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Cognitive searching optimization is a subconscious mental phenomenon in decision making. Aroused by exploiting accessible
human action, alleviating inefficient decision and shrinking searching space remain challenges for optimizing the solution space.
Multiple decision estimation and the jumpy decision transition interval are two of the cross-impact factors resulting in variation of
decision paths. To optimize the searching process of decision solution space, we propose a semi-Markov jump cognitive decision
method in which a searching contraction index bridges correlation from the time dimension and depth dimension. With the
change state and transition interval, the semi-Markov property can obtain the action by limiting the decision solution to the
specified range. From the decision depth, bootstrap re-sampling utilizes mental rehearsal iteration to update the transition
probability. In addition, dynamical decision boundary by the interaction process limits the admissible decisions. +rough the
flight simulation, we show that proposed index and reward vary with the transition decision steps and mental rehearsal fre-
quencies. In conclusion, this decision-making method integrates the multistep transition and mental rehearsal on semi-Markov
jump decision process, opening a route to the multiple dimension optimization of cognitive interaction.

1. Introduction

+e human-computer cognitive interaction (HC2I) process
can be embodied to analyze human factors, interactive
performance, and decision uncertainty. In terms of decision
making, the decision solution space constructed by the
estimation and searching for the solution path is under effect
with the uncertainty of human decision [1]. In the HC2I
process, the chronologically ordered decision path based on
human experience is composed of each decision action step
which is uniquely determined under the estimation of the
future decision path. From a prior perspective, due to the
influence of decision jumpy intervals and the multiple es-
timation of decision paths, there are infinite possibilities
while deciding the decision path from its solution space. It is
necessary to reduce the impact of the exploration of solu-
tions on the efficiency of decision making. In the optimi-
zation of the cognitive searching, human’s high-level control
hierarchy makes preparations for upcoming decision before

people realize it [2]. When exploring the decision solution
space, searching contraction optimization is used to show
that people have subconsciously eliminated some decision
paths that would not actually be made.

In order to analyze decision behaviors, human perfor-
mance modeling (HPM) has been researched in the last few
decades [3]. HPM tends to demonstrate the interactive
relations through designing different inner structures. It
evolves from the broad symbolism cybernetic approaches [4]
to the new stage of computational rational modeling [5],
involving human cognitive behavior at various decision
hierarchies. Similar to the non-homogeneous sequential
model, decisions are continuously generated in the chro-
nological order. +rough depicting the potentially possible
distribution caused by differentiation structures, HPM es-
sentially contracts and prunes the immense decision se-
quence formed by rehearsal.

Similar to the human-like behavior, multistep decision is
mutually influenced during the periods rather than the
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instant moment. +e Markov property, strengthening the
correlation in decision path, constricts that the selection of
action elements is only relevant to the decision adopted at
the previous moment. Based on the Markov decision
principle, the policy iteration method calculates the one-step
reward value by introducing the state of decision object to
computation [6]. However, existing physical obstruction
makes humans unable to access state parameters without
sensor measurement in the interaction environment, which
causes unavoidable deviation. To cover this shortage, the
partially observable Markov decision method uses interac-
tive object state as an uncertain estimation of observable
state set, which also is the main difference from the ob-
servable state Markov decision method [7]. Another com-
pletely unobservable method named hidden Markov
decision analyzes human cognitive behaviors through the
state of the interactive object (such as machine). In the
aforementioned methods, there exist similar deficiencies on
depicting the transition state interval and calculating reward
value in a locality. +erefore, the variant intervals and re-
ward value combined by history decision steps and future
decision steps are crucial.

On the other hand, adjacent action which lacks mutual
influence is a shortcoming for Markov property [8]. It leads
to being short of tightness interference in human-like de-
cisions. Different from the single-state inference in Markov
process, the semi-Markov decision focuses on the cross-
correlation of transition interval, even though the transition
state is not ergodic and innumerable. Its state is jumpy and
changeable accompanying with the decision process.

In this paper, a semi-Markov jump decision method is
proposed to optimize the human cognitive searching deci-
sion path through the multistep transition part and mental
rehearsal part in a specified airplane pilot interaction sce-
nario. We define a searching contraction index to represent
the coverage degree. +e coverage degree refers to a ratio
between decision behaviors chosen subconscious and all
accessible decision behaviors. For a more general situation,
the semi-Markov decision process overcomes the restriction
by adopting the time-varying transition rate. +us, the so-
journ time between each mode can be of any non-expo-
nential distribution. Besides, the human making decision is
different from a fixed step decision controller. +e time
interval in sequential decision is not a constant and is ar-
bitrary. In addition, it cannot be modeled by noise like
exponential distribution which obeys the Markov transition
law. We consider the semi-Markov process and human-
centered reinforcement Q-learning to realize the estimated
decision solution. Depending on the state of inconsistent
transition interval, the composition decision step accom-
plishes making decisions. As the core of decisionmaking, the
dynamical transition probability motivates state transition
and action adopted. +e bootstrap re-sampling frequency
can abstract the mental rehearsal process by re-screening the
transition probability. Finally, decision boundary influenced
by the interactive object constricts the final human decision.
Figure 1 briefly shows above compounding relation. To
summarize, this paper puts forward the following four
contributions:

(i) A semi-Markov jump cognitive decision method is
proposed to evaluate the dynamical cognitive in-
teraction process. Our method integrates the semi-
Markov decision transition interval, the multiple
decision path estimation, and the changeable de-
cision solution space for jump state.

(ii) +e transition interval and sojourn time, which are
of vital importance characteristics, have been
preferably reflected in our method. By adding
mental rehearsal property, our method addresses
the reduction of infinite-dimensional decision so-
lution space and forward advances the dimension
deduction to a smaller range.

(iii) An introduced index named searching contraction
can efficiently reflect cognitive computation ability
of human while exploring the decision solution
space.

(iv) Our method incorporates the relation in decision
time and depth, conforming to the human being’s
logic of deciding and the property of transition state
jumpy property.

+e rest of the paper is organized as follows. Section 2
briefly describes the related works about multistep transi-
tion, mental rehearsal, and dynamical searching dimension
in decision. Section 3 and Section 4 emphasize the specific
problem and illustrate how our decision method is built for
decision making. Section 5 and Section 6 detail the exper-
iments and the integral analysis of this model, including its
shortcomings, and the future directions in this area. Section
7 summarizes this paper.

2. Related Work

2.1. Multistep Transition. +e multistep transition happen-
ing in the decision making has been developed with many
methods [9], such as reinforcement learning [10], utility
selection theory [11], and networked control system [12].
Compared to the continuously accumulated and improved
process, the common decision framework is to obtain an
optimal decision strategy via the feedback effect [13] and
evaluate the potential outcome values caused by events when
decision is formulated by the feedback loop design [14].
Focusing on cognitive analysis, Yanco and Drury [15]
modified a taxonomy of multiagent systems and treated the
human-computer interactions as a process of two hetero-
geneous agent interactions. Moratz et al. [16] experimented
with a comparison test between human-robot and human-
human to illustrate the difference in spatial features. +e
comparative trials implicitly revealed that the complexity of
cognitive space plays a prominent role in the interaction
process. From the view of multiple timescales, such as
cognition and decision, Purcell and Kiani [17] designed a
hierarchy of multistep transition decision on processes to
disambiguate the detrimental factors such as flawed infor-
mation. All of the above works mainly focused on the
differences between human and robot as the autonomous
agent. +ey considered human as uncertain and non-
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monotonous agent by adding the stochastic-dynamic
transition interval which accords with exponential distri-
bution. Wu et al. [18] added the transition time restriction
into the semi-Markov model while its finite system state was
limited into the noninteractive modal. To the best of our
knowledge, the non-exponential distribution of transition
interval which can be used into cognitive decision making
has received limited effort so far. Decision interval of
Markov jumping provides a more general way to describe
the multistep transition for cognitive decision.

