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(e number of intelligent applications available for IIoTenvironments is growing, but when the time-series data these applications
rely on are incomplete, their performance suffers. Unfortunately, incomplete data are all too frequent to a phenomenon in the
world of IIoT. A common workaround is to use imputation. However, the current methods are largely designed to reconstruct a
single missing pattern, where a robust and flexible imputation framework would be able to handle many different missing
patterns. Hence, the framework presented in this study, RAEF, is capable of processing multiple missing patterns. Based on a
recurrent autoencoder, RAEF houses a novel neuron structure, called a gated regulator, which reduces the negative impact of
different missing patterns. In a comparison of the state-of-the-art time-series imputation frameworks at a range of different
missing rates, RAEF yielded fewer errors than all its counterparts.

1. Introduction

Today’s IIoT sensors are capable of collecting an inordinate
amount of data, and the applications built to process these
data are allowing us to monitor, analyze, and understand
how things in our physical world are changing over time [1].
However, to continue improving our capacity for time-series
analysis, it is not enough to improve just the analysis
methods with better context recognition [2], expanded
service recommendations [3], improved anomaly detection
[4], and so on. (e quantity and quality of the time-series
data also need to be improved. For the most part, improving
data quality means making sure a data stream is compre-
hensive and complete. Scope tends to be the easier of these
two to address—simply adding more and different types of
sensors will get the job done. Unfortunately, completeness is
often a more common and difficult issue to overcome [5].
Data can be incomplete due to noise, sensor malfunctions,
equipment error, human error, incorrect measurements,
and other unavoidable circumstances [6]. As such, almost
every data stream produced by a sensor will be incomplete to
some degree [7].

Being so common, there are several methods of dealing
with incomplete data. (e first is to install redundant
sensors as backups. If one sensor fails to capture some data,
the other may not. (e main drawback with this solution is
that two sensors cannot be in exactly the same place, nor do
they tend to operate on exactly the same timing, so it can be
difficult to align the temporal and spatial characteristics of
the data [8]. Hence, a more common remedy has been some
form of data manipulation: generally, either deletion or
imputation [9].

Deletion is a simple and efficient answer when the
amount of missing data is very small in comparison with the
total. However, in applications that are very sensitive to time
series, deleting a small number of records can be enough to
destroy the coherence of a sequence and may seriously affect
the correctness of the results. Further, most data analysis
methods, especially machine-learning methods, require a
complete set of time stamps and are not robust to missing
data. In contrast, imputing missing data can reduce sensi-
tivity and provide a complete set of time stamps. Hence,
imputation has commanded the bulk of the research focus in
recent decades [10, 11].
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(e easiest methods of imputation simply replace the
missing information with statistically reasonable values,
such as means, modes, medians, or any predefined value
[12]. However, while straightforward and convenient, the
accuracy of such methods relies on the complexity of the
samples. With small, basic samples, they work fine, but when
the features become complex, these methods are not reliable.
For example, imputing with multivariate data generally
requires an algorithm based on clustering. Similar samples
are grouped into the same cluster and then used to evaluate
missing values group-by-group [13]. Rahman and Islam [14]
rough fuzzy k-means algorithm is one example of this type of
clustering imputation. Here, the researchers exploited fuzzy
expectation-maximization and fuzzy clustering to build a
missing value imputation framework for data preprocessing.
Raja and Sasirekha [15] method was designed to handle
missing values, while Zhao et al. [8] developed a local
similarity imputation method that estimates missing data
based on the stacked autoencoder (SAE) fast clustering al-
gorithm and the top k-nearest neighbors. (ere is no doubt
that these clustering-based imputations methods yield ex-
cellent results. However, clustering an entire time series is
hugely time-consuming to the extent that these approaches
cannot keep pace with today’s dramatic increases in data
volume. Additionally, there comes a point when the data
may be too incomplete for these methods to work with any
level of accuracy.

