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-is study intends to examine different dynamics of the chaotic incommensurate fractional-order Hopfield neural networkmodel.
-e stability of the proposed incommensurate-order model is analyzed numerically by continuously varying the values of the
fractional-order derivative and the values of the system parameters. It turned out that the formulated system using the Caputo
differential operator exhibits many rich complex dynamics, including symmetry, bistability, and coexisting chaotic attractors. On
the other hand, it has been detected that by adapting the corresponding controlled constants, such systems possess the so-called
offset boosting of three variables. Besides, the resultant periodic and chaotic attractors can be scattered in several forms, including
1D line, 2D lattice, and 3D grid, and even in an arbitrary location of the phase space. Several numerical simulations are
implemented, and the obtained findings are illustrated through constructing bifurcation diagrams, computing Lyapunov ex-
ponents, calculating Lyapunov dimensions, and sketching the phase portraits in 2D and 3D projections.

1. Introduction

-e artificial neural networks, which are deemed one of the
deepest learning technologies that are included under the
rubric of the so-called artificial intelligence, have recently
received a considerable amount of interest by many re-
searchers whose practical work associates with the human
brain [1]. In order to make an effective progress with the

development of modern engineering and electronics, it is
necessary to continuously attempt to improve this intelligent
scheme. In 1943, McCulloch and Pitts are the first scientists
who studied the artificial neural networks [2]. In conformity
with their investigation, numerous benign engineering and
electronic applications have been employed in several ap-
plied fields. For instance, switching in electronic circuits, the
oscillation of systems in accordance with the impact of an
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earthquake, image and signal processing, impacting ma-
chines, power circuits, and dry friction are some of such
applications [3]. In 1982, with the aim of dealing with some
optimization and computational issues and to conquer some
specific problems associated with the hardware’s execution,
a novel memory neural network was established by Hopfield
called later on the Hopfield neural network (HNN) [4].
Presently, this type of networks has begun taking its place in
different industrial sectors, motivating a lot of investigators
to further explore the dynamical properties for its states and
moreover deduce other ones [5].

Due to the key role of using the fractional calculus in
formulating many phenomena rather than that of using the
classical calculus, the HNNs were fractionalized to be later
on called the fractional-order Hopfield neural networks
(FoHNNs) [6, 7]. -e basic idea of the FoHNNs’ origin may
be owed to Boroomand and Menhaj who carried out a
replacement of the fractance instead of the ordinary ca-
pacitor within the classical HNN model [8]. -e key benefit
of such replacement refers to the truth that the fractional-
order derivatives can describe the HNN more efficiently due
to the infinite memory and some other hereditary properties
that can be generated from its various processes [9]. From a
different point of view, the inclusion process of a memory
term into the HNN model by incorporating the fractional-
order derivatives/integrals can provide a super calculation
capability, which might be needed in, e.g., the stimulus
anticipation and the information processing as well as other
calculations associated with the oscillatory neuronal firing
[10]. For these reasons and more, the analysis of FoHNNs is
recently considered one of the main promising topics that
benefits future researchers in different applied science fields.

Several significant numerical findings related to the
presence of the chaotic behavior and the limit cycles for the
dynamics of the FoNN are discussed in the literature. For
instance, the stability of the FoHNN was fully investigated
through energy-like function analysis in [8]. However, a
theoretical approach, based on the harmonic balance theory,
was used to investigate the existence of chaos for a cellular
neural network model in [11]. A chaos neuron model was
proposed and examined as a novel artificial neuron model in
[12]. Moreover, in [13], a fractional-order cellular neural
network model was introduced by replacing the traditional
first-order cell by the fractional-order one. -e chaotic
synchronization of such networks was also discussed in
several other papers.We find certain chaotic behaviors in the
time-delayed FoNN system, studied well in [14]. Also, the
chaos feedback control and synchronization systems were
constructed for a neuron network system by Zhou et al. in
[15]. One year later, Zhou et al. once again illustrated the
chaotic synchronization system for a FoNN system in [16].
In [17], the Laplace transform and the generalized Gronwall
inequality were employed to examine the FoHNNmodels in
terms of its finite-time stability, whereas various dynamic
features like constructing bifurcation diagrams, chaos, sta-
bility, and multistability of the FoNNs were studied in [9]. In
[18], an α-synchronization and an α-stability were deter-
mined and explored in the FoNNmodels, whereas a uniform
stability of such models was described and analyzed with

time delay in [19] with the help of using an efficient kind of
error norm. Similarly, the complex dynamics of several
modern maps have been recently studied such as the initial-
dependent extreme multistability and offset-boosted coex-
isting attractor.