2.2. Mental Rehearsal. Mental rehearsal, also known as
mental simulation, is one of the cognitive strategies [19].
+is strategy takes future action-practice without outer
observed physical performance. In the typical task, it is
regarded as one of the efficient methods to improve the
decision performance of the psychomotor and sport. For
example, Miranda et al. [20] used mental rehearsal to de-
crease depressive predictive certainty, which showed the
gains in making optimistic predictions. Ignacio et al. [21]
proposed that different health disciplines can utilize mental
rehearsal strategy as a part of clinical training. Su et al. [22]
designed incremental deep convolutional neural network
process to demonstrate the human-like learning behavior.
Moreover, researchers analyzed its different effects on the
user’s learning decision in the theory of working memory
[23]. As a computational model, Oberauer and Lew-
andowsky [24] designed a time-based resource-sharing
theory to derive unambiguous predictions about the effect of
rehearsal on memory, which is beneficial for differentiating
between varying forms of mental practice. Besides, mental
rehearsal can be analyzed by parameterized formation. To
demonstrate the advantage of rehearsal, Mazher et al. [25]
found that rehearsal was beneficial for memorized long-term

learning by discriminating the learning decision states using
electroencephalography.

2.3. Dynamical Decision Dimension.
Exploration-exploitation related to the dynamical decision
dimension is a crucial aspect, especially for searching the
feasible solutions [26]. +e dimensional optimization
method connects with the decision-making property such as
the non-Markovian property [27], which is used to describe
the cross-influence between different decision states. To
reduce the dimension of decision searching, Engel et al. [28]
considered the stochastic jumpy interval in human cognitive
decision behaviors and handled it with a linearity weighted
logic according to monotonically increased time [29]. To get
the global optimal solution, the brute-force calculation
method is used. But it is easily trapped into the plight to
search the space in finite polynomial time, especially under
the non-convex issues. Some proposed optimal algorithms
such as best proximity points [30] and particle swarm op-
timization [31] were applied to evade the non-convex dif-
ficulties. However, there still exists an enormous gap
between human physical simulation and computational
simulation like emotions [32]. +e state caused by human
action is discretely jumpy rather than the inflexible inference
from a fixed step to another. In addition, the uncertain
human factors enlarge the difficulty covering decision so-
lution space of all accessible scenes [33].

3. Problem Formulation

+e HC2I process is able to give people insight into and
observe the state information from the interactive machine
object. According to the state obtained by observation and
the state of the historical decision path, people make new
decision in limited period. Although related work provides
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Figure 1: Semi-Markov jump decision in one kind of HC2I process. +e searching contraction ratio decreases with the decision time
increasing. +e ratio is calculated by different decision possibilities. +e state is jumpy and changeable with time. Parts A and B show the
mental rehearsal and multistep transition happening at one specified decision state. We use the vertical axes to represent mental rehearsal. It
constructs the decision dimension together with the multistep decision.
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state of the art in terms of multistep decision, mental re-
hearsal, and dynamical decision dimension, existing
methods cannot optimize the cognitive decision searching
from dimension of time and depth. +e current methods
implicitly contain a flaw that the process of searching de-
cision solution space depends on the partial history infor-
mation. Limited to the single sample estimation, evaluation
of decision also leads to losing the unbiasedness of decision.
Additionally, cognitive searching optimization is involved
with the human cognitive properties which have not been
fully used in historical research, such as jumpy decision
interval and multiple decision path estimation. +erefore,
the problem in our work is to optimize the decision reward
R, generate efficient decision path b, increase the searching
contraction ratio μ, and stabilize the decision solution space
scope under the two human cognitive characteristics. We
design a semi-Markov jump decision method using the
hierarchical transition probability optimization from the
different step lengths of multistep transition and mental
rehearsal frequency. First, we design the semi-Markov
process and reinforcement Q-learning to form the multistep
transition on the basis of history fragment strategies and
subjective estimation about future’s expectation feedback.
+en, we build the mental rehearsal optimization based on
bootstrap re-sampling, which plays an essential role for
human’s subconscious simulation and optimizes transition
probability. Besides, the decision space boundary ensures
that decision admissible is developed.

4. Semi-Markov Jump Decision Method

In this section, we show the semi-Markov jump decision
method for cognitive searching optimization. As shown in
Figure 2, the interior of method can be divided into two
hierarchies. +e first hierarchy indicates the targeted decision
inference block. During the decision process, this block limits
the interaction target domain and illustrates the maximum-
minimum reward for the decision process. +e second hi-
erarchy determines searching contraction block by estimating
transition distribution. Human decision memory is not
amnesic instantly once action completed while considering
non-Markov property [34]. It implicitly indicates that deci-
sion making does not rely on a point but a fragment. Here we
use block of semi-Markov process and human-centered re-
inforcement Q-learning decision maker to estimate the de-
cision state on the limited length fragment, which is capable of
jumpy transition interval belonging to non-exponential dis-
tribution. +e bootstrap re-sampling controller block is
designed to explore the optimal transition probability for the
human mental rehearsal. Depending on flight phase, decision
space boundary block limits decision to admissible scope for
decision inference and flight dynamics. Besides, airplane flight
simulating block receives the observable airplane state in-
formation from space N∗, whereas it handles executable
action parameters from the block of decision inference target.

4.1. Targeted Decision Inference on Receding Horizon. +e
whole cognitive interaction is defined in the HC2I space N.

Interior of decision method is defined in decision solution
space N∗. Also, we define the inner bootstrap space as re-
sampling with replaceable space N†, which is a subset of
spaceN∗. Similar to a sliding surface forcing the system state
in semi-Markov jump system [35], the targeted decision
inference is addressed on receding horizon. In space N, the
aimless interaction decision is excluded in the scope of
paper. We assume that the HC2I process has preassigned
target setΘ where its elements relate to machine (computer)
state at each decision π. +e constrained loss function is
given below, which is similar to a filter using energy
comprehensive index to get the optimal decision trail Π
under the specified target.