In the IIoT paradigm, sensor data have special properties.
For instance, multiple sensors are often used to record the
same/similar measurements in many systems [16]. Sensors that
are geographically close to each other tend to be highly cor-
related for certain periods of time [17].(ismeans that missing
data can sometimes be imputed from the associated sensors,
whether spatially or temporally. In these situations, modeling
time series and then applying an imputation method such as
smoothing or interpolation [18] can be a good choice.

Generally, smoothing or interpolation methods have a low
computational overhead and are simple to implement, al-
though they are not suitable for finding long-term correlations
in time-series data. Machine-learning techniques can correlate
features, which can improve imputation performance, such as
generative adversarial models [19–22] and recurrent neural
networks (RNNs). Among them, RNNs are known to be good
at modeling time series, and for this reason, many hybrid-RNN
methods have been developed. (is is because vanilla RNNs
estimate missing values from the data immediately preceding
the gap. For instance, Kim et al. [23] devised an RNNmodel to
impute missing medical examination data. (e time series are
modeled by RNNs, which compensate for the missing mea-
surements and then predict future values. Minseok et al. [24],
for example, developed an imputation framework called
DeepIN based on this type of correlation information. DeepIN
uses a deep network consisting of multiple LSTMs arranged
according to the correlation information of each IIoT device.
Ma et al.’s [25] LIME-RNN models incomplete time series
(linear memory vector recurrent neural network). A learnable
linear combination of previous history states means gradient
information can be propagated efficiently. In this way, LIME-
RNN can take full advantage of the previously observed

information to reduce the negative impact of missing values.
Alternatively, Li et al. [26] proposed a multi-view learning
method for estimating missing values in time-series traffic data
that combine RNNs and collaborative filtering techniques.
(ere is a large body of papers on imputing with incomplete
time series that assume any missing data from the current time
step are the same as the previous time step [25, 27, 28] or that
apply a decay mechanism to a hidden state to impute the
missing data [29–31]. Yet, with RNNs, imputation perfor-
mance suffers when the missing values become continuous.
Further, the above imputation strategies can lead to instability
during training, and with high missing rates, decay mecha-
nisms will not find sufficient hidden information.

Another branch of investigation in the search to improve
imputation performance is missing patterns. In this stream,
Minseok et al. [24] compared the effects of missing conti-
nuity and discontinuity on imputation performance.
Anindita et al. [32] and Tsai and Chang [33] considered the
missing patterns of arbitrariness and monotonicity in
medical data. Insuwan et al. [34] found that the rating data
present a special missing pattern caused by user preference
genres. Tak et al. [35] distinguished and contrasted the
missing patterns in traffic data caused by prolonged physical
damage to the sensors and measurement noise. However, to
the best of our knowledge, no special missing patterns for
IIoT environments have been proposed. (is study is an
attempt to change that. As such, our contributions are as
follows:

(1) We propose a framework based on a recurrent
autoencoder, called RAEF. (e encoder turns an
incomplete time series into vector representations of
both local information and global information. (e
decoder then initializes using the global information,
decoding the local information into complete time-
series data.

(2) As an alternative to decaying the hidden state, inside
RAEF, a gated regulator focuses on discriminating
between ground truth information and fictitious
information.(is mechanism is better able to reduce
the negative impact of increased missing rates in
different missing patterns.

(3) In empirical evaluations in a real IIoT environment,
RAEF proves to be effective. Additionally, compar-
isons between RAEF and several state-of-the-art
frameworks demonstrate that RAEF results in fewer
errors at each missing rate tested.

(e remainder of this study is organized as follows.
Section II. presents the problem formulation and some
necessary preliminaries. Section III. describes RAEF’s
structure. Sections II. and IV. present the details of the
experiments and results, and Section V. concludes the study.