In light of the several applications of the FoHNNmodels
in different applied science fields and in order to move
forward in further discovery of more properties of the
FoHNNs dynamics, this paper attempts to study different
chaotic dynamics of such networks with incommensurate
order. Besides, it intends to analyze the stability of the
proposed system numerically by continuous varying the
fractional-order derivative values as well as the values of
system parameters. Such analysis will be carried out by
performing several numerical simulations, like constructing
the bifurcation diagrams, computing Lyapunov exponents,
calculating Lyapunov dimensions, and sketching the phase
portraits in 2D and 3D projections. Several rich complex
dynamics, including symmetry, bistability, and coexisting
chaotic attractors will be investigated and discussed. It will
be also shown, through adapting some controlled constants,
that the proposed system will possess the offset boosting of
three variables. However, the structure of this article is
arranged in the following manner: Section 2 will study and
discuss different complex dynamics of the incommensurate
FoHNN model through illustrating their different corre-
sponding numerical simulations. Dynamics of the incom-
mensurate fractional-order model will be discussed in
Section 3. -e variable-boostable attractors that are gener-
ated from the incommensurate-order model will be dis-
cussed and analyzed in Section 4, followed by Section 5 that
will summarize the whole work.

2. Preliminaries and Mathematical Model

-is part intends to describe some essential fundamentals in
regard to the fractional calculus, especially the Caputo
differential operator and the Riemann–Liouville integral
operator which were reported in [20]. Besides, a new version
of the HNN model will be proposed in light of its incom-
mensurate fractional-order derivatives.

Definition 1. -e Riemann–Liouville fractional-order inte-
gral operator of the function h can be expressed as

I
δ
h(t) �

1
Γ(δ)


t

0

h(τ)

(t − τ)
(1− δ)

dτ, (1)

where h ∈ Cm(0, T], δ > 0, T> 0, and m ∈ N.

Definition 2. -e Caputo fractional-order differential op-
erator of the function h can be expressed as

D
δ
h(t) �

1
Γ(m − δ)


t

0
(t − τ)

m− δ− 1
h

(m)
(τ)dτ, δ ∈ (m − 1, m),

h
(m)

(t), δ � m,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where h ∈ Cm(0, T], T> 0, m ∈ N, and δ ∈ [m − 1, m].
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In [9], a mathematical model of FoHNN with a ring
structure was established and its stability analysis was dis-
cussed in view of some features of its parameters. -e model
was formulated by the following three-dimensional system:

D
q
x(t) � − x(t) + 2 sin(x(t)) + a sin(y(t)) + b sin(z(t)),

D
q
y(t) � − y(t) + b sin(x(t)) + 2 sin(y(t)) + a sin(z(t)),

D
q
z(t) � − z(t) + a sin(x(t)) + b sin(y(t)) + 2 sin(z(t)),

⎧⎪⎪⎨

⎪⎪⎩

(3)

where a and b are the system parameters, Dq is the Caputo
differential operator of order q, and x, y, and z are the states
of the system. As a matter of fact, Kaslik and Sivasundaram
studied and analyzed the stability of the above system by
taking its fractional-order derivatives in commensurate-
order case [9]. To illustrate the chaotic motion of this neural
network system in its integer-order case (i.e., system (4)
when q � 1), we plot Figure 1 that shows its phase portraits
in different planes generated by its states. -e basin of at-
traction of this integer-order system is also shown in Fig-
ure 2, where the initial conditions (ICs) can be shown in
yellow and blue regions, leading to the limit cycles and to the
chaotic attractors, respectively.

