϕ)􏼢 􏼣, (1)

where a, b, c are known functions, and θ, ϕ are parameters,
called natural and dispersion parameters, respectively.

,e systematic component relates some vector
(η1, . . . , ηn ) to the p features.
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ηi(β) � x
t
i , β � β0 + β1 xi1 + β2 xi2 + · · · + βp xip , (2)

where β � (β0, β1, . . . , βp) are called regression parameters.
,e link function g( µi) � ηi � xt

iβ relates the linear
predictor to the mean µi of yi. If η � θ, that is, if θi � ηi, ∀i
holds. ,e link function is called the canonical link function.

,e exponential family contains commonly used dis-
tributions such as gamma, normal, inverse Gaussian, Ber-
noulli, binomial, Poisson, geometric, negative binomial, and
exponential.

In particular, a probability density function f(y; θ, ϕ),

characterized as a binomial distribution, where n is the
number of trials, can be defined as

f(y; θ, ϕ) �

n

y

⎛⎝ ⎞⎠µy
(1 − µ)

n− y

� exp y ln(µ) +(n − y)ln(1 − µ ) + ln
n

y

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� exp y ln
µ

1 − µ
􏼠 􏼡 + n ln(1 − µ ) + ln

n

y

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(3)

,erefore,

θ � ln
µ

1 − µ
􏼠 􏼡,

b(θ) � −n ln(1 − µ) � n ln(1 + exp θ),

c(y,ϕ) � ln
n

y
⎛⎝ ⎞⎠.

(4)

To evaluate the parameters of an exponential family,
GLM maximum likelihood can be applied,

L(θ) � 􏽙
n

i�1
f yi; θ, ϕ( 􏼁. (5)

,erefore, log-likelihood for the sample y1, . . . , yn is

l(θ) � 􏽘
n

i�1

yiθi − b θi( 􏼁

a(ϕ)
+ 􏽘

n

i �1
c yi,ϕ( 􏼁. (6)

We use as link function g, a logit function. It returns
values between 0 and 1 for any input,

g µi( 􏼁 � ln
µi

1 − µi

􏼠 􏼡. (7)

In order to maximize l (θ) over all choices of coefficients
β ∈ Rp, it is necessary to consider that each natural pa-
rameter θi may be expressed using the mean µi of the ex-
ponential family distribution. Taking it into account, and
recalling that a link function exists, such as

g µi( 􏼁 � ηi, (8)

which joins the mean µi to the parameter ηi � xt
iβ. It is

possible to compute β as in 􏽢β and then use these estimates to
state that g( 􏽢µi) � xt

i ,
􏽢βi � 1, . . . , n; 􏽢µi � g− 1 (xt

i
􏽢β), i � 1,

. . . , n.
,erefore, it is possible to establish

l(β) � 􏽘
n

i�1
yiθi − b θi( 􏼁, (9)

where the terms that do not depend on θi, i � 1, 2, . . . , n,
have been removed.

If the canonical link function g (8) considers

θi � ηi � x
t
iβ, i � 1, . . . , n, (10)

l(β) to maximize over β is

l(β) � 􏽘
n

i�1
yix

t
iβ − bx

t
iβ. (11)

In order to maximize l(β) to form 􏽢β, it is possible to carry
out iteratively reweighted least squares regressions (IRLS)
[40, 41]. Finally, the coefficients 􏽢β can be managed as a result
of a single weighted least squares regression, the last one in
the IRLS succession.

Specifically in this research, it is shown that the pattern
of link formation in various PTNs can be well explained
through a GLM. In this case, the response Yi takes a cate-
gorical value, whether or not a link exists between two stops.
,e independent variables, Xi � (xi1, xip), correspond to
several indexes describing the similarity between stops. ,e
probability density function f(y; θ, ϕ) is characterized as a
binomial distribution. ,e similarity indexes utilised as
predictors are described in the labeled link building process
in PTNs and the Supplementary materials section.

In order to check the importance of predictors using the
t-test, it is required to examine if 􏽢βj ∀j is normally dis-
tributed. ,is is checked by applying the Anderson–Darling
test [30] with a significance level α � 0.05. ,e considered
hypotheses are as follows:

(i) Null hypothesis H0: “ 􏽢βj is normally distributed”
(ii) Alternative hypothesis Ha: “ 􏽢βj is not normally

distributed”

If p − value <α, H0 is rejected, Ha is accepted. Else H0 is
taken.

,e R package nortest was utilised for the calculation of
the Anderson–Darling test.