2. Preliminary

2.1. Incomplete Time-Series Data. A sequential time-series
data X � x1, x2, . . . , xT􏼈 􏼉 are a sequence of T observations.
At each time step t, the observation xt ∈ RD has D features
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xt
1, xt

2, . . . , xt
D􏼈 􏼉. A sequential binary missing mask

M � m1,m2, . . . ,mT􏼈 􏼉, mt ∈ 0, 1{ }D is applied when
generating representations of the data, where mt denotes
which features are missing at time step t. (e features
missing at time step t can be described as follows:

m
t
D �

0, if x
d
t ismissing,

1, otherwise.

⎧⎨

⎩ (1)

(us, an incomplete sequential time series is denoted as
X � x1, x2, . . . , xT􏼈 􏼉, xt ∈ RD.

(e following rule is applied when training the model to
create an artificial incomplete time series:

xt
� xt ⊙mt

. (2)

2.2. Analysis of Missing Pattern. With an analysis of a large
amount of time-series data from the real IIoTenvironment, a
piece of knowledge is that themainmissing pattern for ITS is
two types: univariate missing and common-mode missing.

Univariate missing data are the most common pattern,
which often appears as a series of reading losses in a single
sensor over a short period of time, as shown in Figure 1. (e
usual cause is a fault in the sensor itself. For simplicity, we
have only considered recoverable cases in this study-
—namely where the data collection can be recovered in a
limited time. Here, kmax is the maximum length of con-
tinuous missing data, noting that, in general, kmax � D.

(e other type of missing pattern is common-mode
missing data, also known as common-mode failure. In these
cases, a large number of sensors fail to upload their readings
at the same time. Usually, this is caused by some external
factor, such as a disk error, a network communications error,
and human intervention. [36]. Figure 2 shows an example of
this type of missing pattern.

2.3. Recurrent Neural Networks. Recurrent neural networks
(RNNs) are especially suited to dealing with temporally and
spatially correlated information because they process his-
torical information recursively and model historical mem-
ory. RNNs are neural networks that work on a variable
length sequence X � x1, x2, . . . , xT􏼈 􏼉 by maintaining a hid-
den state h over time. At each time step t, the hidden state ht

is updated by the following equation:

zt
� Wix

t
+ Whh

t−1
+ bh,

ht
� f zt

􏼐 􏼑,

yt
� f Woh

t
+ bo􏼐 􏼑,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where f is an activation function. Often f is as simple as
performing a linear transformation on the input vectors,
summing them, and applying an element-wise logistic sig-
moid function. zt is an internal intermediate state, and the
model parameters are symbolized byWi,Wh,Wo, bo, and bh.
Further, we can simplify the RNN at time step t as anFRNN
function formulated by the following equation:

ht
� fRNN ht−1

, xt
􏼐 􏼑, (4)

where fRNN encapsulates the different RNN variants. LSTMs
[37] and gated recurrent units (GRUs) [38] are both very
popular RNN variants.

3. The RAEF Imputation Framework

Figure 3 shows the structure of the RAEF. It learns to encode
a sequence that may containmissing data and then to decode
those vectors back into sequential time-series data without
missing data. Note that the basic neuron used in the RAEF
includes a novel GR.

3.1. RNNEncoder. (e encoder is a model based on an RNN
or variant. In our case, since xt may have missing data, it
cannot be used to update ht as per Equation (4). So, when xt

is missing, the output of the previous time step is used
instead. (e information in this previous time step is a type
of local information. Further, the mean of xt across time
steps, denoted as rt and 􏽥x. 􏽥x, can be described as follows:

􏽥x �
􏽐

T
t�1 xt ⊙mt

􏼐 􏼑

􏽐
T
t�1 mt

􏼐 􏼑
. (5)

