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+e nonlinear dynamics of an incommensurate fractional-order single-machine infinite-bus (SMIB) power system
benchmark model are explored and studied by means of modern nonlinear analysis theories, such as bifurcation, chaos,
power spectral density (PSD), and bicoherence methods. +e effect of incommensurate order derivatives on power system
dynamics is presented. +e study reveals that the power system undergoes interesting dynamics such as periodic motion,
chaotic oscillations, and multistability whenever the system parameter values fall into particular ranges. A new fractional-
order linear augmentation-based control scheme is applied to damp out the power system’s chaotic oscillation, change the
stability of the coexisting states, and drive the system from multistability to monostability. +e stability of the proposed
control system is derived using Lyapunov theory. Simulation results confirmed the effectiveness and robustness of the
proposed control scheme in damping power system oscillations and achieving good overall performance. +e results in this
paper will give a better understanding of the nonlinear dynamic behaviors of the incommensurate fractional-order SMIB
power system.

1. Introduction

Power system is a complex nonlinear dynamical system with
many components strongly interconnected, such as gener-
ators, buses, transformers, and many other kinds of loads
and devices. +e continuing interconnections of bulk power
systems, brought about by economic and environmental
pressures, has led to an increasingly complex nonlinear grid
that must operate closer to its stability limits. +erefore,
recent power systems have to deal with system stability and
reliability control challenges in the current and near future.
+e power system may be subjected to the disturbances of
operation, parameter variation, time delay, noise, and un-
certainties involved in a system, which may result in chaotic
oscillations that can lead to power system failure, such as
voltage collapse, angle divergence, or finally catastrophic

blackout like what happened in the US in 1966 [1] and many
other countries [2–4]. +e power system’s dynamical be-
havior with various parameters is usually associated with
complex nonlinear electromechanical oscillations. More-
over, due to the growth of power demand, themodern power
grids are forced to operate close to their stability limit and for
meeting economic and environmental constraints on in-
stalling new transmission lines and new power stations.

Different from power systems’ low-frequency oscilla-
tions, chaotic oscillations are more critical due to a variety of
factors that may trigger this behavior. Due to this fact, it is
more difficult to damp out this type of oscillations [1]. In the
last few decades, there has been a growing interest in in-
vestigating the chaotic oscillation in power systems. One of
the first studies on chaos and bifurcation in electrical power
networks was presented in [5]. +e authors used Melnikov
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theory to analyze a second-order power system with two
generators. One of the early works is [6, 7] which applied a
numerical analysis approach to investigate the chaotic
phenomena in a simple power system of two inter-
connected buses. Indian scholars [8] studied the bifur-
cations in a three-node power system by approximating
the soft wind-up limiter using smooth function to simplify
the bifurcation analysis. +e scholars in [9] revealed the
relationship between various instability modes and chaos
phenomena in a three-bus power system and studied the
routes to chaos in this model. A single-machine infinite-
bus power systems model withhard limits in the excitation
feedback loop and its effect on the Hopfbifurcation and
chaos instability has been presented in [10]. +e re-
searchers in [11] proposed a finite-time control method to
damp out the chaotic oscillation in a chaotic single-ma-
chine infinite bus that shows complex nonlinear dynamics
at particular operating conditions. Chaotic power oscil-
lation can occur in electrical networks due to many other
reasons such as subsynchronous resonance (SSR) and
ferroresonance which are two phenomena that cause
power oscillation of rotary systems [12]. During SSR,
electrical energy is exchanged between generation unit
and transmission systems with frequency below the
fundamental synchronous frequency. It happens due to
electromechanical interaction of a series compensated
transmission line with a generator. It results in oscillation
in the shaft and power oscillation [13]. Ferroresonance is a
nonlinear resonance, which occurs in presence of a sat-
urable nonlinear inductance and capacitance in a circuit
with low resistance. It can emerge due to several con-
figurations like breaker failure during opening or closing
operation, line and plant outage, and so on. It causes
waveform misshaping, power oscillation, and frequency
deviation in the network [14]. A new chaotic power system
was introduced in [15], and two different controllers were
proposed to remove the chaotic oscillations in the rotor
speed and angle.