Once it has been verified that 􏽢βj ∀j is normally dis-
tributed, t -tests [42] were carried out with a level of sig-
nificance α. ,is allows us to know the contribution of each
individual explanatory variable, Xij, to the model. ,e
possible hypotheses are as follows:

(i) Null hypothesis H0: “explanatory variable Xij has a
slope that is equal to zero, that is, Xij is not useful to
predict Yi, 􏽢βj � 0”
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(ii) Alternative hypothesis Ha: “explanatory variable Xij

has a slope that is different from zero, that is, Xij

contribute to predict Yi, 􏽢βj ≠ 0

,e results obtained in the test can be:

(i) If p − value <α, H0 is rejected, Ha is taken
(ii) Else H0 is accepted, Ha is rejected

Next, the importance of the predictors is determined
using a t statistic estimator, which is defined as the ratio of
the estimated parameter 􏽢βj to the standard error SE ( 􏽢βj) of
the estimation,

t − statistic 􏽢βj �
􏽢βj

SE 􏽢βj􏼐 􏼑
. (12)

For a given SE, the higher the value of the estimator, the
higher value of the t − statistic.

If the null hypothesis is accepted, a high estimator
produce evidence against it, similar to when the t − statistic
is very far from the hypothesized value.

In order to implement the GLM model and to evaluate
the importance of the predictors, the caret and vip packages
in R are used.

2.2.2. Topological Representation of PTNs. A PTN can be
represented in a topological space named L-Space in which a
network is mapped as a graph G� (N; L), where N is the set
of nodes symbolizing the stops and L is the set of links
established between them. In the L-Space, one node rep-
resents one stop, and one link means a union between two
consecutive stops. ,is tells us that there is a link between
two stops, if one stop is the successor of the other on a route.

2.2.3. Link Building Process in PTNs. In each network, it was
analyzed whether a GLM could adequately describe the link
formation process. As was explained in Section 2.2.1, the
caret package in Rwas used in order to carry out the stages of
training and validation of the model. ,e process was as
follows.

,e L-Space was constructed. All the loops and multiple
links from the graph were deleted, obtaining a graph G′,
where the maximal connected components were obtained.
,en, with the largest cluster, the giant component (CG), the
following operations were performed:

,e number of pairs of connected and unconnected
nodes were estimated, and several similarity measures were
calculated for each one of them. Local, quasilocal, and global
methods were applied.

,e local similarity indexes used were: Adamic-Adar
(dsimaa) [43], common neighbours (dsimcn), cosine (dsim-
cos) [44], cosine similarity on L+ (dsimcos_l) [45], hub
promoted (dsimhpi) [46], jaccard (dsimjaccard) [47], hub
depressed (dsimhdi) [3, 7], Leicht–Holme–Newman
(dsimlhn_local) [48], preferential attachment (dsimpa) [49],
and Sørensen (dsimsor) [50]. ,e global similarity measures
used were: average commute time (dsimact) [37], normalized
average commute time (dsimact_n) [51], Katz (dsimkatz) [52],

L+ directly (dsiml) [45], matrix forest (dsimmf) [53], and
random walk with restart (dsimrwr) [54]. Finally, the quasi-
local measures of the similarity utilised were graph distance
(dsimdis) and local path (dsimlp) [6, 55]. ,ese indexes are
described in detail in the Supplementary materials section.

,e model has the values that describe the different
similarities between pairs of nodes as input variables (fea-
tures) and the indication of whether or not there is a link
between them as output variable. In order to build the model,
supervised learning is used. In this technique, the relations
among the input variables (features) and outgoing ones
(target) are learnt. ,at is, from some labeled examples (in
each the correct input and output are known), the algorithm
that is able to predict the value of the output for new cases not
utilised in the learning (training process). For each PTN, a set
of data is provided with different features, and the outcome or
target (label) is known for each case (pair of nodes). ,e goal
is to predict the label of new cases (pairs of nodes) with the
minimum possible error. Since the outcome variable is a
categorical value, whether or not a link exists, the prediction
corresponds to a binary classification problem.

Crossvalidation is used as a procedure to estimate the
model. Instead of splitting the dataset into a training and a
test subset, in the crossvalidation mechanism, k equal
partitions of the dataset are made. ,e model is trained k

times: each time one of the partitions is taken as a test set,
and the model is trained with the rest of the data (with the
remaining k − 1 folds). Each fold is used once as a test set.
Finally, several predictions exist about the whole dataset.
,is process results in k estimates of a parameter related to
the effectiveness of the model. An average of an estimated
parameter (EP) can be made,

〈EP〉 �
1
k

􏽘

k

i�1
EP. (13)

EP can be accuracy (14), area under the curve (AUC)
[56], and kappa [57].

,ese parameters are described as follows:

TP: truth positives, TN: truth negatives, FP: false
positives, and FN: false negatives.

accuracy �
TP + TN

TP + TN + FP + FN
. (14)

AUC: AUC represents the probability that a classifier
ranks a randomly selected positive instance higher
than a randomly chosen negative instance. ,is EP
can be defined, in general terms, as follows, given a
binary classification task that has m positive and n

negative instances, respectively. ,e outputs of a bi-
nary classifier can be considered as a rigorously or-
dered list for these instances, which can be
appropriately represented by lx, which is an indicator
function of a set X. ,erefore, c is a fixed classifier,
where yp1, . . . , ypm are its outputs on the positive
instances and yn1, . . . , ynn are its outputs on the
negative instances. ,e AUC related to c is described
[58] as
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AUC �
􏽐

i�m
i�1 􏽐

n
j�1 lypi >ynj

mn
, (15)

which is the value of the Wilcoxon–Mann–Whitney
statistic [59].
Kappa: this EP is defined as

Kappa �
p0 − pc

1 − pc

, (16)

where p0 � Accuracy and

pc �
TP + FN

TP + FP + TN + FN
+

FP + TN
TP + FP + TN + FN

+
TP + FP

TP + FP + TN + FN
+

TN + FN
TP + FP + TN + FN

.

