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Taking the opportunity of China’s launch of Shanghai crude oil futures (INE), this study empirically examined the information
transmission in this immature financial market, investigating this issue from a new perspective. To identify the impact of INE on
the related stock market, we collected high-frequency trading data of oil futures and 22 stocks owned by listed companies in the
upstream and downstream of China’s oil-related industry chains, constructed a causal chain through Directed Acyclic Graph, and
used MFDCCA-MODWT to perform multifractal analysis on the chain. Research shows that INE does have a causal relationship
with the stock market of the related industry chain, and there is a multifractal correlation between its transaction time series.
Subsequently, the source of fractal correlation was analysed with shuffled and surrogated sequences. We conclude that long
memory plays a leading role and is the main reason for multifractal features.

1. Introduction

After the signing of the Paris Climate Agreement, most
signatories took the development of green finance as one of
the important means for the domestic financial industry to
respond to global climate change. In China, the focus of the
work of the financial sector has included issuing green bonds
and green credit, and establishing a regional green finance
pilot system. For example, the People’s Bank of China an-
nounced in August 2019 that since 2016, China’s green bond
market has ranked first in the world in terms of issuance,
with annual issuance and inventory ranking among the top
in the world. +e balance of green loans has increased year
by year, accounting for nearly 10% of total domestic cor-
porate loans.

+e effective use of green finance depends on the ef-
fective operation of international financial markets, espe-
cially those closely related to climate change. +e trading of
oil-based energy products is one of the most important
markets. For developing countries, the development of their
financial markets is often not perfect, but their energy
consumption is huge, and traditional analysis methods are

doubtful when analysing relevant markets [1, 2]. How to
better identify the development status of imperfect financial
markets but closely related to green finance?+e use of data-
driven analysis methods has become an option.

Regarding the analysis of the impact of the futures
market on the spot market, scholars mostly proceed from the
perspective of information efficiency. In classic literature,
Fama divides information into historical information,
publicly disclosed information, and all unknown related
information [3]. +e information efficiency of the market
refers to the ability of market prices to digest and absorb the
information when a new information shock occurs and to
guide investors through the market price to predict another
market price, and the increase in transaction time and
transaction volume can strengthen information transmis-
sion [4]. +at is, information efficiency can be the basis of
market price efficiency, and themeasurement of information
efficiency is theoretically a test of market efficiency. But in
developing economies’ financial markets, due to the high
appearance of false transactions and falsified financial data,
some traditional models are not effective in studying these
markets [5]. Since in markets, a transaction is a transaction,
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and the data that appear every moment bring useful in-
formation; therefore, this study looks forward to considering
the problem in a purely data-driven way. To explore the
information transmission efficiency of China’s crude oil
future, this paper collects the high-frequency data of
Shanghai oil futures (INE) price and the stock prices of
several listed companies. Furthermore, we use DAG and
Multifractal Detrended Cross-correlation Analysis
(MFDCCA) to study the information transmission path and
the multifractal relationship between these two markets and
then analyse the multifractal sources.

Different from the previous research, we analyse the
information transmission between INE and related stock
markets from a data-driven perspective. Since the scholars
have disputes over whether the market is effective, we choose
not to make any prior logical assumptions, but to investigate
the problem from a pure data perspective. Such methods can
be used not only in the financial markets of immature de-
veloping countries but also in the analysis of relevant topics
in mature markets. On the one hand, the research provides
ideas for investigating the relationship between the energy
market and energy-related stock markets in China. On the
other hand, research provides a basis for investigating
market linkages in the immature financial markets of de-
veloping countries, and it also provides a framework for
investigating related content in other markets around the
world.

In this paper, Section 2 reviews the literature. Section 3
introduces the data and methodology. Section 4 initials
empirical research and talks about result implications,
Section 5 discusses and puts forward policy suggestions.