+e theory of fractional calculus dates back to the birth
of the theory of differential calculus. But it has begun to be
applied in engineering and science applications only in
recent years due to its inherent complexity [16, 17] and as a
result of advances in the fields of chaos and fractals, which
revealed subtle relationships with the fractional-order cal-
culus concepts [18]. Many engineering systems, such as
electromagnetic waves, dielectric polarization, and quantum
evolution of complex systems, show some sort of fractional-
order dynamics [19], and therefore fractional-order control
theories have gained researchers’ attention.

In [20], a two-dimensional commensurate fractional-
order SMIB model has been analyzed and controlled using a
simple Lyapunov-based control method. +e proposed
controller drives the random chaotic oscillation to perform as
a periodic motion. Rajagopal et al. [19] discussed the non-
linear behavior of commensurate fractional-order power
system, and the results revealed the existence of chaos os-
cillation which is suppressed using an adaptive sliding mode
controller. Even though there are many studies about power
system’s chaotic dynamical behavior in the integer-order

model, fewer literatures are reporting fractional-order
modeling, analysis, and control design for the power system.
For these purposes and from the aforementioned discussion,
in this paper, the chaos and multistability in an incom-
mensurate fractional-order power system with hard limit will
be analyzed and controlled. +e applied controller, which is
an extension of a recently developed control method based on
linear augmentation, has been exploited. +is is achieved by
coupling the incommensurate fractional-order SMIB model,
with a linear feedback system consisting of a basic decaying
function [21]. +is method offers a significant effect in tar-
geting prescribed steady-state solutions [22], suppressing
bistability [23], regulating the dynamics of drive response
systems [24], and controlling the dynamics of hidden
attractors [25], where the linear augmentation control was
used to stabilize fixed points of nonlinear oscillators. +e
proposed control method has the advantages of simple
implementation through electronic circuits, and it is preferred
in the situation when the controlled system internal pa-
rameters or variables are inaccessible.

+is paper is organized as follows. Followed by intro-
duction in Section 1, the mathematical preliminary is given
in Section 2. +e power system model of both integer-order
and incommensurate fractional-order SMIBs is discussed in
Section 3. Section 4 introduces the novel fractional-order
linear augmentation control strategy to stabilize the SMIB
power system. Finally, conclusions are drawn in Section 5.

2. Preliminaries

+ere exist many definitions for fractional-order derivatives.
In this work, the Grünwald–Letnikov method will be used
for solving the power system dynamics. +e
Grünwald–Letnikov definition of order q> 0 (GLD) is given
as follows [26]:
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are the binomial coefficients with q

0  � 1. +is definition

form is very useful for finding numerical solutions of
fractional-order differential equations [27]. +e numerical
solution of fractional-order derivatives is based on (3)
derived from the Grünwald–Letnikov (GL) definition (1).
+e used numerical approximation of q − th derivative at
the points kh(k � 1; 2; . . .) has the following explicit re-
lation [28, 29]:
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where Lm is the “memory length,” tk � kh, h is the time step

of calculation, and (−1)j q

j
  are binomial coefficients that

will be denoted as ck
j(j � 0, 1, . . .). For their calculation, the

following expression can be used [30]:

c
q
0 � 1, c
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j
 c

q

j−1. (4)

+en, general numerical solution of the fractional-order
differential equation

aD
q
t y(t) � f(y(t), t), (5)

has the following form:
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For the memory term expressed by the sum, a “short
memory” principle can be used for various Lm.