􏽙
π∗∈Π

argmax
θ1

argmin
θ2

F π|Eτ∼p
ϕ
θ(τ)

Rtotal(π)􏼂 􏼃􏼒 􏼓, (1)

where

p
ϕ
θ(π) � μ s0( 􏼁 􏽙

T− 1

t�1
pϕ at+1( 􏼁πθ at, st( 􏼁, (2a)

pϕ at+1( 􏼁 � P aj+1|a1, a2, . . . , aj􏼐 􏼑

� P aj+1|aj− i, aj− (i− 1), . . . , aj− 1, aj􏼐 􏼑, i≥ 1, j � t,

(2b)

πθ at, st( 􏼁 � sup π � x
∗
|ϵ∗ x
∗
, Fn( 􏼁 � 􏽢θ f

∗
n( 􏼁 − θ fn( 􏼁􏽮 􏽯,

(2c)

where R represents the synthesis reward function decided
by decision process; it minimizes the energy consumed by
interaction of cognitive and gets a sequence maximizing the
computer performance while the decision π follows distri-
bution of trajectory density function parameterized by both
transition probability and stochastic error factor. pϕ(at+1)

states that the HC2I process of is capable of semi-Markov
factor θ1. Also, both the temporal fragment factor and jumpy
factor make contribution and intervention in process.
πθ(at, st) states that mental rehearsal factor θ1 contributes to
the decision. We need to get the optimal policy under the
minimum condition θ2 to ascertain the maximum θ1. θ1
denotes the maximum value πθ(at, st) process. θ2 relates to
the minimum of smaller worst cost functionR. At each time
step t, the agent is in state st ∈ S and must choose an action
at ∈ A, transitioning it to a new state st+1 P(st+1|st, at) and
yielding a reward R(st, at). A policy π: S × A⟶ [0, 1] is
defined as a probability distribution over state-action pairs,
where π(at|st) represents the density of selecting action at in
state st. Upon consequent interactions with the environ-
ment, the agent collects a trajectory τ of state-action pairs.
+e goal is to determine an optimal policy π∗ by this loss
function.

Besides, the constrained loss function satisfies two implicitly
postulated conditions.+e first condition indicates that the step
number of decision is limited. It shows that the cognitive in-
teraction exists in a terminal state. Also, the solution space is
bounded by the environment tasks. +e second assumption
explains that the computer or machine state pattern is similar
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during this trail process, and it assures that the process can be
properly classified into several stages.

4.2. Semi-Markov Process and Human-Centered Q-Learning
DecisionMaker forMultistep Transition. Decision maker KΔ
is composed of a hybrid semi-Markov process with the
forward human-centered Q-learning estimation. To deter-
mine Q parameter in Bk[Q]〈si, ai〉 for equation (19), we
consider composite decision maker KΔ by the semi-Markov
process and human-centered Q-learning. +e former takes
jumpy property and sojourn time of decision interval into
consideration by the semi-Markov process, while the latter

calculates future predictive estimation inN†. Figure 3 shows
the sketch of this part.

+e sampled discrete state trail (specified value k) of state-
action pair is Strail ≜ S0, S1, . . . , St, . . . , Sn􏼈 􏼉. Subscript n is the
number of state elements in trail. It is hidden left part of b∗ from
start of decision process.+e action ai is chosen from the action
set. We define A as A≜ a1, a2, . . . , a‖m‖􏼈 􏼉, where m is the
number of admissible control elements in decision πt. O �

o0, o1, o2, . . . , ov􏼈 􏼉 is observable state variable from process 􏽢Mt

and its subscript v is dimension for sl
t when l refers to 􏽢Mt. Based

on the Markov property P Xt � y|Xr, 0≤􏼈 r≤ s} �

P Xt � y|Xs􏼈 􏼉 and jumpy transition probability

Q,b
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θ(τ)= µ (s0)πT-1
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πθ ∈ {u∗=arg supt∈at H (t,S,sl
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Figure 2:+e architecture of semi-Markov jump decision method.+emultistep transition andmental rehearsal are represented separately
by the decision maker KΔ and bootstrap re-sampling controller KΛ in the bottom block. It receives the probability j

t and calculates b and Q

for searching contraction block. +e airplane model block receives different control parameters from human decision making and outputs
the observable state sl�2

t . +e decision space boundary calculates the admissible control scope for the final decision judgment.
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P Xt+δt � x|Xt � y􏼈 􏼉 � α(y, x)δt + o (δt), y≠x, the follow-
ing functions state the semi-Markov relation between adjacent
states si. Here, Xt is the stochastic process, α(x, y) denotes the
jumpy transfer rate from state x to adjacent state y, δt is the
decision interval following the non-exponential distribution,
and o(δt) denotes a high-order stochastic variable which is
small.

p st|〈st− 1, at− 1〉, . . . , 〈s0, a0〉( 􏼁

� p st|〈st− 1, at− 1〉, . . . , 〈st− step
, at− step
〉􏼒 􏼓,

(3a)

p st|〈st− 1, at− 1〉( 􏼁 � α st, st− 1( 􏼁δt + o(Δt), (3b)

􏽘
S

􏽘
〈st,at〉

p st|∪ 〈st− 1, at− 1〉, . . . , 〈st− Sstep
, at− Sstep
〉􏼚 􏼛􏼒 􏼓 � 1.

(3c)

In spaceN†, the quadruple (S, A, O, T) is the composite of
elements in observable semi-Markov discrete process Mt. T �

[0,∞) and t is discrete Lebesgue additive on themeasure μ.+e
state transition is denoted as operation F: O × S⟶A S′(π);
then, the observable state ot is from rigorous time homogeneous
continuous Markov process 􏽢Mt whose tuple form is (􏽢S, 􏽢A, T)

and 􏽢F: 􏽢S × 􏽢A⟶ 􏽢S′(􏽢π). According to m, dimension of action
set at is dynamically changeable under the updating transition
probability p. For 􏽢Mt process, the element of action set 􏽢A is the
same as A and it receives the decision ai from Mt. When a new
decision is determined by Mt, at will be transmitted to 􏽢Mt+1
after the correction v(·). v(·) is normal distribution represented
by the transition error.Herewe assume that 􏽢Mt does not exhibit
parameter drift such as time delay factor. We write the actual
action set form A and 􏽢A as

At � A p(·|t)|st( 􏼁 � a
1
, a

2
, . . . , a

m′􏽨 􏽩, m′∈ [1, m], (4a)

􏽢At � v At( 􏼁 � 􏽢a
1
t , 􏽢a

2
t , . . . , 􏽢a

m′
t􏼔 􏼕. (4b)

+e accumulated state S and indicator state 􏽢S are cal-
culated from state in the Mt and 􏽢Mt. +erein, semi-Markov
process Mt follows the non-exponential distribution sojourn
time Δt but 􏽢Mt is continuous without sojourn time. We
estimate it by the interval information entropy. Here w(at− 1)

is the weight coefficient of action, and superscript r′ is the
observable state dimension in 􏽢Mt.