In this work, we assert that if we change these derivatives
to be in its incommensurate-order case, then such systems
will exhibit more rich complex dynamics and more chaotic
patterns than in the previous model reported in [9]. -us,
the new incommensurate fractional-order version of the
previous HNN model, which will be considered from now
on, can be formulated as follows:

D
q1x(t) � − x(t) + 2 sin(x(t)) + a sin(y(t)) + b sin(z(t)),

D
q2y(t) � − y(t) + b sin(x(t)) + 2 sin(y(t)) + a sin(z(t)),

D
q3z(t) � − z(t) + a sin(x(t)) + b sin(y(t)) + 2 sin(z(t)),

⎧⎪⎪⎨

⎪⎪⎩

(4)

where a, b, x, y, and z are defined above, while Dqi is the
Caputo differential operator of order qi such that 0< qi ≤ 1
and i � 1, 2, 3. Actually, in order to solve the above system,
one can implement the predictor-corrector method which
was proposed by Diethelm et al. in [21]. Although this
method can provide an accurate solution of a given non-
linear fractional-order system numerically [22], an enhanced
approach called Adams–Bashforth–Moulton scheme was
established in [23, 24].

3. Dynamics of the Incommensurate Fractional-
Order Model

In this section, different complex dynamics of incommen-
surate FoHNN model (4) will be numerically studied and
analyzed, including discussion of the stability analysis versus
taking different values of incommensurate fractional-order
derivatives and also of system parameters and presenting
some special phenomena that could be generated from the
proposed model such as presenting the so-called symmetry
and coexisting attractors. For this purpose, several numerical
tools will be used for performing some required simulations,
including constructing bifurcation diagrams, sketching the

phase portraits of the system dynamics in 2D and 3D
projections, plotting the basin of attractions, and also
computing Lyapunov exponents/dimensions.

3.1. Stability vs. Different Incommensurate Fractional-Order
Derivatives. Here, we will take the two parameters of the
system as a � 1 and b � − 9 as well as we will consider the IC of
the states of system (4) as (x0, y0, z0) � (− 1, 1, 1). In this part,
we aim to study the stability of model (4) according to the
following three cases: the first one is carried out by fixing q2 �

q3 � 1 and continuously varying the value of q1, the second one
is performed by fixing q1 � q2 � 1 and continuously varying
the value of q2, and finally, the third one is implemented by
fixing q1 � q2 � 1 and continuously varying the value of q3.
Accordingly, the bifurcation diagrams and Lyapunov expo-
nents for such three cases are plotted in Figures 3–5, respec-
tively. Based on these figures, one can observe the existence of
positive Lyapunov exponents, confirming that FoHNN system
(4) shows chaotic behavior. In addition, onemight notice, from
such figures again, that system (4) is asymptotically stable to a
limit cycle when q1, q2, q3 ∈ (0.6, 0.73), while it begins losing
its stability and begins behaving in a chaotic mode when
q1 ∈ (0.82, 1), q2 ∈ (0.83, 1), and q3 ∈ (0.84, 1). It might be
further noticed that once the values of the incommensurate
fractional-order derivatives are increased, different periodic
windows will be shown. For instance, to deal with the aforesaid
three cases, we may take the values of the fractional-order
derivatives as q1 � 0.89 and q2 � q3 � 1, which, directly, im-
plies the three Lyapunov exponents, LE1 � 0.26, LE2 � 0, and
LE3 � − 4.39, with |0.26|< | − 4.398|. On the other hand, if one
takes q2 � 0.90 and q1 � q3 � 1, then the following three
Lyapunov exponents will be yielded: LE1 � 0.51, LE2 � 0, and
LE3 � − 2.63, with |0.51|< | − 2.63|. Finally, taking q3 � 0.87
and q1 � q2 � 1 gives the following three Lyapunov exponents:
LE1 � 0.31, LE2 � 0, and LE3 � − 5.06, with |0.31|< | − 5.06|.
Consequently, the corresponding Lyapunov dimension, which
is considered an estimation of the complexity of the generated
attractor from the system, can be calculated according to the
previous three cases by considering the following formula:

DKY � j +
1

LEj+1






j

i�1
LEi, (5)

where j is the greatest integer number that satisfies


j
i�1 LEi ≥ 0 and 

j+1
i�1 LEi < 0. In other words, the calculated

Lyapunov dimensions of system (4) according to the pre-
vious values of incommensurate fractional-order derivatives
are DKY � 2.09> 2, DKY � 2.19> 2, and DKY � 2.06> 2,
respectively.-is, consequently, leads us to deduce that there
is a chaotic attractor of system (4). To see this, Figures 6–8
present the complex chaotic attractor of system (4) on
different 2D projections according to the three considered
cases: (q1 � 0.89 and q2 � q3 � 1), (q2 � 0.90 and
q1 � q3 � 1), and (q3 � 0.87 and q1 � q2 � 1), respectively.
In addition, Figures 9–11 exhibit the corresponding 3D
projections of the chaotic attractors that are generated by
system (4).
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3.2. Stability vs. Different Values of the System Parameters.
-is section will explore the stability of system (4) by
continuously varying the values of the system parameters a