3. Fractional-Order Power System Model

A fundamental single synchronous generator with an
infinite-bus power system and its exciter is presented in
Figure 1. +e generator excitation system is represented by a
single time constant with high gain AVR and the limiter.+e
system can be described by the following integer-order
model (7):
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where Efdr is the field control signal, and the output of the
automatic voltage regulator (AVR), Efd, is expressed as
follows:
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and the bus voltage at the generator bus terminal is defined
as
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, (9)

where δ denotes the rotor angle, ω and f0 represent angular
velocity (rad/s) and the frequency (Hz), D denotes damping
coefficient (N.m.s/rad), E′ and V0 are the generator’s

transient excitation and initial terminal voltage (pu), re-
spectively, Pm denotes the prime mover mechanical power
(pu), x, x d, and xd

′ stand for the transmission line and
d-axis reactance and transient d-axis reactance (pu) of
synchronousmachine,H is the equivalent moment of inertia
(pu), and TA and Td0′ represent the time constants (s) of the
exciter and the armature winding, respectively. +e initial
conditions (δ(0),ω(0), E′(0), Efdr(0))are equal to
(1.046, −0.001, 1.33, 1.9) and system parameters are selected
as in Appendix A. +e phase portraits for different pro-
jections of chaotic integer-order power system (7) are shown
in Figure 2.

In this work, the incommensurate fractional-order
model of power system is considered, where integer-order
derivative is replaced by a fractional order as follows:
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+e numerical solution of fractional-order 4D power
system (10) realized by the Grünwald–Letnikov approxi-
mation method with step h is given as follows:
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where Tsim is the total simulation time, k � 1, 2, 3, . . . , N, for
N � [T sim/h] and δ(0),ω(0), E′(0), Efdr(0) represent the
initial conditions (starting point). +e binomial coefficients
(c

qi

j ) are calculated according to relation (4).

3.1. Equilibrium Points and Eigenvalues. +e equilibrium
points of the fractional-order power system model are the
same as those of the integer-order power system. +e
equilibrium points are found as (1.0409, 0, 1.3559, 1.9229)
and (2.6621, 0, 2.5362, 4.8184) [31]. +e characteristic

equation for the system at the equilibrium can be written as
follows:

det diag λMq1 , λMq2 , λMq3 , λMq4  − JE  � 0, (12)

where M is the lowest common multiple of the denomi-
nators ui of qi

′s where qi � vi/ui, gcf(ui, vi) � 1 and ui, and
vi ∈ Z+, for i � 1, 2, . . . , n.

+erefore, for the incommensurate orders q1 � 1, q2 � 1,
q3 � 0.999, and q4 � 0.999, M � 1000 and the characteristic
equation becomes λ3998 + 1.1667 λ2999 + 0.15λ2998+
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Figure 1: Power system schematic diagram.
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9.9936λ2000 + 0.175λ1999 + 28.707λ1998 + 1.499λ1000 +

31.412λ999 + 473.66. +e condition for the incommensurate
fractional-order system to be chaotic is to satisfy the instability
measure for the equilibrium points in fractional-order system
(IMFOS) as follows [32]:

π
2M

− min
i

arg λi( 


 > 0, (13)

which is solved for 0.00016945> 0. +e result shows that the
incommensurate order of the derivative influences the be-
havior of the system.. +erefore, the power system (10) tends
to be chaotic.

For the same initial condition mentioned before and
system parameters given in Appendix A, the incommen-
surate fractional-order power system phase portraits for
different projections are given in Figure 3. +e attractors
shown in Figure 3 reflect the chaotic nature of the in-
commensurate fractional-order power system.

+e power spectral density and the bicoherence diagram
for the fractional-order power system are given in Figure 4.
+e bicoherence or the normalized bispectrummeasures the
phase coupling amount in a signal or between two signals.
Both bispectrum and bicoherence are used to evaluate the
effect of a nonlinear system on the joint probability dis-
tribution of the system input. Phase coupling is the estimate
of the proportion of energy in every possible pair of fre-
quency components (fj, fk). Bicoherence results can be
used to find coherent signals in extremely noisy data,
provided that the coherency remains constant for sufficiently
long times, since the noise contribution falls off rapidly with
the increasing number of segments N.