St � diag st, o 􏽢st( 􏼁􏼂 􏼃, st � 􏽘
m

1
w At− 1( 􏼁a

m′
t− 1 , (5a)

􏽢St � 􏽢st � 􏽢s
1
t ,􏽢s

2
t , . . . ,􏽢s

r′
t􏼔 􏼕. (5b)

Also, the semi-Markov process Mt within human and
regular Markov process 􏽢Mt within machine (computer)
happen synchronously, while the former is discrete and the
latter is continuous. +erefore, the intervention relations
between Mt and 􏽢Mt can be represented as follows. Here ξ, ζ
is the error variable that follows normal distribution.
Δ􏽣Mt,ΔMt separately indicate the continuous and discrete
interval period from different processes.

dS � d􏽢S + ξ + O(􏽢S)Δ􏽣Mt, (6a)

dA � d􏽢A + ζ + O(􏽢A)ΔMt. (6b)

For regular Markov process 􏽣Mt, the expectation per-
formance E(􏽣Mt) is obtained at decision πt. According to
Doeblin lemma [36], let 􏽢P be a transition probability matrix:
∀i ∈N†, (P)ij0

≥ ε when j0 ∈ S and ε> 0, there exists only
stationary probability vector (π)j0

≥ ε in P, and for all initial
distribution μ, ‖μPn − π‖v ≤ 2(1 − ε)n, n≥ 0. +is lemma
presents that the amnesic initial of distribution exists in 􏽣Mt.
On the other hand, the expectation performance E(Mt) is an
accumulated reward about state St ∈ S. It is a continuous
additive from the initial of history consideration step to the
current decision time, including jumpy transition interval
and decision action time that follows normal distribution.
Let R−

t (ξ) � t − τNt
(ξ),R+

t (ξ) � τNt+1
(ξ) − t where Nt(ξ) �

sup n: τn(ξ)≤ t􏼈 􏼉 is the number of jumps for function ξ up to
a time t. +en, probability kernel function of the semi-
Markov process is

Px R
−
t ≥ r, R

+
t ≥ s, Xt ∈ S( 􏼁 � 􏽘

∞

k�0
Px Xtn
∈ A, τn ≤ t − r, τn+1 ≥ t + s􏼐 􏼑

�
n⟶∞

􏽚
t− r

0
􏽚

S
Px1

τ1 > t + 2 − s1( 􏼁U x, ds1 × dx1( 􏼁,

(7)

where U(x, [0, t] × S) � 􏽐
∞
k�0 Px(τn ≤ t, Xτn

∈ S). Px is a
measure of intensity of random point field for fixed x.

Assuming that N(B × S) � 􏽐
∞
n�0 IB×S(τn, Sn) represent the

number of discontinuity pairs belonging to a set

... T-2 Δ T-1 Δ T Δ T+1 Δ T+2 Δ T+3 ...
history consideration future estimation

t′t

compound decision step → {Sstep,Qstep}

Receding
Horizon

QstepSstep

Figure 3: Semi-Markov process and human-centered Q-learning
decision maker KΔ for synthesis consideration. +e figure shows
how history consideration decision and future estimation decision
make effect together on the time series names as receding horizon.
Interval time Δ is jumpy transition between accord with the non-
exponential distribution.
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B × S(B ∈B((R)+), S ∈B((S)), we have expectation
E(Mt).

Ex(N(B × S)) � 􏽘
∞

n�0
Ex IB×S τn, Xn( 􏼁( 􏼁

� 􏽘
∞

n�0
Px τn ∈ B, Xτn

∈ S􏼐 􏼑 � U(x, B × S),

E Mt( 􏼁 � Ex�tn
Nt(ξ), R

−
t (ξ), α( 􏼁

� 􏽚
max

min
e

− δt
Px�tn

R
−
t ≥ r, R

+
t ≥ s, Xt ∈ S( 􏼁

� E M t− Sstep( )􏼒 􏼓 + 􏽚
t

t− Sstep

1
H

E st|π( 􏼁,

(8)

where π is history decision determined and
H ≡ supiRi � supi(− (αii)). In the multistep decision pro-
cess, humans anticipate fuzzy assessment before making the
decision [37]. Next, we use human-centered reinforcement
Q-learning to estimate accumulated feedback and the
maximized performance as the transition probability in
short future period Qstep.

b|b � π1, π2, . . . , πn􏼈 􏼉 denotes the optimization limited
trail for future perdition decision sequences, and subscript
n � Qstep is predicted future decision step length. Given a
future estimation process X: xk􏼈 􏼉 ⊂N†, which is right
continuous part of b, we write performance index as
Qn � 􏽐

k�n
k�0V(xk, ak). Bellman optimal theory [38] illustrates

that optimal decision sequence can be divided into several
blocks staying in optimal state space. It makes sure the
sufficiency for division of b. According to Bellman optimal
theory, we derive Qn to Q∗n � minu0

[V(x0, u0) + Q∗n− 1] [39].

V
π
T(x) � Eπ

1
T

r1 +
T − 1

T

1
T − 1

􏽘

T

t�2
rt|x0 � x⎡⎣ ⎤⎦

� 􏽘
a∈A

π(x, a) 􏽘
x′∈X
ϵax⟶ x′

1
T

R
a
x⟶ x′+

T − 1
T

Eπ
1

T − 1
􏽘

T− 1

t�1
rt|x0 � x′⎡⎣ ⎤⎦⎛⎝ ⎞⎠

� 􏽘
a∈A

π(x, a) 􏽘
x′∈X
ϵax⟶ x′

1
T

R
a
x⟶ x′+

T − 1
T

V
π
T− 1 x′( 􏼁􏼒 􏼓,

(9)

where R � 1􏽢St

, ϵ is the exploration ratio, and r is the reward.
To calculate the value function V(xk, ak), we have the fol-
lowing derivations. First, we consider

V
π
T(x) � Eπ

1
T

􏽘

T

t�1
rt|x0 � x⎡⎣ ⎤⎦ � Eπ

1
T

r1 +
1
T

􏽘

T

t�2
rt|x0 � x⎡⎣ ⎤⎦.

(10)

Furthermore, we let Ra
x⟶ x′ to denote r1 and

V
π
T− 1 x′( 􏼁 � Eπ

1
T − 1

􏽘

T− 1

t�1
rt|x0 � x′⎛⎝ ⎞⎠. (11)

+rough the law of total probability expansion, the
operation Eπ(·) is substituted by the following expression:

􏽘
a∈A

π(x, a) 􏽘
x′∈X
ϵax⟶ x′. (12)

+en, we can get the function equality equation (9). 􏽢S is
an indicator function format.

1􏽢St

�
1, for 􏽢S ⊂ Θ∗,

0, for 􏽢S ⊂ Θ∗.

⎧⎨

⎩ (13)

For prediction process X, we assume that discrete time
sequence is equidistance |Tj − Ti| � const. According to the

Bellman equation and formula of total probability, we have
the recurrence accumulated feedback. Also, this predicted
reward will be used to determine optimal transition prob-
ability on space N† in the next section.

Q
π
T(x, a) � E Mt( 􏼁 + 􏽘

x′∈X
ϵax⟶ x′

1
T

R
a
x⟶ x′ +

T − 1
T

V
π
T− 1(x′)􏼒 􏼓.

(14)

4.3. Bootstrap Re-Sampling Controller for Mental Rehearsal.
Bootstrapping was introduced as a flexible method to es-
timate the sampling distribution of an independent obser-
vation function [40]. It takes distribution Fn from sample
data to substitute the global whole data,
R∗(x∗, Fn) � 􏽢θ(F∗n ) − 􏽢θ(Fn), and is useful for estimating of
uncertainty in subspace identification. Figure 4 shows a
segment that describes bootstrap re-sampling training to
search the optimal transition probability where the boot-
strap re-sampling controller KΛ is used to determine the
transition possibility.

We have N† ≜ b1 ∪ b2 ∪ · · · ∪ bk􏼈 􏼉 where the subscript k

stands for the different sample index. To explore the the-
oretically infinite solution decision space N∗, we assume
that its probability distribution function is in accordance
with f(x, θ). For each N†, it stands for a brevity decision
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sequence according to Q-learning estimation introduced in
the next section. We use the limited re-sampling charac-
teristic 􏽢f to represent the global big sampling range.

f < st, at > , b( 􏼁 � 􏽢f < st, at >
∗
, b
∗

( 􏼁. (15)

Here 〈st, at〉 is the state from observed aspect and de-
cision in space N; therein, st ≜ diag(sl�1

t , sl�2
t ). +e subscript

t is the discrete step index in decision sequence. +e su-
perscript l stands for different observed states, such as
human state and machine state.