(17)

Finally, an independent end estimation of the accu-
racy, recall, precision, and specificity of the model can
be obtained using the validation set. ,e last three
parameters are

recall �
TP

TP + TN
,

specificity �
TN

TN + FP
,

precision �
TP

TP + FP
.

(18)

In addition, the confusion matrix as an estimation of
the provided solution was obtained in the end vali-
dation for each PTN. Table 1 describes the confusion
matrix general concept for a binary classification
problem.

,e final validation was performed on 20% of the total
samples.

,e selection of the similarity measures to be used as
input variables to the model required checking the existing
correlation between them. To determine whether this cor-
relation should be estimated using Spearman’s or Pearson’s
method, we checked whether the variables were normally
distributed. ,e Anderson–Darling test [60] was applied
with a significance level equal to 0.05. ,e following hy-
potheses were used:

(i) H0: “the sample comes from a normal distribution”
(ii) Ha: “the sample does not come from a normal

distribution”

If p − value <0.05, H0 is rejected; otherwise, H0 is
accepted.

,e R package nortest was utilised for the calculation of
the Anderson–Darling test.

2.2.4. Study of the Efficiency. In a graph, G, the distance
between the two nodes (i and j), d(i, j), is the number of links
that form the shortest path between them. If there is no link

between i and j, then d(i, j)�∞. ,e efficiency between i and
j [60] can be defined as

Eff ij �
1

d(i, j)
, ∀i≠ j. (19)

Since Eff ij is estimated based on the shortest path length
between node pairs, an increase in d(i, j) would result in a
decrease in the local efficiency between i and j.

In addition, the global efficiency of G can be described as

GlobEff(G) �
1

N(N − 1)
􏽘
i≠j

Eff ij. (20)

,is parameter is the average of the efficiencies calcu-
lated over all pairs of nodes in G. For a given number of
nodes N, GlobEff (G) increases with the addition of links.
According to the previous definition 0≤GlobEff (G)≤ 1,
being the value 1 reached for a complete graph [61].

GlobEff (G) has been estimated in several PTNs as one of
its features [62, 63]. ,is research analyses the impact that
the elimination of links between pairs of nodes, with certain
similarity characteristics, has on the GlobEff of the GC in G′.
,e result could help to achieve better network planning,
since, depending on which links are removed or built, higher
or lower GlobEff can be obtained. Common characteristics
regarding efficiency in PTNs are also identified.

,e relationship between GlobEff and network density is
also analyzed. ,is last characteristic for undirected graphs
such as PTNs can be defined as

density �
2∗ number of links inG

number of nodes∗ (number of nodes − 1)
.

(21)

2.2.5. Correlations between Topological Measurements.
Certain investigations have been performed focusing on the
study of centrality measures [35] in a PTN. In [36], the
authors study some centralities in 58 existing social networks.
Further studies examine the correlation between centrality
metrics: using Pearson, Spearman, and Kendall methods [37].
,e authors use the degree as the base to approximate three
other metrics: closeness, betweenness, and eigenvector. ,ey
check the correlation between centrality metrics in several real
networks, categorized as social, technological, and biological
networks. Authors find that the betweenness occupies the
highest coefficient, closeness is at the middle level, while
eigenvector fluctuates dramatically between networks. ,ey
also put forward the idea that rank correlation performs better
than the Pearson one in scale-free networks. In [40], several
different real-world network graphs, representing several
contexts (social club network, birds’ social network, word
adjacency network, airports network, games network, and

Table 1: Confusion matrix for a binary classification problem.

Actual value (AV)
Predicted value (PV) AV 0 (no link exists) AV 1 (A link exists)
PV 0 (no link exists) Number of TN Number of FP
PV 1 (A link exists) Number of FN Number of TP
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related book network) with the number of nodes ranging
from 34 to 332, were used. ,e authors classify the main
centrality metrics into two categories: degree-based (degree
and eigenvector centralities) and shortest path-based (be-
tweenness, closeness, distance, and eccentricity centralities).
,ey analyze the correlation between the aforementioned
centrality metrics, showing that two degree-based centrality
metrics (degree and eigenvector centrality) are highly cor-
related across all the studied networks. ,ere is predomi-
nantly a moderate level of correlation between any two of the
shortest path-based centrality metrics (betweenness, close-
ness, distance, and eccentricity). ,e authors explain that a
poor correlation exists between a degree-based centrality
metric and a shortest path-based centrality metric for regular
random networks. As the variation in the degree distribution
of the nodes increases, the correlation coefficient between the
two classes of centrality metrics increases. Reference [34] uses
a regression model to show a correlative relationship between
passenger flow distribution and the conventional network
properties (in/out degree, betweenness, and closeness) for the
train system in Hague and Amsterdam cities.