+e chaotic system’s auto-bispectrum was given by
Pezeshki and his co-workers in [33]. +ey calculated the
auto-bispectrum with the help of Fourier coefficients:

B ω1,ω2(  � E A ω1( A ω2( A
∗ ω1 + ω2(  , (14)

where ω1 and ω2 are the radian frequencies and A represents
the Fourier coefficients of the time series. +e normalized
magnitude spectrum of the bispectrum known as the
squared bicoherence is given by

b ω1,ω2(  �
B ω1,ω2( 



2

P ω1( P ω2( P ω1 + ω2( 
, (15)

where P(ω1) and P(ω2) represent the power spectrum at ω1
and ω2.

+e bispectrum is calculated by dividing the time series
into M segments of length Nseg, calculating their biper-
iodogram and Fourier transforms, and then taking the av-
erage over the ensemble. Although the bicoherence is a
function of two frequencies, the default output of this
function is a one-dimensional output, with the bicoherence
refined as a function of only the sum of the two frequencies.
From Figure 4, the bicoherence is significantly nonzero and
nonconstant, indicating a nonlinear relationship between
the states. Moreover, the yellow shades indicate that the
nonlinear relationship of the states is not a narrowband
process. +e power spectral density (PSD) for 100 (s) time
waveforms and sampling period of 0.005 (s) of the variableω

is given in Figure 4. +e PSD changes uniformly in the
whole frequency range, and there is no sharp front.
+erefore, the system conforms to chaos characteristics.
In Figure 5, the results of the variation with time for two
variables E′ and Efdr are demonstrated. Analyzing the time
waveforms in Figure 5, it can be observed that the system
has periodic behavior for q≤ 0.99 and tends to exhibit a
quasiperiodic or chaotic behavior for q> 0.99. +erefore,
the incommensurate fractional order of the derivative
influences significantly the chaotic dynamic behavior of
the power system.

To explore the impact of the system parameters on the
considered power system and the possibility of occurrence of
chaos, the bifurcation plots have been depicted. +is dia-
gram reveals the complete dynamical behavior of the system
with the variation in the control parameter. +e local
maxima values of the state variables are plotted with respect
to the control parameter By varying the damping coefficient
D of the system from 1.48 to 2.0. Figure 6 shows the bi-
furcation diagram of the fractional-order power system for δ
state against D. As can be observed from Figure 6, the system
takes an inverse period halving exit from the chaotic region.
Regions of chaotic oscillations can be seen for
1.48≤D≤ 1.58. +at is, for low damping coefficient, the
power system can exhibit chaotic oscillation with increasing
amplitude when D decreases.

+e mechanical power Pm has a great influence on stable
operation in the power system, which determines the speed
of the generator. In order to shedmore light on the dynamics
of the fractional-order power system in (10), the bifurcation
diagrams with respect to the parameter Pm ∈ [0.95, 1.3] are
shown in Figure 7 for two different initial values. Figure 7
shows that the period-doubling bifurcation is the route to
chaos in power system (10) and reveals the existence of two
attractors in the range Pm ∈ [0.961.007]. +e green line
represents a period-1 limit cycle while the magenta line
indicates the existence of a period-2 limit cycle. Moreover,
the two attractors are shown in the phase portrait plot given
in Figure 8.

+e coexistence of attractors in nonlinear systems often
appears for the same parameter values with different initial
conditions, which presents a striking and interesting char-
acteristic of a multistable system. +e existence of a switch
“jump”motion from period-1 to period-2 can be observed in
Figure 7 due to the effect of the nonsmooth wind-up limiter.
+e limiter has another interesting and challenging effect on
the dynamical behavior of the power system that can be
revealed by changing the slope of the limiter, where in-
creasing the gain of the linear part of the limiter strengthens
the coexistences of the multistability and induces chaos in
fractional-order power system (10). Figure 9 shows the bi-
furcation diagram of fractional-order power system (10)
with limiter linear region gain equal to 10 for two different
initial values. It is clear that the slope increase stretches the
chaos behavior to a wider range of Pm. Moreover, Figure 9
illustrates the multistability phenomena where a single-band
chaotic attractor and limit cycle attractors coexist for
Pm ∈ [1.060, 1.108]. +e phase portrait of system (10) for Pm

in this range is shown in Figure 10. +is confirms that the

Complexity 5



nonsmooth wind-up limiter has a great effect on the system
dynamics not only by inducing chaos but also by changing
the nature of the coexisting attractors. From all the afore-
mentioned dynamics and results, it is important to find an
appropriate method to damp out the power system chaotic
oscillation and control the multistability to enhance the
system performance and stabilize the fractional-order power
system. In the following section, the fractional-order linear
augmentation control method will be presented. To the best
of the authors’ knowledge, this is the first time to use this
method in fractional-order sense.