We assume that transition probability discrete distri-
bution Pr dominates the pair 〈st, at〉 transferring in decision
sequence. To calculate Prt(·|st− 1, at− 1, . . . , at− S)≜
[􏽢p

1
t , p2

t , . . . , p
‖r‖
t ]T, we first set initial probability

Pr0 � [p1
0, p2

0, . . . , p
‖r‖
0 ]T. +e capital subscript S stands for

step length of history consideration decision. +e super-
script ‖r‖ is the account of decision category in that different

kinds of decisions are independently identically distributed.
Next, each probability element is calculated by

p
j
t � g Pr0Prt(s)( 􏼁 � Pr0

􏽐 1
p

j

t

􏽐 p
j
t

. (16)

Here 1pi
j
is an indicator function.

1
p

j

t
�

1, if j ∈ [1, ‖r‖],

0, if j ∈ [1, ‖r‖].
􏼨 (17)

Furthermore, the searched optimal transition probability
group P will be determined for searching contraction Ω. In
bootstrapped sample k for future estimation, reward func-
tion r, which is assumed monotonically increasing as per-
formance improves, is used to compare the accumulated
reward.

B
k
[Q]< st, at >

∗
� max

at− S,...,at

r〈st− S, at− S〉
∗

+ · · · + c
t− 1

r〈st− 1, at− 1〉
∗

+ c
t
Q〈st, at〉

∗
􏽮 􏽯

k
, (18)

where c is damping factor and Q is a Q-learning estimation
from time i. After given the bootstrap sample estimation
value, we derive the transition probability distribution and
get the decision at+1 from the optimal decision trail b∗{ } for
the next decision step. Algorithm 1 shows the compre-
hensive block of searching contraction Ω.

Pk
Q st( 􏼁 � 􏽢b

∗
πi�1

|􏽢b
∗

� argmax
b∗

B
k
[Q]〈st, at〉

∗
􏼚 􏼛. (19)

4.4. Decision Space Boundary for Admissible Decision. +e
decision space boundary block Δ in Figure 2 limits the ac-
cessible decision action set and relies on the airplane flight
dynamic state variables. Based on the observed state sl�2

t ,
admissible decision action at is the subset of action control
scope at � [1t , . . . ,l

′
t]

T. Meanwhile, allowable state space S � 􏽢st

is a hypercube field minV1, maxV1􏼈 􏼉× · · · ×

minVr′ , maxVr′􏼈 􏼉, which will inversely limit the decision
action generated from the searching contraction method. +is
self-triggered policy caused by interaction object contributes to
jumpy updating state and executing action by relying on the
latest sampled state information [41]. In the sequel, we consider
the flight longitudinal dynamic system V model as follows:

_V1 �
1
m

T cos V4( 􏼁 − D V4, V3, δe( 􏼁 − G sin V2( 􏼁

_V2 �
1

mv
T sin V4 + L V4, V3( 􏼁 − G cos V2( 􏼁

_V3 �
M V4, V3, δe( 􏼁

Iy

_V4 � V3 − _V2.

(20)

•

···
···

St+Q

π1 × π2 × · · · × πk

Q (πi,ti)

Ot ≈ St

{π∗

1 × π∗

2 × · · · × π∗

k|t} ← arg max Bk[Q] < st, at >∗}
b
∗

St

Figure 4: Bootstrap re-sampling controller KΛ for transition probability through different mental rehearsal frequencies. +e set of curves
denotes the machine state composed of different mental rehearsal frequencies. Correspondingly, the left part is the human decision between
future estimation step length Q.
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_V1,
_V2,

_V3,
_V4 are the various rates of airspeed, vertical

speed, attack angle, and pitch angular velocity. M(·), Iy is
the rotational inertia, T is the power of airplane, and δe is the
engine mounting angle. We assume that airspeed is ap-
proximately equal to tangential velocity. To get the boundary
block, the Hamilton–Jacobi function is needed to be solved
as follows:

−
zS at, t( 􏼁

zt
� min 0, H

∗
at,

zS at, t( 􏼁

zat

􏼠 􏼡􏼨 􏼩. (21)

+erein H∗ � sup ∇V∗{ }TV(a, sl�2
t ), and the terminal

boundary condition is set as S � min max{ V1 − V1, V1 −

minV1, . . . , maxVr′
− Vr′

, Vr′
− minVr′

}. +en, we can
obtain the effective action u∗ which stays in the scope of
decision space boundary.

u∗ � arg sup
at∈at

H at,S, s
l�2
t􏼐 􏼑. (22)

At each decision time updated, the bounded observable
state S(t, t) will be generated and compared with the
boundary S. Only until the decision π∗ ∈ u∗, π can be
transmitted into airplane simulating block and then the
interaction can be completed. Below, we provide Algo-
rithm 2 for the whole decision inference on the receding
horizon.

5. Experiment and Results

In this section, we present an experimental case and its
results for airplane manipulating scenario. A typical task is
to manually control the aircraft to descend altitude by the
pilot. Some extra tasks are set on the designated altitude.
+ose particular subtasks require pilots to execute special
operations. We apply our method into this experiment case.
Results show that our method reflects the cognitive
searching optimization from searching contraction index.

5.1. Experiment Setting. Table 1 shows the flight altitude
descending stages from 11000 ft to 2000 ft in experiment.
Stages 2, 4, and 6 require the pilot to complete the specific
tasks on specified altitude scope, and stages 1, 3, and 5 are the

normal descending procedures involving basic flight joystick
and throttle control [42]. Table 2 lists the multiresource
channels involved in the experiment. We calculate the sit-
uation channels occupied with equipment to assess the
workload taken by action. Table 3 lists the correlation be-
tween control rules and related equipment. Table 4 points
out that delay in decision process separately represents state
interval time delay and action time delay.We use the Poisson
distribution and normal distribution to represent those two
types of delay. +e Poisson distribution is a non-expo-
nentiation distribution satisfying the semi-Markov property
in the context of continuous time domain. μ and σ stand for
the mean value and variance value, respectively [44, 45].

In experiments, we use the control rule to substitute the
action in traditional decision action set. Each control rule
corresponds to specified control equipment, which is chosen
depending on the interactive process 􏽣Mt. +e number of
actions can be one or more depending on observed states.
+e parameter mean in normal distribution of action time
delay relates to the different equipment. Here we adopt
parameters from the NASA timeline analysis report [46].

5.2. Simulation Results. In order to assess the pilot’s cog-
nitive decision ability, flight performance, human accu-
mulated workload, and the number of manipulations are
three indexes measuring our multistep decision method.
Trends of dynamical dimension in N† show the searching

(1) Initialize α, ϵ, v, δt, and t ∈ T, a ∈ A, s ∈ S

(2) Initialize T, S, A, 􏽢S, Sstep, Qstep
(3) repeat
(4) Calculate history reward E(Mt)

(5) Initialize the boots frequency k

(6) repeat
(7) Calculate predicted reward Qπ

T(x, a)

(8) until Qstep and b � boots
(9) Calculate j

t

(10) Calculate Bk[Q]〈st, at〉
∗

(11) until Temporal fragment decision completed at t

(12) Calculate Pk
Q(st)

(13) Obtain the possible decision π∗

ALGORITHM 1: Searching contraction in space N†.