Due to the classification, social, technological, and bi-
ological networks can encompass networks of very different
types, and our investigation focuses on the study of cen-
tralities in PTNs. ,ese correlations are studied in G′.
Specifically, the following centralities are calculated:

(i) ,e degree of a node i, k(i), for an undirected graph,
G, such as a PTN, is [26, 64]

k(i) � 􏽘
N

j�1
Aij, (22)

where
Aij is the element ij of the adjacency matrix, A, such
as Aij � 1, if the node i is linked to node j and 0,
otherwise.

(ii) ,e minimum distance between two nodes i, j in G,
l, is the length of the shortest path between them.

(iii) ,e betweenness centrality of a node i in G, BC(i),is
[26, 65]

BC(i) � 􏽘
u≠i≠w

cu,w(i)

cu,w

, (23)

where cu,w is the total number of shortest paths
from node u to node w, and cu,w(i) is the number of
those paths that pass through i.

(iv) Regarding the eigenvector centrality of a node i inG,
EC(i) [26, 65, 66]: λ1, λ2, λ3, . . . , λN are the eigen-
values of the adjacency matrix A� Aij􏽮 􏽯 of G.,en,
the largest eigenvalue of matrix A is λmax with an
eigenvector e � [e1, e2, . . . , eN]T such that
λmax ∗ ei � 􏽐

N
j�1 Aij ∗ ej. ,e eigenvector centrality

for node i represented as EC(i) can be defined as

EC(i) �
1

λmax
􏽘

N

j�1
Aij ∗ ej. (24)

(v) Pagerank, PR, of a node i in G, is [26, 66–68]

PR(i) �
q

N
+(1 − q) 􏽘

j:j⟶ i

PR(j)

kout(j)
, i � 1, 2, 3, . . . , N,

(25)

where [26]
N is the number of nodes in G, PR(j) is the pag-
erank of a node j, and kout(j) is the outdegree of
node j, being the sum of (PR(j)/kout(j)) executed
over the nodes pointing towards i. In the case of the
PTNs, it is considered thatG is an undirected graph;
therefore, kout(j) � k(j).
q is the damping parameter, ∈ [0, 1].

(vi) A hub is a node that points to many relevant nodes,
and an authority node is the one that is focused on
by many important nodes. Both are based on the
eigenvectors related to the highest eigenvalues of the
matrices AAT and ATA.
,e hub centrality of the node i, denoted by HC (i),
is the i-th entry of the following vector y satisfying
equation:

AA
T

y � λy, where λ ∈ R is the highest eigenvalue of AA
T
.

(26)

Similarly, the authority of a node i, symbolized by
AC (i), is the i-th entry of the following vector x
satisfying equation:

A
T
Ax � λx, where λ ∈ R is the highest eigenvalue of A

T
A.

(27)

For an undirected graph, such as a PTN, the ad-
jacency matrix A is symmetric. ,e two scores,
AC(i) and HC(i), are identical.

3. Results and Discussion

3.1. Link Building Process in PTNs. As was previously dis-
played in 2.2.2, the network was represented in the L-Space.
All loops and multiple links were eliminated, obtaining
graph G′. ,is is where we calculate the existing maximum
number of connected components. Table 2 contains infor-
mation collected after the explained process, for all analysed
networks, the number of links and existing nodes and
clusters in G′. In addition, there are the number of nodes
and links present in the largest cluster GC. As well as the fact
some of them have several clusters, detection of clusters in
cities over PTNs can also allow us to find urban groups,
which are strongly connected through transportation. ,e
comparison between PTN clusters and urban agglomera-
tions can be used to estimate whether the PTNs are capable
of supporting these human distributions [69]. Identifying
under- and overserviced areas can also help in policy de-
cisions, including infrastructure planning and local devel-
opment [70].
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As was explained in 2.2.1, we used the caret package in R
for the building of the model. As described in 2.2.3, the
model was trained k times: each time one of the partitions
was taken as a test set, and the model was trained with the
rest of the data (with the remaining k − 1 folds). Each fold
was used once as a test set. Finally, several predictions exist
about the whole dataset.,is process results in k estimates of
the accuracy, AUC, and kappa parameters. Additionally, if
two similarity measures had a correlation greater than 0.9,
one of them was not considered in the prediction. Table 3
shows the similarity indexes that present a Spearman cor-
relation higher than 0.9 with another.

In order to know the method to be used for the cal-
culation of correlations, Pearson or Spearman, the Ander-
son–Darling test was applied with a significance level
α� 0.05. All networks showed a p − value <0.05. ,erefore,
the null hypothesis, H0 was rejected, inferring that the
distributions did not follow a normal pattern. Spearman’s
method was used to calculate correlations.

,e importance of each predictor in the model was
estimated calculating the absolute value of the t − statistics
[71], whose definition has been presented in 2.2.1 ,e im-
portance of predictors is shown in Table 4.