D
q
X � F(X) + μZ,

D
q
Z � −σZ − μ(X − B),

 (16)

4. NovelFractional-OrderLinearAugmentation
Control Method

+e main goal of the power system control is to damp out
power oscillations that occur upon perturbations such as
sudden change of loads or in the event of short-circuit
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Figure 3: Phase portraits of chaotic fractional-order four-dimensional power system (10) for different projections.

0

-100

-200

-300

0.25
0.2

0.15
0.1

0.05
0

Po
w

er
 (d

B/
H

z)
f 2/

fs

f/fs

Power Spectral Density

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

f1/fs
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Bicoherence

Figure 4: Power spectral density and the bicoherence for fractional-order power system (10).

6 Complexity



occurrence.+ese oscillations hamper power flow drastically
and may cause an inability to meet power demand or even
loss of synchronism that may eventually lead, in the worst
case, to blackouts.

Based on the theory of linear augmentation control
method [34, 35], this section presents the generalization and
extension of this method to handle the fractional-order
nonlinear system. +e new proposed fractional-order linear
augmentation control method is based on coupling the
fractional-order nonlinear dynamical system to another
fractional-order linear system (Z). +en, by varying the
coupling strength between the two fractional-order systems,
the control objective can be achieved. +e controlled system

can be defined as follows.where DqX � F(X) is a general
incommensurate fractional-order nonlinear dynamical
system, X is an m-dimensional vector of dynamical vari-
ables, and F(X) is its vector field.+e parameter μ represents
the coupling strength between the fractional-order non-
linear oscillator and the fractional-order linear control
system. +e vector Z describes the dynamics of the frac-
tional-order linear system DqZ � −σZ, where σ exemplifies
the decay parameter. In case of no coupling μ � 0, the
fractional-order linear system approaches exponentially to
zero with decaying rate equal to σ. To prove the previous
statement, Lemma 1 [36] will be employed along with
+eorem 1 to prove the asymptotic stability of the fractional-
order linear augmentation system.
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Figure 5: Time series responses for fractional-order power system (10) with q1 � q2 � 1 and different values for q3 and q4 as shown in the
figure legends.
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Lemma 1. Let z(t) ∈ R be a continuous and derivable
function. .en, for any time instant t≥ 0,

1
2

C
t0

D
q
t z

2
(t)⩽ z(t)

C
t0

D
q
t z(t), ∀q ∈ (0, 1). (17)

Proof. Proving that expression (17) is true is equivalent to
proving that

z(t)
C
t0

D
q
t z(t) −

1
2

C
t0

D
q
t z

2
(t)⩾ 0, ∀q ∈ (0, 1), (18)

and it can be written as

C
t0

D
q
t z(t) �

1
Γ(1 − q)


t

t0

_z(τ)

(t − τ)
q dτ, (19)

and in the same way,

1
2

C
t0

D
q
t z

2
(t) �

1
Γ(1 − q)


t

t0

z(τ) _z(τ)

(t − τ)
q dτ. (20)

So, expression (18) can be written as

1
Γ(1 − q)


t

t0

[z(t) − z(τ)] _z(τ)

(t − τ)
q dτ ⩾ 0. (21)

Define the auxiliary variable as y(τ) � z(t) − z(τ),
which implies that y′(τ) � dy(τ)/dτ � −dz(τ)/dτ. In this
way, expression (21) can be written as

1
Γ(1 − q)


t

t0

y(τ)y′(τ)

(t − τ)
q dτ ⩽ 0. (22)

Let us integrate by parts expression (22) defining

du � y(τ)y′(τ)dτ, u �
1
2
y
2
,

v �
1
Γ(1 − q)

(t − τ)
−q

, dv �
q

Γ(1 − q)
(t − τ)

− q−1
.