Formally, the initial hidden state h0 is initialized as an all-
zero vector. From t � 1 to T, the model is updated by the
following equation:

rt
� Wrh

t− 1
+ br,

􏽢xt
� (1 − c)rt

+ c􏽥x,

x
. t

� 1 − mt
􏼐 􏼑⊙ 􏽢xt

+ mt ⊙ xt
,

ht
� fRNN ht− 1

, x
. t

􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

where c is a learnable scalar, initialized as 0. Introducing a
learnable c allows the network to first rely on the cues in 􏽥x.
Gradually, it learns to assign more weight to rt. Hence, the
encoder can be described as E(x, he; θe), where x is the
sequential input, he is a hidden state, and E is a differentiable
function represented by Equation (6) with the parameters θe.
Once the sequential time-series dataX have been fed into the
encoder, R � r1, r2, . . . , rT􏼈 􏼉 is recorded, and a vector hc is
generated that contains global information about the full
sequence of time-series data input:

hc � g h1, h2, . . . , hT
􏽮 􏽯􏼐 􏼑, (7)

where g(.) are some nonlinear functions. Here, we consider
a simple deployment and so assume that
g( h1,h2, . . . , hT􏽮 􏽯) � hT. (e loss function of the encoder is
as follows:

ℓencoder �
1

T − 1
􏽘

T−1

t�‘

λt+1Le rt+1
, xt+1

􏼐 􏼑,

s.t. 􏽘
T−1

t�1
λt+1 � 1,

(8)
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where λt is a coefficient weighting, which represents the
importance of the previous imputation at each time step.
Intuitively, it does not need to be overly precise for the first
few time steps of training the encoder. In common, it is
assumed that:

λt+1 �
t + 1

􏽐
t−1
T�1(t + 1)

. (9)

3.2. RNN Decoder. (e decoder is also a model based on an
RNN or variant that aims to decode the sequence R from the
encoder back into a sequential time-series data without
missing data. c is used to initialize the hidden state of the
decoder. Note that, according to Equation (6),
R � r1, r2, . . . , rT􏼈 􏼉 is considered to be a replacement to
x2, x3, . . . , xT+1􏼈 􏼉. Hence, the decoder works backwards,
reading the sequence in the reverse order (i.e., from rT to r1).
(e sequential outputs of the decoder can be derived using
Equation (3), denoted as yT, yT− 1, . . . , y1􏼈 􏼉.

ht
� Fde ht− 1

, rt
􏼐 􏼑,

yt
� Wyh

t− 1
+ by.

⎧⎪⎨

⎪⎩
(10)

Hence, the decoder can be described as D(r, hd; θd).
Finally, the decoder trains the parameters by minimizing the
errors between the output yt and the input sequential time-
series data xt. (e loss function is defined as follows:

ℓdecoder �
1
T

􏽘

T

t�1
􏽘

D

d�1
1 − m

t
D􏼐 􏼑Le y

t
D, x

t
D􏼐 􏼑, (11)

where Le uses the absolute error,

Le(x, y) � |x − y|. (12)

3.3. Gated Regulator. Since the operation of the encoder is
represented in Equations (5) and (6), the input data of each
time step are not completely consistent in authenticity.
Intuitively, if the imputation framework can evaluate the
input data authentically at an early stage, and before cal-
culating the candidate state, the hidden state can reduce the
incidence of inaccurate information. A gated structure, i.e., a
gated regulator, is therefore integrated into the encoder, as
shown in Figure 4. (e motivation is to allow the encoder to
decide how much of the current hidden state ht will gain its
information from the current input without increasing the
extra information. Formally, this can be described as follows:

gt
� σ Wg · mt

, ht− 1
􏽨 􏽩􏼐 􏼑. (13)

Equation (6) becomes

rt
� Wrh

t− 1
+ br,

􏽢xt
� (1 − c)rt

+ c􏽥x,

x
. t

� 1 − mt
􏼐 􏼑⊙ 􏽢xt

+ mt ⊙ xt
,

gt
� σ Wg · mt

, ht− 1
􏽨 􏽩􏼐 􏼑,

􏽥ht
� fRNN ht− 1

, x. t
􏼐 􏼑,

ht
� 1 − g

t
􏼐 􏼑⊙ 􏽥ht

+ et ⊙ht− 1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Note that the gated regulator is an independent structure,
which means it must be compatible with the RNN or variants.
As an example, LSTM-GR means an LSTM with the gated
regulator.