(1) Initial target set Θ
(2) repeat
(3) Calculate the allowable state space S

(4) repeat
(5) searching contraction Ω block
(6) if π ∈ u∗ � argsup

t∈at
H(t,S, sl�2

t ) then
(7) output decision π
(8) end if
(9) until π
(10) until target set is completed

ALGORITHM 2: Targeted decision inference on receding horizon.
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contraction results from infinity to limited. We use inner
batch frequency to simulate the mental rehearsal in which
the pilot chooses the suitable action from anticipating. Here
inner batch frequency refers to rehearse times. By varying
SMDP-step (semi-Markov decision property) and Q-step
tuple, we simulate the time scale of history state influence
and future prediction impact. Table 5 lists the main ex-
periment results, and it shows the detailed contrast data in
different combinations of parameters. Figure 5 shows flight
height performance. Figure 6 depicts the workload accu-
mulated speed increased with working time under different
parameter configurations. Figure 7 shows the value of
searching contraction ratio.

In Table 5, time of flight task, human accumulated
workload, and steps of manipulation are three indexes to
build the overall evaluation assessing the decision methods.
+e accumulated workload caused increases slightly when
the parameter inner batch frequency is boosted.+is result is
consistent with the fact that human mental workload in-
creased with cognitive time pressure [47]. +e bigger batch
frequency is, the more the time pressure is. It is worth noting

that our experiment setting batch� 20 is an extreme situ-
ation, exceeding the ordinary [48]. Regarding the human
cognitive, their capability enlarges as batch frequency in-
creases. +e compound step tuple is another critical pa-
rameter. By setting history consideration steps (SMDP-step)
and future estimation steps (Q-step), we compose the dif-
ferent multistep decision methods. For example, when the
SMDP-step and Q-step are equal to 1, the method is es-
sentially a Markov decision process (MDP).

Figure 5 intuitively reflects airplane flight height effect.
On the whole, descending trajectories show the optimal
stationary distribution at batch� 5, where curve differences
are less. +e differences between different trajectories, de-
cided by steps tuple, are significantly increased. +is result
illustrates that searching contraction is relevant to human
mind rehearsing action.+e bigger the rehearsing frequency,
the more the difference caused by different multistep de-
cision methods. From the view of trajectory smoothness, the
descending trend is similar to flight stage 1. But the accu-
mulated effect caused by different multistep decision
methods starts to appear from stage 2. In Figure 5(a),

Table 1: Flight stages and tasks.

Flight stage Flight height (ft) Maneuvering apparatus Specific task
1 11000–7000 Normal descending
2 7000–6000 Switch De-icing switch
3 6000–3500 Normal descending
4 3500–3300 Communication Tower communication
5 3300–3000 Normal descending
6 3000–2000 Flaps Adjust flaps

Table 2: Multiresource workload channels and weights [43].

Channel Visual Auditory Balancing Hand Foot Analysis
Weight 0.2 0.2 0.1 0.2 0.1 0.2

Table 3: Control rule, maneuvering apparatus, and channel occupation.

Location Control rules (ru) Maneuvering apparatus Channel occupation
Rule 1 Pitch control Elevator, throttle 1 0 1 1 0 1
Rule 2 Vertical-speed control Elevator 1 0 1 1 0 1
Rule 3 Height control Elevator 1 0 1 0 0 1
Rule 4 Configuration control Flaps 1 0 1 0 0 1
Rule 5 Dynamical control +rottle 1 0 1 0 0 1
Rule 6 Information obtain Observe, scan, microphone 1 1 0 0 0 1
Rule 7 Button control Switch 1 0 1 0 0 1
Rule 8 Idle control Keep 1 1 1 0 0 0

Table 4: Transition interval and action time delay.

Series Distribution Parameter
State transition interval Poisson distribution μ � 3
Action time delay Normal distribution μ � 1.02, . . . ,{ }, σ2 � 0.025
Action accuracy error Normal distribution μ � 1, σ2 � 0.05
Action transition error Normal distribution μ � 1, σ2 � 0.05
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Figure 5: Airplane descending performance. +e vertical axis represents the corresponding airplane height/ft, and the horizontal axis
represents the horizontal flight distance/ft. (a) Batch� 1. (b) Batch� 5. (c) Batch� 10. (d) Batch� 20.

Table 5: Different decision method parameters in simulation.

Batch frequency Method SMDP-step Q-step Time (seconds) Accumulated workload Decision steps

Batch� 1

MDP (S1Q1) 1 1 256.48 223.99 69
Q-learning (S1Q3) 1 3 238.14 205.81 65
SMDP (S3Q1) 3 1 246.45 182.87 65

S3Q4 3 4 211.52 191.93 57
S4Q3 4 3 264.69 243.82 73
S8Q3 8 3 213.46 202.12 61
S3Q8 3 8 218.93 208.32 58

Batch� 5

MDP (S1Q1) 1 1 222.58 230.66 49
Q-learning (S1Q3) 1 3 222.11 224.80 52
SMDP (S3Q1) 3 1 218.79 181.34 43

S3Q4 3 4 243.79 265.43 59
S4Q3 4 3 242.76 215.07 52
S8Q3 8 3 218.75 230.78 46
S3Q8 3 8 229.04 230.62 51

Batch� 10

MDP (S1Q1) 1 1 216.87 225.46 47
Q-learning (S1Q3) 1 3 257.72 218.67 51
SMDP (S3Q1) 3 1 234.12 244.90 52

S3Q4 3 4 256.71 258.67 63
S4Q3 4 3 238.40 215.03 50
S8Q3 8 3 230.78 220.35 53
S3Q8 3 8 268.97 264.86 64

Batch� 20

MDP (S1Q1) 1 1 264.65 247.43 54
Q-learning (S1Q3) 1 3 287.11 289.09 63
SMDP (S3Q1) 3 1 262.07 236.37 53

S3Q4 3 4 266.08 231.41 53
S4Q3 4 3 258.91 239.23 55
S8Q3 8 3 253.59 228.45 55
S3Q8 3 8 236.54 228.89 57
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fluctuating range of S8Q3 is flatter compared with others. In
Figure 5(b), fluctuating range of S3Q8 is flatter compared
with others. In Figure 5(c), fluctuating range of MDP is
flatter compared with others. In Figure 5(d), fluctuating
range of S8Q3 is flatter compared with others. Corre-
sponding to the rough scope of higher local value in each
subfigure, flight stages 2, 4, and 6 which cover more control
tasks show the hysteresis effect in descending trend curves.
Also, it can be found that all multistep decision methods in
experiments can converge airplane state to the target
position.

Figure 6 shows a composite reward calculated by air-
plane flight performance and human cognitive workload
performance. Reward value is more uniformly distributed
when batch frequency is bigger. When human makes de-
cisions after the repeated estimations, reward caused by
manipulation tends to be similar. But higher repeated es-
timation times bring higher reward value, meaning that
excessive anticipation leads to excessive cognitive workload.

