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Previous research studies of traffic networks are mainly based on planar networks and less considered the influence of multilayer
networks, which illustrate and represent different appropriate urban traffic modes. Development of rail and road networks is
inseparable from the development of a prosperous urban area; thus, research on multilayer networks has scientific potential and
fulfils a real need. In this paper, a framework of complex network based integrated multilayer urban growth and optimisation
model (CNIMUGOM) is proposed, to analyse the complex relationships between the traffic network structure, the population
growth, and the urban land-use. ,e innovation of this paper is the combination of the traffic complex multilayer networks and
the “Four Step Model” (which stands for trip generation, trip distribution, model split, and traffic assignment steps). With the
multiobjective, multilayer network coevolution and optimisation model, a more efficient traffic network layout was generated
based on different land-use, population density, and travel speed scenarios. ,en, this paper has proved that the proposed
CNIMUGOM can save the traffic network construction investment, reduce the travel cost, make the urban traffic network more
efficient, and decrease the total traffic flow amount. ,is research has connected the recent complex multilayer network related
study and traditional urban economic model based study. ,e findings of the study afford to improve the current land-use and
traffic integrated models and can provide traffic network planning suggestions for urban agglomeration development.

1. Introduction

Many developing countries still face rapid urbanisation
process, with numerous scholars focusing on the prompt
urban traffic network growth and coevolution process [1–3].
To measure the growth and coevolution process of an urban
traffic network, research concentrated on two aspects: the first
is modelling and simulation, and the second is its natural
course [4–6]. ,e study of the coevolution process can clearly
analyse the interrelationships between urban land-use and
traffic networks [7, 8]. Focusing on the coevolution model of
the 19th and 20th century in London, the group of Levinson
and Xie found that population distribution and network
density are positively correlated. ,ey validated a simulation

model to fit the empirical evidence better and noted that
evolution is an iterative process of interaction, investment,
and divestment. Moreover, they illustrated how surface traffic
networks could grow and decline spontaneously over time,
providing further evidence for the property of self-organi-
sation [5, 9–11]. Similarly, a new dynamic model based on the
logistic equation, which captures the dynamic characteristics
of the coevolution process between the street surface and
urban traffic structure, was developed [12]. After that, the
coevolution of urban traffic growth grounded in the case of
Beijing is described [13], and a coevolutionmodel is suggested
with stability analysis and numerical simulation. In another
way, Rui [14] used the multiagent based model to discuss the
complex traffic network growth and land-use coevolution
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process, and centrality indices from different aspects were
thoroughly analysed with the study of Stockholm. Recently, Li
et al. [15] proposed an optimal urban expressway system
model, which considered the interaction equilibrium of
transportation and land-use.

Although those previous investigations are essential and
necessary for further research of urban traffic network and
land-use, they all treat networks as purely planar. Some of them
considered the network growth and variation, but none of
them considered the influence of multilayer networks, which is
the cause of attention to multilayer networks related analysis.

Development of rail and street networks is inseparable
from the development of a prosperous urban area; thus, re-
search onmultilayer networks has scientific potential and fulfils
a real need. To bridge the gap of the multilayer network
representation of real-world networks, Kurant and,iran [16]
first proposed a general multilayer model that facilitated the
description and analysis of multilayer networks. ,e authors
examined three transportation networks and found that a small
error on a multilayer network could cause cascading failures.
,ey also investigated the relationships between degree, be-
tweenness, and real loads and found that, as opposed to the
commonly acknowledged view, the correlations in their dataset
between the three factors were not that apparent. More re-
cently, multilayer networks earned more attention, as traffic
dynamics in two-layer complex networks were considered by
Ma et al. [17], and Albert et al. [18] introduced a standardised
model to simulate the elements navigating those networks and
analysed congestion in multilayer transportation networks.
Furthermore, the ratio of speeds of coupling different modes,
network accessibility, mobility, and behaviour of different
layers were considered [18–23]. ,ese researches bring a new
broad of perspective, investigating the aspects of multilayer
networks to consider the interrelationship and cooperation of
different traffic layers and modes [22, 23].