2. Literature Review

2.1. Energy Futures. Energy futures play an important role in
ensuring global energy supply and maintaining economic
stability [6, 7]. On the one hand, energy futures influence the
global economic development by influencing the price of
energy products [8, 9]; on the other hand, the financiali-
zation of energy products also has an impact on the economy
through financial markets [10, 11]. Among them, oil futures
are the most attractive. At present, the researchers have
carried out a large number of studies on several major oil
futures contracts, including the linkage with other financial
markets [12, 13], the influence on oil spot prices and stock
prices of downstream industries [14, 15], and the prediction
of macroeconomic indicators. INE has been listed for a short
time, and relevant researches on them also follow the above
directions [16]. Scholars found a clear-tail dependence be-
tween the INE, equities, foreign exchange, and gold markets
[17]. Moreover, there is a significant and continuous two-
way volatility spillover effect between INE, WTI, and Brent
[18, 19], and its yield is also in equilibrium with the yield of
Daqing, Shengli, Oman, WTI, and Brent crude oil spot
prices, which supports the pricing efficiency of crude oil
futures prices in the Asia–Pacific region [20]. At the mo-
ment, global financial uncertainty will closely affect the
volatility of the INE [21]. In some extreme environments,
there is a strong causal relationship between oil futures

prices and investor sentiment [22, 23]. After several years of
development, INE prices now have short-term and me-
dium-term independence and conductivity. However,
compared with international benchmark oil prices, INE has
limited pricing power and lacks long-term influence on the
international crude oil market [24, 25]. With the intro-
duction of INE, it will promote the balance of China’s and
European and North American crude oil market price
systems, help to improve the world crude oil price system,
and research on crude oil prices and capital markets is
increasingly relevant. Compared with international re-
search, there is a relative lack of research on China’s oil
price volatility spillover effect and less attention to the
complex impact of oil price volatility types on capital
markets. +e correlation between economic sectors and oil
prices also needs to be further deepened.

2.2. Directed Acyclic Graph (DAG). In mathematics, par-
ticularly graph theory, a DAG is a finite directed graph with
no directed cycles. +is means that it is impossible to tra-
verse the entire graph starting at one edge. +e edges of the
directed graph only go one way. +e graph is a topological
sorting, where each node is in a certain order. Based on this
idea, Spirtes proposed the DAG analysis method in 2000
[26]. +is method can effectively identify the causal rela-
tionship among high-dimensional variables and determine
the conduction path and direction of information.
Compared to the traditional methods like Granger cau-
sality test, DAG does not need to apply any theoretical
assumptions. It can derive the causal relationship only
according to the residual variance-covariance matrix of
the data, which makes itself a purely data-driven method.
Besides, the employment of data-driven methods such as
machine learning for analysis and prediction in the field of
energy finance is also a hot topic in recent years [27, 28].
DAG was first applied to the economic analysis in 2003
[29] and has been widely used in several fields until now.
Liang et al. analyses the internationalization trend of
China’s stock market from the perspective of information
spillover and finds that though there are significant dif-
ferences in the dynamic path between return and volatility
spillover, the international integration process of China’s
stock market is steadily advancing [30]. Yang et al.
combined DAG and VAR to study the international
transfer of inflation among G7 countries and found that
US inflation has become less vulnerable to foreign shocks
since the early 1990s [31]. Awokuse studied the rela-
tionship between Japanese exports and economic growth
and found a bidirectional relationship [32]. In these
studies, DAG can not only identify the causal relationship
in the overlap period [33] but also solve the problem of
nonsynchronization between different markets by ap-
plying constraints and restrictions [29]. According to
what is mentioned above, DAG can not only analyse the
domestic market that overlaps with the trading time of
Shanghai crude oil futures but also the overseas market
with the overnight time difference, which makes this
article and subsequent research possible.
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2.3. MFDCCA-MODWT (Multifractal Detrended Cross-
Correlation Analysis-Maximal Overlap Discrete Wavelet
Transform). +e idea of fractal first appeared in the 19th
century, such as Weierstrass function and the Cantor set
[34]. According to Britannica, fractal, in mathematics, any of
a class of complex geometric shapes that commonly have
“fractional dimension,” a concept was first introduced by the
mathematician Felix Hausdorff in 1918. And the term
fractal, derived from the Latin word fractus, was coined by
the Polish-born mathematician Benoit B. Mandelbrot [35],
and now fractal has been applied in several fields [7]. +e
fractal method consists of single-fractal and multifractal.
Single-fractal is mainly used to analyse the long memory of
sequences, also known as persistence or antipersistence.
Later, scholars have gradually found that the multi-scale and
complexity of financial time series poses a challenge to the
single-fractal. Mandelbrot pointed out that multifractal can
better quantify the complex wave characteristics of financial
markets compared to the single-fractal and has wider ap-
plication in the empirical research [36]. However, both
single-fractal and multifractal can only characterize the
fractal features of a single time series and not capable of the
correlation between two time series. Referring to time-series
correlation analysis, Podobnik et al. introduced the
detrended fluctuation analysis method to correlation anal-
ysis and proposed a detrended cross-correlation analysis
(DCCA) which can measure the long memory of two
nonstationary time series [37]. On this basis, Zhou combines
DCCA andmultifractal and proposes theMFDCCA to study
the cross-correlation multifractal of two time series with the
same observations [38]. Subsequently, scholars proposed
MFDMA [39], MFADCCA [40], DMF-ADCCA [41], and
MFDCCA-MODWT [42] according to different purposes
and achieved certain results [43]. Nowadays, correlation
analysis based on multifractal has now been widely used in
energy [44, 45], meteorology [46], and financial markets
[47–49]. MFDCCA-MODWT performs better than
MFDCCA when measuring long memory features of se-
quences of different lengths and different Hurst exponents
because it does not need to select different polynomial orders
to fit to eliminate trend items in the time series. Hence, this
paper will use MFDCCA-MODWT to measure the multi-
fractal correlations between the sequences.