+e reward accumulated speed increases with the batch
frequency based on the slope of curves. Aside from
Figure 6(d), the green line (S8Q3) and blue line (S4Q3)
state the superior result from the horizontal axis (time, less
is better) and vertical axis (reward value, less is better). +e
gray line (SMDP) at batch � 5 takes the best effect, which
means that the multiple estimations also take effects on
future estimation. +e deepskyblue line (MDP) at
batch � 10 takes the best effect, while the yellow line
(S3Q4), green line (S8Q3), and the blue line (S4Q3) present
proximate effect.

Figure 7 shows dimension variation percentage of
searching contraction ratio. We calculate the ratio μ by the
accumulated searching result of history decision space and
predetermined searching scope at the parameter tuple (Sstep,
Qstep, batch or mental rehearsal frequency). +e value of μ is
smaller, and the searching contraction ratio is higher.
Equation (23) calculates μ, where ru refers to the number of
rules and 1π is an indicator function.
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Figure 6: Value of continuously accumulated cost increased with working time. +e horizontal axis represents the variable working time,
and the vertical axis represents the reward value. (a) Batch� 1. (b) Batch� 5. (c) Batch� 10. (d) Batch� 20.
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μ �
􏽐 1π

boots · S
ru
step · Q

ru
step􏼐 􏼑

1/c × 100%. (23)

In this way, the initial infinity searching dimension is
related to the history step influence, future step estimation,
and bootstrapping frequency.+e probability determined by
the mental rehearsal and multistep transition, which is
influenced by the dimension of decision, reflects the con-
traction effect of the search dimension. As shown in the
results, cognitive searching optimization process shows a
downward trend overall. When the batch frequency in-
creases, the stability of the searching dimension contraction
ratio gradually improves. Also, the ratio is distinguished
according to different types of combined decision steps. For
example, when future estimation step Qstep equals 1, such as

MDP (S1Q1) and SMDP (S3Q1), the longitudinal change
amplitude of dimension percentage changes intuitively from
big to small within the batch frequency but independent
from other methods.

5.3. Cost and Performance Analysis. Figure 8 shows the
changes in various indicators and three primary parameters
(two types of decision steps, rehearsal frequency) in our
decision-making method. Under different batch parameters,
Figure 8(a) shows the variation of statistical standard de-
viation for each cluster’s flight descent curve as the mission
progresses. When the batch number is larger, the standard
deviation firstly climbs up and then declines. Figure 8(b)
shows that the average accumulated workload increases with
the batch frequency. It proves that the more the decisions
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Figure 7: Dimension variation percentage for searching contraction in HC2I process. +e horizontal axis represents the serial number of
decision steps, and the vertical axis represents the percentage of dimension contraction. In order to facilitate the comparison of values, we
intercept the decision step number 50 as the maximum number of steps in the figure. (a) Batch� 1. (b) Batch� 5. (c) Batch� 10. (d)
Batch� 20.
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Figure 8: Continued.
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people anticipate, the greater the workload caused by mental
rehearsal. An inflection point exists in time index when
batch� 5 shows that suitable mental rehearsal can decrease
work time. Figure 8(c) shows that manipulation step drops
down with batch increases, but its decline trend slows down.
When the batch frequency is less (e.g., batch� 1), the ma-
nipulation step is more larger. +e negative correlation can
illustrate that non-optimal strategy step leads to generate
more decision steps to revise the former. Figures 8(d) and
8(e) show the influence of different types of decision step.
+ere is a peak in the histogram group under all of the
different indicators showing that the appropriate number of
decision steps can reduce the corresponding indicator’s
performance. Instead, the inappropriate number of decision
step will increase the index value. Figure 9 analyzes the
reward value presented in Figure 6. +e combined reward
index defined by flight performance and workload shows
that batch 5 is the peak of these data, which shows that
although the workload will increase, the overall value of
batches 10 and 20 will decrease under the influence of the
mission. +erefore, considering the three types of index data
and reward values, the batch frequency between 1 and 5 is
more appropriate.

5.4. Transition Probability and Searching Contraction Ratio
Analysis. Figure 10 shows transition probability distribu-
tion varying in different types of methods. Transition
probability, which is calculated from inner simulated esti-
mation, reflects the dynamical selection from rules. +e

changing trend is more consistent with normal human
decision-making behavior because inferring transition
probability lies at the core of human sequence knowledge
[49]. It demonstrates that cognitive interaction behavior
constantly attempts to infer the time-varying matrix of
transition probabilities when it receives the outer observed
machine states.+erefore, dynamical transition probabilities
are ensured by the bootstrap re-sampling controller in
searching contraction method.

Additionally, Figure 10 shows transition probability with
regard to control rules in Table 3 and parameters in Table 5.
Transition probability is dynamically changeable during the
flight manipulation stage. +e transition probability value of
pitch control rule (Rule 1) is higher than that of other rules
on average. +e transition probability of vertical-speed
control rule (Rule 2) is less focused than the height control
rule (Rule 3). Configuration control rule (Rule 4) is not used
until the flight altitude attains the allowable range. At dif-
ferent flight stages, rule transition probability is verified by
the specific tasks and its corresponding control rules. On the
other hand, transition probability is prominently influenced
by step tuple. +e overall fluctuation of transition proba-
bilities varies strengthening accompanied by the increase of
estimated part in the decision step tuple. Fluctuation of
probability variation inMDP and Q-learning methods is less
than others.

On the other hand, searching contraction change hap-
pens in the continuously multistep decision HC2I process. It
denotes the damping of decision admissible exploitation
dimension. +e solution space in which human chooses

Q-learning (S1Q3)
S4Q3
S8Q3

Time Workload Step
0

50

100

150

200

250

300

(e)

Figure 8: Analysis of flight altitude decline performance and reward index value. To compare the effects of different batches (mental
rehearsal parameters), we calculate the overall mean values of flight height performance and reward indexes (time, accumulated workload,
and decision manipulation steps) under different multistep transfer parameters. To compare the effect of multistep transition effect (the
number of steps in historical consideration and the number of steps in future estimation) on the reward index, we calculate the overall mean
value under different batch parameters. (a) Standard deviation of airplane performance for different batch frequencies. (b) Average cost
index for different batch frequencies. (c) Average steps of manipulation for different batch frequencies. (d) Average steps of manipulation for
different batch frequencies. (e) Average steps of manipulation for different batch frequencies.
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strategy rules contracts within the receding horizon con-
troller KΛ, after completing the inner inference by K∇.
Research about the brain prefontal also demonstrated this
point that the existing high-level control area reprocesses the
upcoming decision before it finally enters awareness [2].
+erefore, under the influence of interactive environment,
the degree of searching contraction is a critical factor in
cognitive decision.

We compare the searching contraction ratio from dif-
ferent aspects in Figure 11. First, stability of the dynamical
dimension goes down as the batch frequency gradually goes

up. Figure 11(a) compares the search contraction ratio in
terms of the composition of multistep transfer steps and the
frequency of mental previews. By calculating the average
change of the overall contraction ratio under the specified
batch parameters, the figure shows that under higher batch
frequency situation, the contraction ratio fluctuation de-
creases when the contraction percentage increases. +e
intersection between the batch parameters 1–5 will provide
better overall performance. +e S4Q3 example in
Figure 11(b) emphasizes that as the batch value increases, the
amplitude of the contraction percentage fluctuation will
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Figure 10: Transition probability evolving process for different control rules in (a) S4Q3, batch� 5, and (b) S4Q3, batch� 10.+e horizontal
axis represents the serial number of decision step, and the vertical axis represents the value of transition probability.
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Figure 9: Analysis value of continuously accumulated reward. According to different batch parameters, we use the evolution curve of
standard deviation to describe the overall fluctuation degree of each cluster curve. At the same time, a relatively stable standard deviation was
selected between working time [150, 200], and a curve was fitted to reflect the change of the fluctuation degree of reward with the increase of
the batch. (a) Standard deviation. (b) Fitting function.