With the novel study of multilayer networks, the rela-
tionships between the urban traffic networks and land-use of
surrounding areas might be discussed. With the analysis of
some new indicators, their complex relationships become
measurable. ,is fills the research gap of recent urban traffic
network structure based studies; with the study of network
coevolution process, the complex dynamics growth process
can be partly studied. ,e influence of multilayer networks
can be also measured, which connect the growth of upper-
layer and lower-layer network and the accessibility change of
surrounding areas related to urban land-use [24]. Based on
these works, in this paper, the framework of complex network
based integrated multilayer urban growth and optimisation
model (CNIMUGOM) will be proposed first. Considering the
traffic network structure, with the population growth rate rp
and its affection of urban land-use model (the change of
accessibility of employment AE

i and population AP
i ), and the

coupling features of multilayer networks, the study identifies
issues regarding the “Four Step Model” (FSM). For the travel
demand model, the number of trips generated Oi and
attracted Di; the number of trips from traffic zone i to zone j,
Tij; the generalised travel cost tij; the travel time on the link a,
ta; and the traffic flow fa will be calculated. For the street
investment model and traffic network growth model, the

collected revenue of this link Ra, the measurement of mul-
tilayer network structure status NSi, the overall spending
function Sa, and the general investment Ik+1 of iteration k + 1
will be calculated in Matlab. With the multiobjective, mul-
tilayer network coevolution and optimisation model, the
more efficient network layout can be generated based on some
different land-use (different population density) scenarios.
Based on the traffic network and urban land-use coevolution
process, the proposed CNIMUGOM can save the traffic
network construction investment, reduce the travel cost, and
make the urban traffic network more efficient. Based on the
simulation, the proposed network can increase network ef-
ficiency and decrease the total traffic flow amount.

2. Methodology

,is study refers to the general urban transportation system
as a multilayer network. ,e upper-layer network represents
the public rail network, which may include rapid transit,
LRT, monorail, MRT, and subway. Here, this study does not
distinguish between rail transit modes. ,e lower-layer
network represents urban street and road networks.

2.1. Single-Layer Network Representation Method. ,is
method is used by many scholars, and related studies of
different cities were widely accepted [25–28]. According to
the primal approach, the single-layer network representation
method, as shown in Figure 1, the black lines on the right act
as streets or roads, the nodes represent the street intersec-
tions, and the grey spots are buildings.

With this method, the different undirected or directed
networks can be used to represent the urban transportation
networks:

G � 〈V, E, W〉, (1)

where V is the set of nodes, N is the number of nodes when

V � vi|i ∈ I ≡ 1, 2, . . . , N{ } , (2)

E is the unordered pairs or edges of elements of V and is
denoted by eij,

E � eij � vi, vj |i, j ∈ I , (3)

andW is the weight of each edge; in some functions, it can be
denoted as w, and the weight can be treated as the length of
the edge or lanes.

,e number of edges is denoted as M. ,e adjacency
matrix of networks is

A � aij 
n×n

, (4)

representing the connection between nodes vi and vj, which
is defined as

aij �
1, vi, vj  ∈ V,

0, vi, vj  ∉ V,

⎧⎪⎨

⎪⎩
(5)

where aii � 0 to remove any self-connections. In addition,
A � [aij]n×n is symmetrical and nonnegative.
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We define D as the network diameter, with

D � max Sij , 1≤D≤ (N − 1). (6)

Here, Sij is the sum of edge numbers between node pair i
and j.

,e degree centrality was proposed by Freeman [29]; the
function is

DC vi(  �
ki

N − 1
. (7)

,e number of link incidents on a node can reflect the
importance of the node vi in relation to spatial geography,
which indicates that a node with more neighbours is more
important in a network.

,e closeness centrality was proposed by Marchiori and
Latora [30]; the function is

Ccloseness vi(  �
1

Dij

�
N − 1
i≠jdij

. (8)

It is denoted as the reciprocal of the average distance
between each node pair Dij � (i≠jdij/N − 1). ,is index
means that if a node is closer to the other remaining nodes, it
is more important in the network; it describes the relative
location of a node.

,e betweenness centrality was proposed by Freeman
[29]; the function is

BC vi(  �
i≠s≠t∈V d

i
min ,st/dmin ,st 

(N − 1)(N − 2)
. (9)

It is defined as the total number of shortest paths be-
tween two separate nodes dmin ,st and passing through node
vi; it reflects the load on node vi and can be alternately
understood as the controllability of the node. On this basis,
centrality can be clarified as

Cbetweenness vi(  � 
i≠s≠t∈V

d
i
min ,st

dmin ,st
, (10)

and the normalisation of betweenness BC(vi) is described as
the function shows, where (N − 1)(N − 2) is the maximum
possible value.