Sequential Incomplete 
Time Series Data

1 1 1 1 0

0 1 1 1 1

0 1 1 0 0

1 1 1 0 1

Binary Missing MaskSequential Time Series Data

x1 x2 x3 x4 x5 m1 m2 m3 m4 m5 x–1 x–2 x–3 x–4 x–5

Figure 1: An example of a univariate missing data pattern.

Sequential Incomplete
Time Series Data

1 1 1 1 1

0 0 0 0 0

1 1 1 1 0

1 1 1 1 1

Binary Missing MaskSequential Time Series Data

x1 x2 x3 x4 x5 m1 m2 m3 m4 m5 x–1 x–2 x–3 x–4 x–5

Figure 2: An example of a common-mode failure pattern.
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3.4. Training Process. To prevent a vanishing gradient or
problems with explosion while back propagating RAEF, the
training algorithm, Algorithm 1, prescribes that the encoder
and decoder are trained asynchronously. (e training
process is therefore divided into three parts:

(1) Input x into the encoder, and update the encoder by
descending its gradient ∇θe

ℓencoder.
(2) Record the encoder’s output r

(3) Input r into the decoder, and update the decoder by
descending its gradient ∇θd

ℓdecoder.

(roughout, weight clipping is used to limit changes in
the encoder’s gradient.

4. Experiments Details

Our experience of real-world IIoTdata, as shown in Figure 5,
is that a great many data points can be missing from time
series collected in these environments. (e levels shown in
Figure 5 indicate just how widespread the problem of
missing data is in IIoT environments. (is disturbing
phenomenon not only affects the ability to monitor devices
in real time but also reduces the accuracy of any subsequent
analysis done by downstream applications.

In a series of analyses, we compare imputation with
RAEF to several state-of-the-art imputation frameworks
based on RNNs. (en, we illustrated how incomplete time-
series imputation can improve the effectiveness of data
applications. Last, we discuss the choice of T.

4.1. Dataset and Experiment Setup. (e datasets used in the
experiment are summarized in Table 1.

4.1.1. UCI Air Quality Data (UAQ). (e UCI dataset con-
tains 9358 records of average hourly responses from an array
of 5 metal oxide chemical sensors embedded in an air quality
chemical multi-sensor device taken between March 2004
and February 2005. (e air quality data points have 12
features, and 7.5% of the values are missing. After removing
the records with missing data, we randomly selected 20% of
the data for testing and the others for training. Pearson’s
correlations between each feature are shown in Figure 6.(is

dataset can be thought of as an incomplete time-series
dataset of a real IIoTenvironment that is rich in information
and has a low- to middle-level missing rate.

4.1.2. Base Station Status Data (BSS). (is dataset was
collected from an ePLCM002FR edge node, developed by
Hangzhou Yiyitaidi Information Technology Co., Ltd. and
deployed in a base station located at the Spring Shopping
Mall in the Zhangdian District, Zibo, Shandong Province
(see Figure 7). (e dataset comprises 14,820 data readings
taken between February 2018 and February 2019. Every data
point contains six attributes: the temperature and current
intensity of two rectifiers, the air conditioning setting
temperature, and environmental temperature. 18.2% of the
values are missing. We used the data collected for May and
September 2018 and February 2019 for testing. (e
remaining data were used for training.

Pearson’s correlations between each feature are shown in
Figure 8. Compared with the UAQ dataset, the BSS dataset
has shorter collection cycles, low data dimensions, and a
higher missing rate. To stabilize the training with each
dataset, we normalized the raw data via a linear transfor-
mation using the maximum and minimum (min-max
normalization) before the experiment. However, because the
BSS dataset does not contain any ground truth labels,
experimenting with the actual missing values was not
possible. (us, we simulated missing data by randomly
omitting data according to different missing rates, and using
the real values as a ground truth label in Table 1 provides the
details.