+erefore, the contribution of this paper is to use the
DAG for the first time to examine the influence path of INE
on the industry chain and, on this basis, analyse the source of
the multifractal correlation between INE and related stocks.

3. Data and Method

3.1. Data. We searched all related industries upstream and
downstream following the industry chain and found the
stock with the largest market value in each industry. +e
sample includes INE and 22 other stocks selected according
to the industry chain, covering oil and gas, coal, energy, and
downstream sectors, respectively. In the crude oil futures
market, multiple contracts are traded at the same time. To
make the sample representative, we have selected contin-
uous data on the main contract of INE. +e sample period is

from March 26 to August 23, 2018, and the data type is 1-
minute high-frequency data. +e details can be seen in
Table 1. Column 1 is the acronym for the Chinese Pinyin of
the stock names (i.e., zgsh stands for Zhong Guo Shen Hua
in Chinese and China Shenhua Energy Company Limited in
English), Column 2 is the stock codes, and the remaining
two columns are the industry to which the stock belongs and
the role of enterprises in the industrial chain.

After the data matching process, 193 price observations
per daymultiply 103 days, and at last 19,879 observations are
obtained for each stock/futures.

3.2. Method

3.2.1. DAG. DAG is composed of nodes and vector edges.
Nodes represent variables and directed edges connect these
nodes to represent the synchronic relationship. By analysing
the correlation coefficient and the partial correlation coef-
ficient of the variables, the synchronic relationship between
variables is identified. +e identification steps are divided
into “edge removal” and “orientation.” In the “edge re-
moval” stage, DAG starts from an “undirected complete
graph,” first tests the unconditional correlation coefficients
between variables, removes the edges with significantly zero
coefficients, and then analyses the first-order partial cor-
relation coefficients. In the above analysis, the Fisher’s z test is
normally used to determine the significance level. For the two
variables x and y, there are five possible results for the casual
relationship: x y (independent and unconnected), x⟶ y (x
causes y), y⟶ x (y causes x), x↔y (two-way causality), and
x−y (a causality but the relationship cannot be clarified). In
this paper, the above operations can be implemented by PC
algorithm in the TETRAD 6.6.0 software.

3.2.2. MFDCCA-MODWT. First, suppose there are two
time series x(i){ } and y(i) , i� 1, 2, ..., N, where N rep-
resents the length of the time series, and then construct a
contour sequence:

X(i) � 
i

t�1
(x(t) − x), Y(i) � 

i

t�1
(y(t) − y), (1)

where x and y are the mean of the time series x(t){ } and
y(t) .

+en, divide time series X(i){ } and Y(i){ } equally into
Ns � [N/s] nonoverlapping intervals of length s. And the
sequence is inversely processed in consideration of the fact
that the total length N may not be an integer multiple of s.
+e same processing is performed on the reverse order of the
time series to obtain 2Ns subintervals to avoid information
loss.