Tables 5 and 6 show, in each PTN, the average of the
estimators (accuracy, AUC ,and kappa) calculated over the k
times that the model was trained. Since the number of links
between pairs of nodes was much lower than the number of
unconnected pairs of nodes, the down-sampling approach
was utilised, randomly removing the observations. In order to
improve the results, artificial balanced samples were gener-
ated according to a smoothed bootstrap procedure [60] in the
,under Bay Transit network.,e rose package in Rwas used.

Table 7 shows, in each network, the confusion matrix
[72] obtained in the final validation. In Table 8, accuracy,
recall, precision, and specificity parameters are presented.

All networks showed good results applying down-sam-
pling, according to the parameters chosen for the evaluation
of the model. In the crossvalidation process, average accuracy
and AUC values were higher than 0.99 and kappa larger than
0.93. In the validation stage, accuracy and recall showed
values higher than 0.99, and specificity had a value equal to 1.
,e only exception was the ,under Bay Transit network,
where it was necessary to apply the rose method in order to
achieve better kappa and precision values.

As a result, the process of building links was appro-
priately modeled using a GLM, which had some measures of
similarities between nodes as input variables. ,e response
variable, which establishes the existence or not of a link
between pairs of nodes, is appropriately described by a
binomial probability density function. ,e link function
used is the logit function, as we explained in 2.2.1.,emodel
has the novelties described in Section 1, with respect to other
models that have already been developed for PTNs.

In most networks, the figure with the highest influence
was dsimdis, followed by simact. In addition, the simcos_l
and simlp showed high or moderate importance in some
networks.

3.2. Study of Trip Times. ,e trip times are analyzed in order
to estimate things in common between networks. Several
statistical parameters are calculated (average, standard de-
viation, median, moda, maximum, and minimum values).
,e results and the frequency distribution are displayed in
Table 9 and Figure 1, respectively.

,e cumulative probability distributions are also
checked. ,ey are shown in Figure 2. ,e stats package in R
was used. ,e similarity between two distributions is ex-
amined, applying the Kolmogorov–Smirnov test [73]. A
significance level equal to 0.05 is taken, while the following
hypotheses are considered:

(i) Null hypothesis (H0): “the samples come from the
same distribution.”

(ii) Alternative hypothesis (Ha):“the samples come from
different distributions.”

If a p − value <0.05 is obtained in the test, the null
hypothesis is rejected. Table S.1 shows the results obtained in
the test.

It can be noted that similarities do not exist between the
PTNs in relation to the trip times. All networks presented a
high standard deviation. ,e lowest is 14.02 minutes
(790.23523 seconds) and the highest is 11.12 hours
(42,027.19610 seconds). ,is shows that the size, the com-
plexity, and variability of available routes in the PTNs cause
trip times to be highly inconsistent between routes. Trip
times allow the evaluation of how travelers choose a service
based on whether or not it is convenient. Trip times have

Table 2: Number of nodes, links, clusters, and characteristics of the GC in G′ for all analyzed networks.

Network Number of nodes Number of links Number of clusters
GC

Number of nodes Number of links
AVL, CFL, RGTR, TICE 1328 1924 3 1370 1921
Island Transit 358 420 2 271 313
Lanta 2150 2330 1 2150 2330
Linja-Karjala Oy 534 700 1 534 700
Metlink 3007 3583 3 2998 3574
PPTC, ROPIT 5152 6757 18 4985 6599
Sage 36 1 31 36
STAR 1415 1993 2 1386 1965
,under Bay Transit 818 885 6 813 885
TransAntofagasta 645 962 1 645 962
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Table 3: Similarity measures that present a Spearman correlation higher than 0.9 with another.

Network Similarity measures
AVL, CFL, RGTR,
TICE dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local, dsimsor, dsiml, dsimkatz, dsimmf, dsimrwr.

Island Transit dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local, dsimsor, dsimact_n, dsimdis, dsimkatz,
dsimmf, dsimrwr, dsiml

Lanta dsimcn,d simcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local,
dsimsor, dsimact_n, dsiml, dsimkatz, dsimmf, dsimrwr

Linja-Karjala Oy dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local, dsimsor, dsiml, dsimkatz, dsimmf, dsimrwr

Metlink dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local,
dsimsor, dsimact_n, dsiml, dsimkatz, dsimmf, dsimrwr

PPTC, ROPIT dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local,
dsimsor, dsimact_n, dsiml, dsimkatz, dsimmf, dsimrwr

Sage
dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local,

dsimsor, dsimact_n, dsimdis, dsimkatz, dsimmf, dsimrwr
Dsiml

STAR dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local, dsimsor, dsiml, dsimkatz, dsimmf, dsimrwr

,under Bay Transit dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard, dsimlhn_local, dsimsor, dsimact_n, dsiml, dsimkatz, dsimmf,
dsimrwr

TransAntofagasta dsimcn, dsimcos, dsimhdi, dsimhpi, dsimjaccard,d simlhn_local, dsimsor, dsiml, dsimkatz, dsimmf, dsimrwr

Table 4: Importance of predictors.