16 Complexity



decrease, but when the number of batches is greater than 5,
the standard deviation of the fluctuation amplitude tends to
be flat. It demonstrates that the increase in batch frequency
at this time has little effect on the increase of the fluctuation
amplitude. Figures 11(c) and 11(d) compare the number’s
increase of history consideration steps (Sstep) and future
estimated step (Qstep) groups. +e result in this figure states
that during the HC2I process, the contraction ratio caused by
the history consideration steps and future estimated step in
the experiment decreases and increases, respectively, with

the number of steps increasing. But, they both indicate that
too many steps will suppress the improvement of contrac-
tion ratio (e.g., the number of steps equals 8). And with the
increase in the batch frequency, increment in the contraction
ratio will gradually slow down.+is result shows the fact that
searching contraction is difficult for human brain under the
situation of the excessive rehearsal numbers, such as
batch� 20. +e above data analysis explains the feasibility of
searching contraction decision method proposed in this
paper.
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Figure 11: Sample comparison from four aspects. (a)Mean value comparison in different batch frequencies. (b) S4Q3 sample comparison in
different batch frequencies. (c) History transition steps influence on searching contraction ratio. (d) Future estimation steps influence on
searching contraction ratio. Fitted variation curves of standard deviation andmean value are also plotted. In (c) and (d), two variation trends
of search contraction are plotted based on the different parameter values of the decision step number.
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6. Discussion

Our experimental results illustrate that cognitive search
contraction is a subconscious phenomenon that commonly
occurs in the decision-making process. +erein, the asso-
ciated multistep transition and mental rehearsal are two
crucial factors. +e multistep transition factor, which
combines the influence of cumulative fragments and the
jumpy transition interval, is the basis of interactive decision
making. Under the credible admissible decision-making
boundary, the mental rehearsal that covers the parallel ex-
ecution of the decision fragments will screen the decision
again until obtaining the optimal decision-making behavior.

+e analysis of experimental results shows that different
combinations of multistep transition step values and different
rehearsal frequencies will affect the search contraction ratio
and decision-making rewards. On the one hand, the number
of historically considering decision steps will reduce the
workload of brain (by increasing the searching contraction
ratio). In contrast, the increase in the number of future es-
timated steps will increase the workload of brain (by de-
creasing the contraction ratio of searching). At the same time,
too much rehearsal frequency makes the contraction effi-
ciency of decision search in decision solution space decrease.
+is is consistent with the research result that cognitive
channel is limited when human completes multitask [50].

Meanwhile, the increase in the rehearsal frequency will
reduce the fluctuation of search contraction index. It shows
that the if a person can get more information or experience
before decision, the bias of result will lower. On the other hand,
the decision reward of all different multistep transition step
types presents a trend of increasing first and then decreasing.
+is reflects that the number of decision-making steps are not
positively correlated with the decision reward. Moderate
composition of multistep transition step can bring the optimal
decision reward (interval time, workload, and number of
decision steps). It is the same as the rehearsal frequency.

Here we define the time complexity as the sum of the
worst-case running time for each operation (e.g., multiplica-
tion, division, and addition) required to process an output.+e
growth rate is then obtained by making the parameters of the
worst-case complexity tend to infinity. Memory complexity is
estimated as the number of 32 bit registers needed during the
learning process to store variables. And also, only the required
worst-case memory space is considered during the process
phase. From the following complexity formulations, we can

find that the time complexity grows quadratically with N and
linearly with T, and its memory complexity of the algorithm
grows linearly withT andN.WhenT is very large, thememory
complexity will not exceed the resources available for the
training process, avoiding overflow from internal system
memory to disk storage.

(i) Time complexity: for a decision sequence with
length T and ergodic Markov state N, the time
complexity is composed of decision iteration pro-
cess. We can get the time complexity as

O(T) � T∗ Sstep + boots∗N∗ logmN􏼐 􏼑∗Qstep

≈ T∗N∗ logmN.

(24)

(iii) Memory complexity: the memory complexity re-
lates to the decision space. In this paper, the decision
space is composed of decision horizon space and
bootstrap sampling space.

O(S) � T∗ boots∗ NS + NA + NO( 􏼁( 􏼁
Qstep

≈ T∗N
Qstep .

(25)

Research studies about decision tree considered the
different algorithms to optimize the decision searching tree,
such as the UCB1, UCT, and other non-greedy methods.
However, the main index searching contraction ratio
designed in our paper is not similar to those studies, where
they verify their efficiency through the true/false ratio. On
the other hand, the method in our paper used the Hamilton
function to limit the admissible decision action while the
other existing studies analyzed the decision state as a discrete
classification problem. In Table 5, when parameters
B(boots), S (Sstep), and Q (Qstep) are different, our proposed
method can be transformed into other existing methods,
such as the standard Markov decision method (B1S1Q1),
standard semi-Markov decision method (B1S3Q1), and
standard Q-learning method (B1S1Q3). In Table 6, we add
the comparison at the index searching contraction from its
mean value and variation, and the index time is also listed.
From the table, it can be shown that the stability and time
efficiency of our proposed method are better than those of
the previous studies.

Table 6: Comparison of different methods.

Rand Methods
Index: searching contraction

Index: time
Mean value Variation

1 MDP 0.605 0.0250 256.48
2 SMDP 0.546 0.0091 246.45
3 Q-learning 0.645 0.0182 238.14
4 B5, S3Q4 0.765 0.0015 243.79
5 B5, S3Q8 0.794 0.0005 229.04
6 B10, S3Q1 0.549 0.0031 234.12
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7. Conclusion

In this paper, we propose a semi-Markov jump decision
method to optimize the decision path and a searching
contraction index to indicate cognitive searching optimi-
zation. +e main difference of our work is using jumpy
decision interval and multiple path estimation as deter-
ministic features. Under the specific interaction target in
decision boundary, this modification leads to optimizing
cognitive interaction decision from the time dimension and
depth dimension. Semi-Markov jump transition decision
outperforms the traditional Markov method by strength-
ening the correlation from the dimension of decision time
interval. +e mental rehearsal improves the searching depth
of decision solution space. +e decision boundary filters out
the infeasible human decision by the estimated admissible
action boundary. Furthermore, numerical simulation shows
the characteristic of searching contraction, and our decision
method can be applied to evaluate a class of multiple element
types’ decision path. +e reduction in searching contraction
ratio proves that proper transition step length and mental
rehearsal frequency can reduce and stabilize the searching
space and reward of decision path in the HC2I process. +e
future work will address the decision switch relation hap-
pening in the semi-Markov cognitive decision. To investi-
gate the human fatigue influence on control accuracy and
stationary, we will research the jumpy switch control
according to the limited human behaviour rule. And the
arbitrary number of historical decision steps in the decision-
making is also deserved to be explored.
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