According to MODWT, a sequence x(t) can be calcu-
lated by wavelet.

x(t) � SJ,i + DJ,i + DJ−1,i + . . . + D1,i, (2)

where J and i are integers that represent the maximum level
of scale s and the number of coefficients in the specified
component, respectively. DJ,i and SJ,i respectively represent
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the wavelet and smooth trend of the sequence in the interval.
By this method, a local trend for each interval v is calculated:
yv(i) � SJ,i. +en, construct the sequence residual:

εv(i) � yv(i) − SJ,i 1≤ i≤ s. (3)

+us, for each interval v, we can obtain wave function for
two time series as follows:

F
2
(s, v) �

1
s



s

t�1
ε(1)

v (i)


 · ε(2)
v (i)



. (4)

Fourth, construct a q-order wave function:

when q≠ 0, Fq(s) �
1

2Ns



2Ns

v�1
F
2
(s,v) 

q/2⎧⎨

⎩

⎫⎬

⎭

1/q

,

when q � 0, Fq(s) � exp
1

4Ns



2Ns

v�1
ln F

2
(s,]) 

⎧⎨

⎩

⎫⎬

⎭.

(5)

Last, given any real number q, +e scaling behavior of
fluctuations can be described by a log-log graph between
Fq(s) and s. If x(i){ } and y(i)  have a long-term corre-
lation, then Fq(s) changes by the power law:

Fq(s) ∼ s
Hxy(q)

. (6)

Take the logarithm of two sides of equation (6):

logFq(s) � Hxy(q)log(s) + logA. (7)

+e scaling index Hxy(q) is the Hurst exponent, which is
the slope of the function diagram of ln Fq(s) ∼ ln s. It could
measure the power-law relationship between time series. If
Hxy(q) is independent of q, the correlation is single-fractal; if
Hxy(q) changes with q, the correlation has multifractal

characteristics. When q> 0(<0), Hxy(q) exhibits the scaling
behavior of the correlation between large (small) fluctua-
tions of two time series.

+e relationship between H(q) and the multifractal
index t(q) is as follows:

t(q) � qH(q) − 1. (8)

If t(q) is a nonlinear function of q, it shows that series
has multifractal characteristics.

With Legendre transform, we can obtain the relationship
between the multifractal spectrum D(q) and h(q):

h(q) �
dt(q)

dq
, (9)

D(q) � qh(q) − t(q), (10)

where h(q) is a singularity index that describes the singu-
larity of a time series. D(q) is a multifractal spectrum
reflecting the fractal dimension with a singular exponent
h(q). To better reflect the multifractal characteristics, we use
a financial risk index:

ΔH � Hmax(q) − Hmin(q), (11)

where ΔH is the range of Hxy(q). +e larger the span, the
more obvious themultifractal feature and the higher the risk.
According to equation (10), ΔHxy(q) will be an index of the
multifractal degree.

4. Empirical Analysis

4.1.CausalityAnalysis. We first import the processed 23 sets
of data into TETRAD 6.6.0, and set the display mode as
“causal order” and obtain Figure 1. In Figure 1, there are

Table 1: Details of 22 selected stocks.

Acronym Code Industry Role in the industry chain
cjdl 600900 Hydropower Upstream/energy alternatives
czmz 002108 Plastic products Downstream/petroleum user
dhny 002221 Oil and gas Upstream/energy alternatives
dxlt 000040 Photovoltaic Upstream/energy alternatives
gjny 000096 Oil sales Midstream/sales
hlgf 600346 Chemical fiber Downstream/petroleum user
hlhs 600426 Fertilizer Downstream/petroleum user
hngj 600011 +ermal power Upstream/energy alternatives
jnfd 601016 Wind energy Upstream/energy alternatives
kpd 603798 Lubricating oil Midstream/petroleum intermediate products
lmkg 600167 +ermoelectric Upstream/energy alternatives
lxkj 300487 Synthetic resin Downstream/petroleum user
qxtd 002408 Chemical raw materials Downstream/petroleum user
shsh 600688 Refined oil refining Upstream/oil production
slda 000553 Pesticide Downstream/petroleum user
sls 002224 Synthetic rubber Downstream/petroleum user
strq 002267 Oil and gas Midstream/oil restore and transportation
sxjh 600740 Coking Upstream/energy alternatives
zghd 601985 New energy Upstream/energy alternatives
zgsh 601088 Raw coal mining Upstream/energy alternatives
zgsy 601857 Oil and gas Upstream/oil production
zjjk 002061 Polyurethane Downstream/petroleum user
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eight levels, of which INE and the other three stocks are in
the first level, indicating that INE does have an impact on the
relevant industries from the source, but the impact is not
single, some stocks below in the hierarchy are affected by
multiple sources. Since this paper mainly examines the
correlation between INE and related industries, to simplify
the subsequent analysis, we only select the causality chain
containing INE for analysis. Based on this idea, we simplified
Figure 1 to obtain Figure 2. In Figure 2, we can see that the
causal relationship of volatility is roughly transmitted along
the industrial chain: INE⟶ Oil and gas exploration and
sales⟶ Downstream products. In addition, INE also di-
rectly affects the stock price fluctuation of downstream
products.