and b and by fixing the incommensurate fractional-order
derivative values at [q1, q2, q3] � [0.8, 0.90, 0.91] as well as

fixing the IC at (x0, y0, z0) � (− 1, 1, 1). Immediately, Fig-
ures 12 and 13 represent the bifurcation diagrams together
with the Lyapunov exponents of system (4) when a ∈ (0, 5)

and b ∈ (− 20, 0), respectively. One might observe based on
such plots that when the values of the system parameters are
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Figure 1: Chaotic attractor of system (3) when q � 1 according to the system parameters a � 1 and b � − 9 and the IC (x0, y0, z0) �

(− 1, 1, 1) on (a)xy plane, (b)xz plane, and (c)yz plane.
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Figure 2: Basin of attraction of system (3) when q � 1 according to the system parameters a � 1 and b � − 9 and to the initial condition of the
third state variable z � 0.
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Figure 3: (a) -e diagram of bifurcation. (b) Lyapunov exponents of system (4) when q1 ∈ (0.6, 1) and q2 � q3 � 1 according to the system
parameters a � 1 and b � − 9 and the IC (x0, y0, z0) � (− 1, 1, 1).
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decreased, system (4) will be asymptotically stable and then
it will exhibit periodic oscillations to chaos. Moreover, the
chaotic ranges with periodic windows will be of a ∈ (0, 2.9)

and b ∈ (− 20, − 7.5). Obviously, there exist certain positive
Lyapunov exponents within these ranges, confirming the
chaotic behavior of system (4).

3.3. Symmetry, Bistability, and Coexisting Chaotic Attractors.
Symmetric dynamical systems are typically obtained when
they often exhibit a symmetric pair of coexisting attractors.
-is property has attracted considerable interest in the field
of nonlinear dynamic systems. To obtain a complete over-
view of this property, the reader may refer to [25]. In regard
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Figure 4: (a) -e diagram of bifurcation. (b) Lyapunov exponents of system (4) when q2 ∈ (0.6, 1) and q1 � q3 � 1 according to the system
parameters a � 1 and b � − 9 and the IC (x0, y0, z0) � (− 1, 1, 1).
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Figure 5: (a) -e diagram of bifurcation. (b) Lyapunov exponents of system (4) when q1 ∈ (0.6, 1) and q2 � q3 � 1 according to the system
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Figure 6: Chaotic attractor of system (4) when q1 � 0.89 and q2 � q3 � 1 according to the system parameters a � 1 and b � − 9 and the IC
(x0, y0, z0) � (− 1, 1, 1) on (a)xy plane, (b)xz plane, and (c)yz plane.
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to our study, we will assume that the system parameters are
a � 1 and b � − 9 and we will select two ICs as (x0, y0, z0) �

(1, 1, 1) for the red trajectory and (x0, y0, z0) � (− 1, − 1, − 1)

for the blue trajectory. In light of these values, we observe
that system (4) will, e.g., generate a symmetric pair of
coexisting limit cycles when [q1, q2, q3] � [0.70, 1, 1] (see
Figure 14(a)), while it will generate a symmetric pair of
coexisting periodic attractors when [q1, q2, q3] � [0.80, 1, 1]

(see Figure 14(b)), and moreover, it will generate a sym-
metric pair of coexisting chaotic attractors when
[q1, q2, q3] � [0.89, 1, 1] (see Figure 14(c)).