,e average shortest path length was proposed by Albert
and Barabási [31]; the function is

APL �
1

N(N − 1)

i≠j

d
ij

min. (11)

It is defined as the average number of steps along the
shortest paths for all possible pairs of network nodes.

,e network efficiency E(G) was proposed by [32]; the
function is

E(G) �
1

N(N − 1)

i≠j

1
d

ij

min

. (12)

It shows the average efficiency of transit flow or infor-
mation between nodes in the network.

2.2. Multilayer Network Representation Method. Gu et al.
[33] used this method to study airline networks and rail
networks. ,e formula of the undirected multilayer network
(see Figure 2) can be represented as

G � G
U

, G
L
, (13)

as the set of different layers; here, the superscriptU is used to
define the upper-layer network and superscript L to set the
lower-layer [33, 34].

,e connected network can be used to represent the rail
network and urban street network as

G
U

� V
U

, E
U

, W
U

,

G
L

� V
L
, E

L
, W

L
.

(14)

,e weight is denoted by W in the function [35]. Red
nodes represent rail stations, and blue nodes represent street
intersections; solid lines represent their connections, and
dotted lines represent cross links (cooperative relationship)
between different layers. ,e rail network station is con-
necting with the nearest street network intersection and its
weight is equal to 1 [23]. To simplify the transfer process,
when measuring the accessibility, this study sets the transfer
time between the two layers to 3 minutes [36]. ,e multi-
modal transportation and relations between the vehicle-
based network and the pedestrian network can be gained
from the multilayer network.

,e multilayer network model of urban traffic networks;
the upper-layer represents rail network topology, and the

(a) (b)

Figure 1: ,e single-layer network representation method.
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lower-layer represents the street network topology or OD
zones.

In this definition, V is the set of the street network
topology, and N is the node number of lower-layer when

V � Vi|i ∈ I ≡ 1, 2, . . . , N{ } , (15)

and E represents the unordered pairs of edges and elements
of V and is denoted by eij

E � eij � vi, vj |i, j ∈ I . (16)

Similarly, the definition of the multilayer network is

N
multi

� N
U

+ N
L
,

V
multi

� V
U

+ V
L
,

E
multi

� E
U

+ E
L

+ E
C

.

(17)

,e adjacency matrix of networks adj � [aij]n×n is
symmetrical and nonnegative, representing the connection
between zones i and j, where

aij �
dij × W, vi, vj  ∈ E,

0, vi, vj  ∉ E,

⎧⎪⎨

⎪⎩
(18)

where dij is the Euclidean distance. Define aii � 0 to the-
oretically remove any self-connections to exclude the impact
of the network element itself. ,en, the adjacency matrix of
multilayer networks is

adjmulti
�

adjUNU×NU adjCNU×NL

adjCNL×NU adjLNL×NL

⎡⎢⎣ ⎤⎥⎦. (19)

2.3. Analysing the Coevolution Process of Multilayer Network

2.3.1. 2e Inner Connections of Multilayer Networks. For a
big city, building all of these traffic links as railways is a waste
of money and less effective, and only constructing streets
without any massive rapid transit will cause a heavy traffic
jam. ,e specific structure of the traffic multilayer networks

is the result of the combination of natural and historical
conditions, location characteristics, economic development
and conditions, urban space layout, and even traffic cus-
tomers. ,e network structures determine the relationships
of different layers; they are highly related but have apparent
differences. One of them is the complementary element of
another, using their advantages to make up for the deficiency
of others. ,e structural change of one layer will cause the
change of another layer. ,eir combination completes the
urban traffic networks functions

,e traffic distribution is more focused on the choice of
routes between origin-destination OD zones. It is an iterated
process which compares the trips assigned with the link
capacity to find an equilibrium status and show the number
of travellers on each route and link in a given transportation
network. ,e classic User Equilibrium (UE) is widely ap-
proved and used to describe the user’s route behaviour. Once
the users believe that they find the smallest impedance
(perceptual impedance), they will not change their routes,
although the routes are not the smallest route and the
impedance may not be the smallest route impedance. ,us,
an equilibrium is reached. Related functions will be provided
in later sections.