4.2. Correlation Analysis. In this section, we will analyse the
multifractal correlation between INE and stocks based on
the causal relationships shown in Figure 2 and examine the
sources of correlation.

Figure 3 shows the plot of the log Fq(s) − log(s) obtained
by MFDCCA-MODWT. +e curves in each subgraph from
bottom to top correspond to q � −10, −9, −8 . . . , 8, 9, 10. In
Figure 3, we find that the slope of the curve is different for
different q. +e bigger the q, the flatter the curve. When q
approaches −10, the curve fluctuates to a certain extent, but
the values of the coefficient H(q) and the constant term
log(A) obtained by OLS are significant at the 1% signifi-
cance level. +erefore, for different q, each curve is linear,
which indicates that there is a power–law correlation be-
tween the volatility of two products with a causal
relationship.

Figure 4 shows the Hurst exponent Hq calculated by
MFDCCA-MODWT. It can be seen from the figure that Hq

decreases gradually as the q increases, indicating that the
scaling index is not a constant, that is, the cross-correlation
between the volatility has the multifractals. In addition,
when q� 2, H(q) is greater than 0.5, indicating long-term
memory.+e scale index is approximately greater than 0.5 in
the interval of −10< q< 7, indicating that the correlation of
volatility in this interval has long-range persistence; and less
than 0.5 in the interval of 7< q< 10, indicating that the
volatility correlation has an inverse persistence in this in-
terval. +at is to say, the cross-correlation of the volatility of
the selected samples is characterized by multiple fractals. In
general, H(q) decreases as q increases, indicating that the
cross-correlation of volatility with small fluctuations is more
persistent than the cross-correlation when large fluctuations
occur. In short, when there is a small fluctuation occurs in
one market compared to large fluctuations, the persistence
of the cross-price correlation between the two markets is
stronger.

4.3. Multifractal Analysis. +e multifractal strength of the
financial system is expressed by the degree of nonlinearity of
the scale index. It can be seen from the second column of
Figure 5 that the curve has a certain degree of curvature but
is not obvious, indicating that the cross-correlation between
the price of selected products has weak multifractal char-
acteristics.+e third column of Figure 5 is a singular spectral
function of the multifractal spectrum that describes the
complex dynamics of financial markets. In general, the
multifractal spectral width is used to estimate the fractal
strength. According to the study of Chen and He [50], the
multifractality can be expressed by the width of the mul-
tifractal spectrum: Δhq and Δhq can measure the absolute
magnitude of the price fluctuation of time series.

sxjh cjdline qxtd

dhny jnfd czmz dxlt

hngj hlhs

hlgflmkggjny

slda shsh strq

kpd

zghd
zjjk

sls

zgsh lxkj zgsy

Figure 1: Causality diagram of INE and 22 stocks.
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ine