(23)

In that way, expression (22) can be written as

−
y2(τ)

2Γ(1 − q)(t − τ)q |τ�t +
y
2
0

2Γ(1 − q) t − t0( 
q 

+
q

2Γ(1 − q)


t

t0

y
2
(τ)

(t − τ)
q+1 dτ ⩾ 0.

(24)

Let us check the first term of expression (24), which has
an indetermination at τ � t, so let us analyze the corre-
sponding limit.

-8

-6

-4

-2

0

2

4

6

8

IC1
IC2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

×10-3

ω

δ

Figure 8: Phase portrait for fractional-order power system (10) at
Pm � 0.956 under two different initial conditions.
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lim
τ⟶t

y
2
(τ)

2Γ(1 − q)(t − τ)
q

�
1

2Γ(1 − q)
lim
τ⟶t

[z(t) − z(τ)]
2

(t − τ)
q

�
1

2Γ(1 − q)
lim
τ⟶t

z
2
(t) − 2z(t)z(τ) + z

2
(τ) 

(t − τ)
q .

(25)

Given that the function is derivable, L’Hospital’s rule can
be applied. +en,

1
2Γ(1 − q)

lim
τ⟶t

z
2
(t) − 2z(t)z(τ) + z

2
(τ) 

(t − τ)
q

�
1

2Γ(1 − q)
lim
τ⟶t

[−2z(t) _z(τ) + 2z(τ) _z(τ)]

−q(t −τ)
q−1

�
1

2Γ(1 − q)
lim
τ⟶t

[2z(t) _z(τ) − 2z(τ) _z(τ)](t − τ)
1−q

q

� 0.

(26)

So, expression (24) is reduced to

y
2
0

2Γ(1 − q) t − t0( 
q +

q

2Γ(1 − q)


t

t0

y
2
(τ)

(t − τ)
q+1 dτ ⩾ 0.

(27)

Expression (27) is clearly true, and this concludes the
proof. □

Theorem 1. Consider the following fractional-order system,
with 0< q< 1; then, the system is asymptotically stable.

C
t0

D
q
t z(t) � −z(t). (28)

Proof. Let us consider the following Lyapunov candidate:

V(z(t)) �
1
2
z
2
(t). (29)

Now, applying Lemma 1, it can be found that

C
0 D

q
t V(z(t)) �

1
2

C
0 D

q
t z

2
(t)

≤ z(t)
C
0 D

q
t z(t)

≤ z(t)
C
0 D

q
t z(t)

� −z
2
(t).

(30)

As can be seen from (30), the fractional derivative of the
Lyapunov function is negative definite, so it can be con-
cluded that the origin of the system (28) is asymptotically
stable.

Now, turn back to the choice of the parameter B, which
has a very significant role in affecting the desired attractor
from the multistable system. B value can be selected as a

constant in the vicinity of the prescribed state. Usually,
invariant characteristics of the system such as equilibrium
points around which the desired attractor is located are
preferred. In the special case of hidden attractors in which
the attractors are not located in the neighborhood of fixed
points, B can be considered as the average of the system’s
variables (i.e., B � tXt) [23].+e control strategy described
is now applied to the fractional-order power system. +e
coupling is introduced along the ω variable with the cou-
pling strength μ, and Z � [0, z, 0, 0]T and B � [0, β, 0, 0]T,
where T indicates the transpose. +e full controlled system
dynamics are described in the following equation:

D
q1δ � 2πf0ω,

D
q2ω � −

1
2H

Dω − Pm +
E′V0

x + xd
′
sin δ  + μz,

D
q2z � −σz − μ(ω − β)