Network Similarity measures Importance Network Similarity measures Importance

AVL, CFL, RGTR, TICE

Dsimdis 100

Island Transit

Dsimact 100
Dsimlp 13.20776 dsimcos_l 53.78080
Dsimpa 11.61152 Dsimlp 7.17716
Dsimaa 10.37026 Dsimpa 6.75717
dsimcos_l 9.554070 Dsimaa 0
dsimact_n 4.423947
Dsimact 0

Lanta

dsimcos_l 100

Linja-Karjala Oy

Dsimdis 100
Dsimdis 94.94621 Dsimlp 25.23217
Dsimpa 10.94917 Dsimact 23.95510
Dsimlp 7.372249 Dsimaa 17.12581
Dsimaa 6.737758 Dsimpa 12.22195
Dsimact 0 dsimact_n 4.047694

dsimcos_l 0

Metlink

Dsimdis 100

PPTC, ROPIT

Dsimdis 100
dsimcos_l 48.71324 Dsimlp 19.90804
Dsimaa 10.70750 dsimcos_l 14.18266
Dsimpa 7.501585 Dsimact 11.82702
Dsimact 2.410628 Dsimaa 3.308090
Dsimlp 0 dsimact_n 1.716437

Dsimpa 0

Sage

Dsimact 100

STAR

Dsimdis 100
dsimcos_l 26.16491 Dsimlp 9.89944
Dsimlp 16.60197 Dsimact 7.32344
Dsimpa 11.17248 Dsimaa 5.10874
Dsimaa 4.439547 Dsimpa 3.83377
Dsimhpi 0 dsimcos_l 0.10442

dsimact_n 0

,under Bay Transit

Dsimdis 100

TransAntofagasta

Dsimdis 100
dsimcos_l 40.08267 Dsimact 55.94523
Dsimaa 38.62297 Dsimlp 48.88970
Dsimlp 34.96505 dsimcos_l 41.40694
Dsimpa 24.13330 dsimact_n 28.06088
Dsimact 0 Dsimaa 27.07529

Dsimpa 0
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Table 5: In AVL, CFL, RGTR, TICE, Island Transit, Lanta, Linja-Karjala Oy, Metlink networks, the average estimation of accuracy, AUC,
and kappa calculated over the k times in which the model was trained.

Network Training approach Accuracy AUC Kappa
AVL, CFL, RGTR, TICE Downsampling 0.99996 1 0.98208
Island Transit Downsampling 0.99986 1 0.98406
Lanta Downsampling 1 1 1
Linja-Karjala Oy Downsampling 1 1 1
Metlink Downsampling 0.99994 1 0.93209

Table 6: In PPTC, ROPIT, Sage, STAR, ,under Bay Transit, TransAntofagasta networks, the average estimation of accuracy, AUC, and
kappa calculated over the k times in which the model was trained.

Network Training approach Accuracy AUC Kappa
PPTC, ROPIT Downsampling 1 1 0.99886
Sage 1 1 1
STAR Downsampling 1 1 1

,under bay Transit Downsampling 0.99933 0.99960 0.79877
Smoothed bootstrap 0.99999 1 0.99718

TransAntofagasta Downsampling 1 1 1

Table 7: Final validation. Confusion matrix.

Network Training approach Confusion matrix
Actual value

AVL, CFL, RGTR, TICE Downsampling

Predicted value AV 0 AV 1
PV 0 349548 0
PV 1 14 384

Actual value

Island Transit Downsampling

Predicted value AV 0 AV 1
PV 0 14506 0
PV 1 2 62

Actual value

Lanta Downsampling

Predicted value AV 0 AV 1
PV 0 923138 0
PV 1 0 466

Actual value

Linja-Karjala Oy Downsampling

Predicted value AV 0 AV 1
PV 0 56644 0
PV 1 0 140

Actual value

Metlink Downsampling

Predicted value AV 0 AV 1
PV 0 1795467 0
PV 1 104 714

Actual value

PPTC, ROPIT Downsampling

Predicted value AV 0 AV 1
PV 0 4966405 0
PV 1 3 1319

Actual value

STAR Downsampling

Predicted value AV 0 AV 1
PV 0 383136 0
PV 1 0 393

Actual value

,under Bay Transit

Downsampling
Predicted value AV 0 AV 1

PV 0 131588 0
PV 1 89 177

Smoothed bootstrap
Predicted value AV 0 AV 1

PV 0 131676 0
PV 1 1 177
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been considered by some researchers to evaluate the per-
formance of PTNs [74, 75].

3.3. Study of Efficiency

3.3.1. Local Efficiency. All networks showed a large majority
of nodes with low local efficiency ≤0.20, as can be noted in
Figures 3 and 4.

As was done with trip times, the similarity between local
efficiency distributions is examined, applying the Kolmo-
gorov–Smirnov test. A significance level equal to 0.05 is
taken, resulting in the following hypotheses being
considered:

(i) Null hypothesis (H0): “the samples come from the
same distribution.”