slda zgsh

hngj shsh sls zghd

Figure 2: Simplified causality diagram of INE and 6 stocks.
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Figure 3: Continued.
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Scaling function Fq (q-order RMS)(sls-zghd)
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Figure 3: log Fq(s) − log(s) of seven pairs of causality among INE and other six stocks.
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Figure 4: Hq − q of seven pairs of causality among INE and other six stocks.
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In the above, we found that the cross-correlation be-
tween INE and selected stocks price volatility has strong
multifractal characteristics. Based on this, we will further
explore the source of multifractal features. From the existing
literature, there are many different methods used to char-
acterize the implicit behavior of different financial variables,
such as wave scale analysis, structure-function, wavelet
transformmethod, and so on. It is generally believed that the
thick tail distribution and the long memory are two possible
sources of multifractal properties in financial time series
[51]. First, by comparing the degree of multifractal between
the original and the shuffled series, we can quantify the
contribution of long memory. In this paper, the shuffled
sequence can be achieved by the randperm command in the
Matlab software. We repeat 100 times to ensure that the
original series is completely disrupted. Second, the classical
method of quantifying the contribution of thick-tailed
distributions in sequence with multifractal features is to
compare the multifractal degree between the original se-
quence and surrogated sequence. Here, the surrogate se-
quence is achieved by Fourier phase randomization. +e
procedure creates a surrogate data with the same correlation
properties as the original signal [52]. Following the

procedure, one performs a Fourier transform on the original
time series, preserving the Fourier amplitudes but ran-
domizing the Fourier phases. Finally, one performs an in-
verse Fourier transform to create surrogate data [53]. +e
results are shown in Figure 5 and Table 2.

FromTable 2 we can see that theΔHq andΔhq calculated
with a shuffled and surrogated sequence is smaller than the
original sequence, indicating that the multifractal feature
between the volatility sequences is caused by the long
memory and thick tail distribution. Figure 5 provides the
span of Hurst exponent H(q) and the fractal spectrum be-
tween the original, shuffled, and surrogated series. It can be
seen that the range of ΔH and Δhq of the original sequence
was significantly reduced after shuffled and surrogated,
indicating that that long memory and thick tail distributions
play a role in multifractals. However, after comparing
shuffled and surrogated sequences, we found that the
shuffled sequence has a narrow opening in Figure 5, indi-
cating that long memory plays a leading role and is the main
reason for multifractal features.

For the empirical tests, we focused on the price corre-
lation between China’s first mature crude oil futures product
and several key stocks in the crude oil industry chain in the
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Figure 5: Comparison of Hurst exponent, mass exponent, and multifractal spectrum of original, shuffled, and surrogated series. (a) INE-
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domestic stock market and obtained the following three
findings: First, DAG ascertains the price causal relationship
among INE and key stocks. From the simplified DAG, it can
be seen that the price of INE has affected the market prices of
oil and gas exploration and sales companies in China’s fi-
nancial market, and further affecting the stock price of
downstream industry companies. Second, based on
MFDCCA-MODWT with high-frequency data, we verified
that there is a multifractal correlation among INE and se-
lected stocks and the correlation between small fluctuations
is higher than that between the large fluctuations. +ird, by
using shuffled and surrogated sequences, we prove that this
multifractal is caused by long memory and thick tail dis-
tribution, and long-term memory is the main source of the
multifractal features.

5. Discussion

Following the above results, the conclusion for the research
could be drawn from two aspects. On one hand, for the
financial market, the results of DAG and MFDCCA-
MODWTshow that INE could bring stable expectations and
guidance to the market performance of China’s key crude oil
industry-related companies during trading hours. +ese
results prove that INE has a good ability to reduce the risk of
related products in the financial market. +is indicator is
especially crucial for high-frequency traders. Also, the
correlation between the price of crude oil futures and the
stock price of listed companies can be a piece of useful
supplementary information for green finance tools using. If a
listed company does have a green technology promotion, its
stock price can usually find its value quickly. At this time, the
auditing institution focuses on the correlation fluctuation
between the company and the price of crude oil futures as
double insurance to evaluate the authenticity of the decla-
ration materials.

On the other hand, for Chinese policymakers, we suggest
that China can better sort out its market linkages, and on this
basis, promote its green financial policies more effectively. In
addition, considering that the spillover effects of fluctuations
between different financial sub-markets in China are more
complex, decision-making departments should take into
account the development trend of each financial sub-market
and the information spillover and risk dissemination among
the sub-markets, and strengthen structural governance to
enhance the suitability of China’s financial market system.
Besides China, this research provides a basis for

investigating market linkages in the immature financial
markets of developing countries, and it also provides a
framework for investigating related content in other markets
around the world. At the same time, we can also use the
linkages between the markets to design a check and balance
mechanism to better regulate the energy market and im-
plement precise policies to make more contributions to the
control of global warming.
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