(e results were assessed in terms of mean absolute error
(MAE) and mean relative error (MRE), calculated as follows:

MAE �
􏽐i∈Ω xi − 􏽢xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S(Ω)
,

MRE �
􏽐i∈Ω xi − 􏽢xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐i∈Ω xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

(15)

whereΩ denotes the index set of the missing values, and S(.)

denotes the size. xi is the ground truth of the ith missing
item, and 􏽢xi is its imputed value.

4.2. Baselines. Brief descriptions of the comparators we
chose as baselines are as follows:

(1) Border mean (BM)—uses the average of the previous
and posterior record of the missing values as the
imputed value.

(2) K-Nearest neighbor (KNN)—uses KNN [40] with a
fixed k � 6 to find similar samples and imputes the
missing values according to the weighted average of
the neighbors.

(3) BRITS [29]—a novel method based on RNN that
combines a bidirectional recurrent hidden state
decay mechanism and forward imputation. (is
approach can impute the missing values in a

y1

x1

x1 x1 x1

r1 r2 rT
x2

x2 x3

x3

y2 yT

hc

fRNN
d

fRNN
e fRNN

e fRNN
e

fRNN
d fRNN

dh2

h2 hTh1

h3 hT–1

Figure 3: Proposed RAEF structure.
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bidirectional recurrent dynamical system without
any specific assumptions.

(4) LIME-LSTM [25]—a novel framework for modeling
incomplete time series based on LIME-RNN using
an LSTM, where a network learns the residual
connection between time steps and implements a
linear combination of previous historical states.

Note that BM and KNN are common approaches to
imputation. BRITS and LIME-LSTM are both imputation
frameworks for time series based on RNNs.

4.3. Implementation Details. We developed two imple-
mentations of RAEF: one with an LSTM and the other with a
GRU. Further, we configured each model with and without a
gated regulator to result in four baselines as follows.

For the proposed RAEF implementation, we tried two
RNN variants: LSTM and GRU. Hence, we implemented 4
kinds of RAEF, RAEF-LSTM, RAEF-GRU, RAEF-LSTM-
GR, and RAEF-GRU-GR:

(1) RAEF-LSTM (RFL): both the encoder and decoder
are implemented as LSTMs

(2) RAEF-LSTM-GR (RFLR): the encoder was an LSTM
incorporating a gated regulator, and the decoder was
an LSTM

(3) RAEF-GRU (RFG): both the encoder and decoder
were implemented as GRUs

(4) RAEF-GRU-GR (RFGR): the encoder was imple-
mented as a GRU with a gated regulator, and the
decoder was a GRU.

For all methods, we fixed the parameters of the RNNs to be
the same.(e dimensions of the hidden state were n � 64, and
the learning rate was α � 0.0001. In deploying the RNN-based
models, we cut the datasets into sequenceswith a fixed length of
T and input ms samples at once for training. (e settings for
the values ofT andms are shown in the last two lines of Table 1
and were applied to all RNNs consistently. Note that, in the

training process, instead of using a validation set, we ended the
training when the training loss leveled off.

Our experimental procedure had three main steps. First,
we randomly deleted data from the complete time series to
mimic the different missing patterns and with different
missing rates. We then split the data into training and testing
sets according to the proportions mentioned in Section
A. Second, we trained all the frameworks. (ird, we used
different frameworks to generate imputation results for the
testing set and evaluated the frameworks by comparing
results with the ground truth data in terms of the evaluation
metrics.

All experiments were run on the TensorFlow platform
using an Intel Core i7-8700K, 3.60-GHz CPU with 16-GB
RAM, and a GeForce RTX 2080 8G.

5. Result and Discussion

5.1. Imputation Performance for Single Missing Pattern.
Tables 2 and 3 show the results of the imputations, whereMP
denotes missing pattern and MR stands for missing rate.
From these results, we drew the following observations.

(1) Border mean (BM) was quite inaccurate and became
less accurate as the missing rate increased.

(2) KNN was not effective for imputing missing values
with the common-mode pattern because the distance
between the samples often could not be measured
given the complete loss of all attributes. KNN was
able to achieve a result with the univariate-type
missing patterns at low missing rates but was sen-
sitive to changes in this rate, and its performance
grew worse as the rate increased.