On the other hand, the bistability property, which is
deemed one of the most recent dynamic phenomena of a
system, has attracted many researchers in recent years.
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Figure 7: Chaotic attractor of system (4) when q2 � 0.90 and q1 � q3 � 1 according to the system parameters a � 1 and b � − 9 and the IC
(x0, y0, z0) � (− 1, 1, 1) on (a)xy plane, (b)xz plane, and (c)yz plane.
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Figure 8: Chaotic attractor of system (4) when q3 � 0.87 and q1 � q2 � 1 according to the system parameters a � 1 and b � − 9 and the IC
(x0, y0, z0) � (− 1, 1, 1) on (a)xy plane, (b)xz plane, and (c)yz plane.
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For more clarifications about this property, the reader
may refer to [26]. However, in order to show the bist-
ability within system (4), we plot the bifurcation diagrams
in Figure 15(a) when [q1, q2, q3] � [0.8, 0.90, 0.91], a � 1,
and b � − 9. It is worth noting that two sets of ICs are
considered to perform the simulation of this figure. -e
first one is (x0, y0, z0) � (− 1, 1, 1) which has been taken
into account for the red plot, while the second one is
(x0, y0, z0) � (0.1, 1.2, 2) which has been taken into ac-
count for the blue plot. -ese two plots show certainly
that system (4) will exhibit bistability phenomenon if the
incommensurate fractional-order value is increased. For
a � 1, b � − 9, and [q1, q2, q3] � [0.80, 0.90, 0.91], both
coexisting attractors of this system are drawn in
Figure 15(b) according to the two ICs,
(x0, y0, z0) � (− 1, 1, 1) for the red plot and (x0, y0, z0) �

(0.1, 1.2, 2) for the blue plot. Furthermore, the basin of

attraction of system (4) can be shown in Figure 16 which
corresponds to Figures 15(a) and 15(b), where the ICs
shown in yellow and blue regions lead to the limit cycles
and to the chaotic attractors, respectively.

4. Variable-Boostable Attractors of the
Incommensurate Fractional-Order Model

With the aim of accomplishing the complete range of the
signal’s linear transformations, the offset boosting might be
joined with amplitude control. It was reported in [27] that
insertion of a new developed boosting controller may de-
stroy the symmetry of the variable-boostable model. From
this perspective, we will add to the system states x, y, and z

three additional controlled scalers m, n, and k, respectively.
In view of this addition, system (4) will be turned into the
following form:

D
q1x(t) � − (x(t) + m) + 2 sin(x(t) + m) + sin(y(t) + n) + b sin(z(t) + k),

D
q2y(t) � − (y(t) + n) + b sin(x(t) + m) + 2 sin(y(t) + n) + a sin(z(t) + k),

D
q3z(t) � − (z(t) + k) + a sin(x(t) + m) + b sin(y(t) + n) + 2 sin(z(t) + k).

⎧⎪⎪⎨

⎪⎪⎩
(6)

In the following sections, we intend to address system
(6) in light of three different cases for the system pa-
rameters a � 1 and b � − 9. Besides, we will select the
incommensurate fractional-order values as
[q1, q2, q3] � [0.80, 0.90, 0.91]. As a remark about the
choice of initial conditions, it should be noted that when
the system has unbounded solutions, the variable
boosting should be accompanied with a modification of
the initial conditions, while the initial conditions can be
ignored in the systems with global attraction.

4.1.ALineofVariableAttractors. A variable chaotic attractor
can be scattered along the 1D line especially when we are
carrying out a certain control so that the offset boosting
parameters take the following cases:

(i) When the parameter m is frequently varied and the
other two parameters are kept as n � k � 0, we will
gain several variable chaotic attractors scattered on
the x-axis as exhibited in Figure 17(a)

(ii) When the parameter n is frequently varied and the
other two parameters are kept as m � k � 0, we will
gain several variable chaotic attractors scattered on
the y-axis as exhibited in Figure 17(b)

(iii) When the parameter k is frequently varied and the
other two parameters are kept as m � n � 0, we will
gain several variable chaotic attractors scattered on
the z-axis as exhibited in Figure 17(c)

4.2. A Lattice of Variable Attractors. Herein, two controlled
parameters will be simultaneously adjusted and the other

x m
ax
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a

(a)
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5
5

0

0 0
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-5-5

z

y x

(b)

Figure 15: (a) Bifurcation diagram of system (4) for continuous varying a ∈ (0, 5). (b) Coexisting chaotic attractors for a � 1, b � − 9, and
[q1, q2, q3] � [0.80, 0.90, 0.91] subject to the ICs: (x0, y0, z0) � (− 1, 1, 1) for the red plot and (x0, y0, z0) � (0.1, 1.2, 2) for the blue plot.
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Figure 16: Basin of attraction of system (4) when [q1, q2, q3] � [0.80, 0.90, 0.91] according to the system parameters a � 1 and b � − 9 and to
the initial condition of the third state variable z � 0.