D
q3E′ �

1
Td0′

−
xd + x

xd
′ + x

E′ +
xd − xd
′

xd
′ + x

V0 cos δ

+ Efd

D
q4Efdr �

1
TA

−KA V − Vref(  − Efdr − Efd0(  .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Owing to this approach, to synthesize the chaos sup-
pression, it is not necessary to control all the states of the
model, but it becomes possible to quench the chaos using
single scalar coupling. +is has the advantage of optimi-
zation for resources, when compared with other works in
this field, for example, but not limited to [19, 37, 38], where
there is a control term for each state in the model to achieve
the chaos suppression in the power system. Except for the
linear augmentation method, in almost all other existing
chaos control methods, the control is applied to one pa-
rameter of the system or to the system variable. But gen-
erally, it may not be possible to modify the system
parameters to remove one of the attractors for all initial
conditions. Hence, external control such as the linear
augmentation method would be preferred [39].

+e results of applying the fractional-order control
scheme on the power system are depicted by the bifurcation
diagrams in Figure 11 when varying the coupling strength μ
in the range [0, 5]. Figure 11 shows the transition from
chaotic oscillation to monostability behavior at a higher
value of the coupling strength parameter. Moreover, it can
be observed from Figure 11 that the controlled fractional-
order linear augmentation power system (31) takes an in-
verse period halving exit from the chaotic region, and the
angle amplitude reduced significantly for higher value of the
coupling strength parameter μ.

To further investigate the proposed control method, the
results of implementing the controller at different cases are
presented in Figures 12 and 13. Figure 12 shows the
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time-domain waveform of state variables of the power system
under the proposed controller when it has been applied at the
beginning of the simulation at t � 0 (s). On the other hand,
the view of the time-domain waveform of state variables of
the power system is shown in Figure 13, when the controller

is put into effect at an arbitrary time while the system is in
chaotic oscillation state. +e two scenarios illustrated the
ability of the proposed fractional-order linear augmen-
tation control strategy to reduce the amplitude of the
chaotic oscillation, drive system states to their prescribed
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μ

Figure 11: Bifurcation diagram for the controlled fractional-order power system (31) by varying the coupling strength parameter μ.
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Figure 12: Time series responses for controlled fractional-order power system (31) with control in action at t � 0 (s).
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steady-state operating point, and stabilize the whole
controlled dynamics of the fractional-order power system.
In other words, the proposed controller has good ro-
bustness throughout the entire process and achieves the
desired control objectives.

5. Conclusion

+e rich dynamics of a fractional-order power system are
investigated in the current paper by varying different system
parameters. Based on nonlinear dynamic analysis methods,
the rich chaotic behaviors of the power system are inves-
tigated and depicted through equilibrium points, power
spectral density, bicoherence, bifurcation diagrams, and
phase portraits. +e derived numerical analysis results are
very helpful and worthy in understanding the system be-
havior. +e multistability phenomenon and coexisting pe-
riodic/chaotic attractors in the nonlinear fractional-order
power system dynamics are revealed for the same system
parameters. +is represents an interesting and a challenging
phenomenon for stability notion and should be seriously
considered in control design methodology. A new frac-
tional-order linear augmentation controller is constructed to
stabilize unstable states, suppress chaotic oscillation be-
havior, and achieve monostability for the power system’s
closed-loop dynamics. +e Lyapunov method has been
exploited to prove the stability of the suggested control
strategy. Numerical simulations confirmed the effectiveness
of the designed controller in suppressing the chaotic os-
cillation and achieving the desired objectives in different
situations.

Appendix

A. System Parameters

f0

H � 5,

V0 � 1,

Pm � 1.3,

xd
′ � 0.4,

x � 0.5,

Td0′ � 10,

xd � 1,

Ka � 190,

Vref � 1.05,

Efdrmin
� 0,

Efdrmax
� 5,

Efd0 � 2.

(A.1)

Data Availability

All the numerical simulation parameters are mentioned in
the respective text part, and there are no additional data
requirements for the simulation results.
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discretization methods for fractional-order differentiator/
integrator,” Journal of the Franklin Institute, vol. 340, no. 5,
pp. 349–362, 2003.
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