(ii) Alternative hypothesis (Ha): “the samples come from
different distributions.”

If the p − value obtained in the test is <0.05, the null
hypothesis is rejected.

,e networks presented high analogies in the cumulative
distributions of local efficiency. ,e test yielded a p − value
>0.05 in all pairwise comparisons performed, as can be
appreciated in Table S.2. ,erefore, in general, if a stop is
unavailable, the remaining connections between its neigh-
bours are distinct from direct connections. ,is is revealed
by the low value of the local efficiency [76].

3.3.2. Global Efficiency. ,e calculation of the GlobEff was
carried out in the GC of G′, and it can be observed,
according to the results depicted in Table 10, that the higher
the density of G′, the higher the GlobEff.

Most of the analyzed networks presented a GlobEff of
small value (<0.20). Some pieces of research use the GlobEff
as a parameter to compare PTNs [77, 78], and others apply it
to identify hubs [79, 80]. Consequently, the degree of a node

Table 7: Continued.

Network Training approach Confusion matrix
Actual value

TransAntofagasta Downsampling

Predicted value AV 0 AV 1
PV 0 82691 0
PV 1 0 192

Actual value

Sage Downsampling
Predicted value AV 0 AV 1

PV 0 171 0
PV 1 0 7

Table 8: Final validation. Accuracy, recall, precision, and specificity parameters.

Network Training approach Accuracy Recall Precision Specificity
AVL, CFL, RGTR, TICE Downsampling 0.99999 1 0.96482 1
Island Transit Downsampling 0.99986 1 0.96875 1
Lanta Downsampling 1 1 1 1
Linja-Karjala Oy Downsampling 1 1 1 1
Metlink Downsampling 0.9999421 1 0.87286 1
PPTC, ROPIT Downsampling 1 1 0.99773 1
STAR Downsampling 1 1 1 1

,under Bay Transit Downsampling 0.99933 1 0.66541 1
Smoothed bootstrap 0.99999 1 0.99438 1

TransAntofagasta 1 1 1 1
Sage 1 1 1 1

Table 9: Trip time metrics (seconds).

Network Average Standard deviation Median Max Moda Min
AVL, CFL, RGTR, TICE 1,731.33538 790.23523 1800 4020 2280 60
Island Transit 5,385.63025 1,298.01961 2100 69000 2400 120
Lanta 3,532.24305 1,505.97579 3360 10140 1800 420
Linja-Karjala Oy 2,071.65844 841.08391 2040 4140 1260 60
Metlink 2,111.43848 1,293.83504 1980 43800 1500 240
PPTC, ROPIT 1,911.43488 1,087.87538 1820 30180 960 60
Sage 12,000 7,842.19357 11850 24000 1200 1200
STAR 43,533.94450 42,027.19610 83460 86340 84960 60
,under bay Transit 1,751.91089 892.014494 1380 4500 1200 300
TransAntofagasta 10,297.08240 1297.94464 10254 13244 9827 5999

Complexity 11



is ranked by comparing the changes in PTN efficiency after
eliminating the node. In contrast, this research analyses the
variation in GlobEff when links with certain similarity
characteristics were removed. ,e results are shown in
Table 11. Similarity measures with a correlation higher than
0.9 with another were not considered. It can be noted that in
most of the networks, the link deletion in which a 75%

reduction was reached most quickly was dsimpa and dsimlp,
and the one that took the longest to reach was dsimcos_l.
Figures 5–7 show the variation in GlobEff when certain links
are removed.

Table 11 shows, for each similarity measure, the number
of removed links that causes the reduction of GlobEff by
75%.
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Figure 1: Histogram of trip time.
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Figure 2: Cumulative probability distribution of trip times.
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3.3.3. Correlations between Topological Measurements.
,e eigenvector, betweenness, pagerank, degree, hub, and
authority centralities were calculated in G′, in order to study
the correlation between them. ,e correlation of these
variables with the amount of transport arriving and
departing weekly from a stop were also estimated. Enabling
us to know which method, Pearson or Spearman, should be
used in the calculation, the Anderson–Darling test with a
significance level α� 0.05 was applied. In this way, it could be

known whether or not the variables were normally dis-
tributed. ,e test yielded a p − value <0.05 for all variables,
so the null hypothesis H0 was rejected, and the alternative
hypothesis Ha was accepted.

,e correlations obtained by applying Spearman’s
method are shown in Tables S.3–S.12. In all networks, the
eigenvector centrality presented a strong correlation with
hub and authority centralities. Pagerank showed a moderate,
high, or very high correlation with the degree. ,erefore,
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Figure 4: Cumulative probability distribution of local efficiency.
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also in this network, a high degree usually has a significant
influence. ,e pagerank and degree only presented a
moderate or high correlation with betweenness in some
networks, demonstrating that specifically in these few net-
works a node with a high degree also usually presents an

important level of connectivity. Eigenvector and degree, in
most networks, exhibited a low or very low correlation.
Furthermore, the number of weekly buses arriving and
departing from a bus stop showed no strong correlation with
any of the centrality measures. Strong correlations between

Table 10: GlobEff and density in GC in G′ for all analyzed networks.