(3) LIME-LSTM, with its unidirectional RNNs, did not
perform as well the frameworks that contain a bi-
directional RNN, i.e., BRITS and RAEF.

(4) LIME-LSTM and BSS could not cope with high
missing rates. At lowmissing rates, RAEF and BRITS
demonstrated similar performance. However, as the
missing rate increases, RAEF performed significantly
better than BRITS, especially the LSTM-GR
implementation.

1-

Regulator

Element-wise MUL

Element-wise ADD

mt

ht–1

fRNN
htht~

xt

Figure 4: Simple structure of a gated regulator.
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Figure 5: Change chart of temperature sensor readings of a base
station in a large cellular network [39], collected from January 1 to
10, 2019. Around 20% of the data points in the time series are
missing.
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Input: (e learning rate α. (e clipping parameter c. (e batch size ms. (e set of training data X. (e initial encoder parameters
θe. (e initial decoder parameters θd.

(1) while not converged do
(2) Sample x(i)􏼈 􏼉

ms

i�1 from X.
(3) Set m(i)􏼈 􏼉

ms

i�1 according to the missing pattern.
(4) Initialize he by zeros.
(5) for i � 1 to ms do
(6) r(i)←E(x(i), he; θe).
(7) gθe

←gθe
+ ∇θe

ℓencoder.
(8) end for
(9) θe←θe + α·RMSProp (θe, gθe

/ms).
(10) θe← clip (θe, −c, c).
(11) r(i)􏼈 􏼉

ms

i�1← E(x(i), hd; θe)􏼈 􏼉
ms

i�1.
(12) Get h(i)

c􏼈 􏼉
ms

i�1 by Equation (7).
(13) for i � 1 to ms do
(14) hd←h(i)

c

(15) y(i)←D(r(i), hd; θd).
(16) gθd

←gθd
+ ∇θe

ℓdecoder.
(17) end for
(18) θd←θd + α RMSProp (θd, gθd

/ms).
(19) end while

ALGORITHM 1: Training of RAEF.
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Figure 6: Pearson’s correlation coefficients between features in the UCI air quality dataset.

Table 1: Details of experimental dataset.

Name UCI air quality data Base station status data
Records length 9358 14 820
Dimensions 12 7
Missing rate 7.5% 18.2%
Collection cycle Per 1 h Per 30min
T 18 14
ms 200 1000
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(5) (e LSTM versions of RAEF generally outperformed
the GRU versions.

(6) Focusing on the common-mode patterns, the RNN
approaches clearly show how much greater the
impact of this type of missing data is over the
univariate brand. For example, looking at BSS with a
high missing rate (20%–30%), the performance of all
frameworks deteriorates rapidly.

In addition to these basic observations, we also noted some
distinguishing performance features when comparing the gated
regulator variants of RAEF to the plain version. In general, the
gated regulator implementations of RAEF both outperformed
the other frameworks within a limited range of missing rates
and had obvious advantages under higher missing rates. From
5% to 15% missing rates on UAQ, the percentage increase in
MRE over the non-gated versions of RAEF with the common-
mode patterns was 7.46% and 23.54%, respectively. With the
univariate pattern, this number was 8.57% and 20.23%.We can
see the same trend with the BSS dataset. (ese results suggest
that the gated regulator was able to reduce the negative impact
of increased missing rates with both types of missing patterns.

5.2. Imputation Performance for Mixed Missing Pattern.
Ideally, the missing data in a time series will conform to a
single pattern—either univariate mode or common mode.

However, there are occasions where both patterns will be
present. For this series of experiments, we fixed the missing
rates—at 10% for the UAQ dataset and at 20% for BSS. We
then simulated the following patterns of missing data in the
time series: 100% univariate, 20% commonmode (CM)/80%
univariate (UM), 40%CM/60%UM, 60%CM/40%UM, 80%
CM/20%UM, and 100% CM. Figure 9 shows the results.
RAEF-LSTM-GR was the clear performer with significantly
better results than the others.