5

0

-5
-15 -10 -5 0 5 10 15

y

x

(a)

15

10

5

0

-5

-10

-15

y

-5 0 5
x

(b)

15

10

5

0

-5

-10

-15

z

-5 0 5
x

(c)

Figure 17: Scattering of the variable chaotic attractor on a 1D line for a � 1, b � − 9, and [q1, q2, q3] � [0.80, 0.90, 0.91]. (a) x-line when
m � ± 10 and m � 0, (b) y-line when n � ± 10 and n � 0, and (c) z-line when k � ± 10 and k � 0.
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parameter will be kept at zero. -is would yield a 2D
lattice of variable chaotic and periodic attractors. In
particular, one might consider the following three cases:

(i) When the two parameters m and n are frequently
varied and the third parameter is kept as k � 0, we
will gain several variable chaotic attractors
scattered on the xy lattice as exhibited in
Figure 18(a)

(ii) When the two parameters m and k are frequently
varied and the third parameter is kept as n � 0, we
will gain several variable chaotic attractors scattered
on the xz lattice as exhibited in Figure 18(b)

(iii) When the two parameters n and k are frequently
varied and the third parameter is kept as m � 0,
we will gain several variable chaotic attractors
scattered on the yz lattice as exhibited in
Figure 18(c)

4.3. A 3D Grid of Variable Attractors. In this section, certain
values of the three controlled parameters m, n, and k will be
simultaneously adapted. -is would yield, after taking the
fractional-order values as, e.g., [q1, q2, q3] � [0.80, 0.90, 0.91],
a 3D grid of variable chaotic and periodic attractors as illustrated
in Figure 19. Furthermore, the basin of attraction of system (4)
is plotted and shown in Figure 20 which corresponds to Fig-
ure 19, where the ICs shown in yellow and blue regions lead to
the limit cycles and to the two chaotic attractors, respectively.

5. Conclusion

-is work has formulated a novel version of Hopfield
neural network models with incommensurate fractional
orders using the Caputo differential operator. -rough
continuous variation of the values of the system pa-
rameters as well as the fractional-order derivative values,
the stability of the proposed model has been analyzed
numerically, and many rich complex dynamics, including
symmetry, bistability, and coexisting chaotic attractors,
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Figure 18: A 2D lattice of a variable attractor for incommensurate fractional order [q1, q2, q3] � [0.80, 0.90, 0.91] with a � 1 and b � − 9.
(a)xy lattice for (m, n) � (0, 0), (10, 10), (10, − 10), (− 10, 10), (− 10, − 10), (20, 20), (20, − 20), (− 20, 20), (− 20, − 20); (b)xz lattice for
(m, k) � (1, 1), (10, 10), (10, − 10), (− 10, 10), (− 10, − 10), (20, 20), (20, − 20), (− 20, 20), (− 20, − 20); and (c)yz lattice for (n, k) � (1, 1),
(10, 10), (10, − 10), (− 10, 10), (− 10, − 10), (20, 20), (20, − 20), (− 20, 20), (− 20, − 20).
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Figure 19: A 3D grid of a variable periodic and chaotic attractors
when [q1, q2, q3] � [0.80, 0.90, 0.91] with a � 1 and b � − 9 for
(m, n, k) � (0, 0, 0), (0, 10, 10), (0, 10, − 10), (0, − 10, 10),
(0, − 10, − 10), (0, 20, 20), (0, 20, − 20), (0, − 20, 20), (20, 20, − 20),
(− 20, 0, − 20), (20, 0, − 20), (20, 20, 0), (− 20, 20, 0).
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Figure 20: Basin of attraction of system (4) when [q1, q2, q3] �

[0.80, 0.90, 0.91] according to the system parameters a � 1 and b �

− 9 and to the initial condition of the third state variable z � 0. -e
colors in this figure associate with the colors of the attractors given
in Figure 19.
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have been generated. It turned out that through adapting
certain additional controlled constants the proposed
model possesses the offset boosting of three variables. In
addition, it has been shown that the resultant periodic
and chaotic attractors generated from such models can be
distributed in several forms, including 1D line, 2D lattice,
and 3D grid and even in an arbitrary location of the phase
space.
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