Network GlobEff (GC in G′) Density
AVL, CFL, RGTR, TICE 0.14604 0.00219
Island Transit 0.07901 0.00856
Lanta 0.03248 0.00101
Linja-Karjala Oy 0.15180 0.00492
Metlink 0.05731 0.00080
PPTC, ROPIT 0.05291 0.00053
Sage 0.24383 0.07742
STAR 0.11220 0.00205
,under Bay Transit 0.07584 0.00268
TransAntofagasta 0.16649 0.00463

Table 11: Number of removed links that cause a 75% of reduction in the GlobEff.

Network Similarity
measures

Number of removed
links Network Similarity

measures
Number of removed

links

AVL, CFL, RGTR,
TICE

Dsimpa 655

Island transit

dsimpa 80
Dsimlp 697 dsimlp 83
Dsimact 702 dsimaa 110
Dsimdis 890 dsimact 123
Dsimaa 892 dsimcos_l 195

dsimact_n 1052
dsimcos_l 1084

Lanta

Dsimpa 177

Linja-Karjala Oy

dsimpa 181
Dsimlp 203 dsimlp 206
Dsimact 358 dsimact 221
Dsimaa 549 dsimdis 302
Dsimdis 616 dsimaa 303
dsimcos_l 1450 dsimact_n 395

dsimcos_l 399

Metlink

Dsimpa 1,193

PPTC, ROPIT

dsimpa 1500
Dsimlp 1,217 dsimlp 1730
Dsimact 1,718 dsimact 1850
dsimcos_l 2,202 dsimaa 2550
Dsimaa 2,493 dsimdis 2550
Dsimdis 2,538 dsimcos_l 3750

Sage

Dsimlp 20

STAR

dsimact 545
Dsimpa 20 dsimpa 640
Dsimaa 21 dsimlp 714
Dsimact 21 dsimdis 1,050
dsimcos_l 24 dsimaa 1,053

dsimact_n 1,172
dsimcos_l 1,198

,under Bay Transit

Dsimpa 89

TransAntofagasta

dsimlp 386
Dsimlp 93 dsimact 398
Dsimact 118 dsimaa 512
Dsimdis 327 dsimact_n 535
Dsimaa 393 dsimdis 550
dsimcos_l 422 dsimcos_l 553
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Figure 5: Variation in global efficiency when links with certain similarity characteristics are removed in AVL, CFL, RGTR, and TICE (a),
Island Transit (b), Lanta (c), and Linja-Karjala Oy (d) networks.
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degree and pagerank and degree and betweenness have also
been found in some Chinese PTNs [78].

4. Conclusions

Regarding the model followed by the formation of links
between stops, this research shows that it can be correctly
explained through a generalized linear model, which has
certain similarity measures as input variables. Although the
similarity measures that explain the model are different
among networks, in most of them, dsimdis has a higher
significance. It has a value equal to 100. In addition,

dsimcos_l and dsimlp presented relevant importance in
some PTNs with values higher than 30. Additionally, dsi-
mact and dsimpa showed values equal to 100 and larger than
10, respectively, in certain PTNs.

Regarding travel times, these showed a high variability
between networks (with standard deviations greater than
790.23 seconds), as well as very different cumulative
probability distributions (p − value ≥0.05 in Kolmogor-
ov–Smirnov test).

,e study of local efficiency reveals that its cumulative
distributions have strong analogies in all network distri-
butions (Kolmogorov–Smirnov test showed p − values
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Figure 6: Variation in global efficiency when links with certain similarity characteristics are removed inMetlink (a), PPTC, ROPIT (b), Sage
(c), and STAR (d) networks.
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Figure 7: Variation in global efficiency when links with certain similarity characteristics are removed in ,under Bay Transit (a) and
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<0.05).,e local efficiency showed values ≤0.2 in the most of
PTNs. Similarly, the overall efficiency exhibited reduced
values (≤0.25). ,is seems to be a common feature of PTNs.

With respect to the centrality measures, they did not
show correlation with the flow of vehicles, suggesting that
traffic dynamics in the network may be strongly influenced
by other different parameters as opposed to topological ones.
In all networks, strong correlations of the eigenvector
centrality with the hub and authority centralities were de-
tected (with values higher than 0.80). ,e pagerank showed
moderate, high, or very high correlation with the degree (it
was larger than 0.5 in all networks). ,erefore, these cor-
relation characteristics seem to be a commonality in PTNs.

,is research can be continued with a detailed study on
the interactions between the different existing modes of
transport modes in the cities. A multimodal transportation
system, embodied as a multiplex network, can be considered
in order to face the problem of urban mobility. In a mul-
tiplex network, a node symbolizes a specific origin/desti-
nation stop, which exists in each of the network layers.
Nevertheless, the links are represented by a different layer of
interaction determined by the type of transportation mode
used for connecting two nodes.

Data Availability

Information of stops, routes and trip times of AVL, CFL,
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