5.3. Task: Imputing Missing Values in an Incomplete Time
Series. To more clearly show the importance of data
imputation for downstream applications, we undertook a
prediction task using incomplete time-series data and
compared the results to the same task using imputed
data. To approximate different real application scenarios,
we performed the tasks with a range of missing rates.
More specifically, we prepared versions of the UAQ
dataset with missing rates of 5%, 10%, and 15% and
conducted three groups of experiments A, B, and C as
follows:

(1) A: impute with R AIN-LSTMF and then use an
LSTM for prediction

(2) B: impute with BRITS and then use an LSTM for
prediction

Figure 7: Base station where the data were collected.
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Figure 8: Pearson’s correlation coefficients between features on BSS.
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(3) C: impute with LIME-LSTM and then use an LSTM
for prediction

Groups A-C all used the same LSTM for predictions,
which contained 64 neurons and were trained with a
complete dataset. (e difference between the prediction
results and the ground truth data was measured using MAE.

Each experiment was repeated 50 times, and the results were
recorded as shown in Figure 10.

5.4. ?e Choice of T. To assess choice process, we varied the
value of T. As shown in Figure 11, RAEF-LSTM-GR generally
delivered the best performance for each dataset. But, as the

Table 2: Imputation performance on UAQ in MRE%.

MP MR (%)
Baseline Ours

BM (%) KNN LIME-LSTM (%) BRITS (%) RFL (%) RFG (%) RFLR (%) RFGR (%)

CM
15 39.88 — 15.62 12.32 11.44 11.64 9.79 10.33
10 29.24 — 14.16 10.58 10.02 10.51 9.32 9.71
5 18.80 — 12.69 9.44 9.26 9.40 9.11 9.27

UM
15 45.28 32.10% 13.29 11.70 10.04 10.78 9.12 9.37
10 32.47 23.84% 12.00 10.10 8.86 9.48 8.61 8.79
5 19.35 15.88% 11.46 8.85 8.35 8.61 8.40 8.26

Table 3: Imputation performance on BSS in MRE%.

MP MR (%)
Baseline Ours

BM (%) KNN LIME-LSTM (%) BRITS (%) RFL (%) RFG (%) RFLR (%) RFGR (%)

CM
30 60.62 — 24.20 17.84 16.99 17.06 14.06 14.32
20 39.73 — 19.57 15.05 14.45 15.11 12.29 12.99
10 16.32 — 15.43 14.14 12.98 13.58 11.28 11.67

UM
30 67.44 47.42% 19.11 15.91 14.12 14.01 11.97 12.34
20 45.23 31.84% 14.28 13.26 12.28 12.26 10.94 11.52
10 19.01 16.83% 11.85 11.73 10.88 11.47 9.94 10.01
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Figure 9: Imputation performance for the mixed missing pattern results in terms of MRE (%), where a C b Umeans that, at a fixed missing
rate, a percent of the missing data followed a common-mode pattern and b percent followed a univariate pattern.
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missing rate changed, the optimal value of T was slightly
different. At higher rates, the RAEF-LSTM-GR preferred a
largerT to obtainmore information from the input time series.
However, whenT was too large, performance drops, indicating
that the model was affected by an exploding gradient.

6. Conclusion

(is study presents RAEF, an imputation framework for
IIoTenvironments based on a recurrent autoencoder. RAEF

identifies the missing patterns in incomplete time series and
uses them as a guide to impute the values that aremissing. As
part of this research, we, for the first time, summarized the
missing patterns in incomplete IIoT time-series data. Unlike
some other methods, which decay the hidden state, RAEF
uses a gated regulator to reduce the negative impact of larger
missing rates. Tests on both synthetic and real data with this
approach show that RAEF has greater robustness, more
flexibility, and returns fewer errors than other state-of-the-
art imputation frameworks designed for time-series data.
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