With the population movement and growth, the growth
of upper-layer and lower-layer networks is determined;
considering the UE problem, we use the Frank–Wolfe BPR
method and set the travel cost on the congested links as
infinite. ,e Frank–Wolfe algorithm is “an iterative first-
order optimisation algorithm for constrained convex opti-
misation” [37, 38], which is widely used to deal with the
traffic equilibrium problem such as UE. After that, the
network structure data, the cost of each link, the OD demand
data, and the capacity of each link are obtained; then, we
initialise the optimisation aims, construct the impedance
function, and find the initial impedance.,en, we use the All
or Nothing Assignment technique [39] to assign the traffic
flow and update the data, and finally the optimal function
value converging to 5% of estimation error range can be
obtained. ,is technique is widely used and well accepted by
many traffic network researchers [38, 40–42].

2.3.2. 2e Coevolution Relationships between Traffic Multi-
layer Network and Urban Land-Use. Many related types of
research have discussed their connections and inner rela-
tionships [43, 44]. Because the traffic capacity and travel
speed are different, the impacts of network structure change
to land-use typically can be measured by the accessibility
[45, 46]. ,e spatial connection means that urban land-use
growth is characterised by continuity in a planar space [47],
and then it is meaningful for the measurement of the
population diffusion and urban growth process. Urban land-
use change process also has a positive correlation with the
variation of the population [48].

,eir coevolution relationships can be simply repre-
sented in Figure 3, in which the traffic generation and at-
traction are determined by the urban land-use spatial
distribution; with the increase of population density, land-
use intensity, and sprawl or generation of new land-use

GC

GL

GU

Figure 2: ,e multilayer network representation method.
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parcels, traffic demand is increasing with different scales,
which naturally needs more traffic infrastructures to satisfy
it. In turn, the increase of the investment of multilayer traffic
networks, which make the traffic networks grow densely,
increases the accessibility of land parcels; as more streets
pass the area, people can easily access this previously less
developed area. ,e abilities of networks can also be im-
proved, as the investment is always used to increase the
capacities and the topological network functions of each
layer. Based on the location theory and the scarcity of urban
land resources, the attraction of these land parcels connected
with traffic networks will increase. ,en, more people are
attracted, and the coevolution process emerges. Here, the
land-use coevolution model is developed to reflect the re-
lationship of accessibility with population growth and
movement, and traffic network growth. Other factors, such
as house price and related policies, are excluded to keep this
relationship succinct and clear. Hence, the land-use model is
highly simplified, mainly focused on the accessibility, and
represented as the distribution of population and
employment.

To represent the competition characteristic of neigh-
bourhood interactions, the land-use coevolution model also
includes both centrifugal and centripetal forces [49, 50].
Assume that people always want to live near to the location
of jobs to save travel cost, but far away from other people
such as potential contestants. However, on the other hand,
employment wants to be accessible both to other businesses
(to save cargo transportation cost) and to people (who are
the suppliers of labour and customers). Both of them want to
live with a higher traffic network structure service grade.
Related functions will be provided in Section 3.

3. The CNIMUGOM

3.1. 2e Framework of CNIMUGOM. ,e content of the
model is suggested, as shown in Figure 4, and different
blocks stand for different models, with the relationships
between those models illustrated as arrows. ,e most fa-
mousmodels are the travel demandmodel, street investment
model, traffic network growth model, population growth
model, urban land-use growth model, and network opti-
misation model.

3.2. Traffic Demand Model. ,e demographic, socioeco-
nomic, land-use, and online hailing data were incorporated
to reveal the root causing that influence traffic demand
[51–53]. When considering the traffic network growth, an
important part that must be focused on is that this kind of
growth is always constrained and stimulated by traffic de-
mand. Based on the initial traffic network data, the classic
“Four Step Model” (FSM) can be generated and used,
considering the multilayer networks and the network co-
evolution process. ,e travel demand model in an initial
network is predetermined by population and employment
data and related to the topology of the multilayer network.

3.2.1. Trip Generation Model. A simple traffic generation
model was given by Levinson and Zhu [49] and Xie and
Levinson [54], where trip generation and trip attraction of
different traffic zones were calculated; with respect to the
population and employment and their natural carriers,
households and companies, the simple linear relationships
were proposed, and the assumption formula is

Oi � ξ0 + ξ1Ei + ξ2Pi,

Di � ψ0 + ψ1Ei + ψ2Pi,
(20)

where Oi and Di stand for the number of trips generated and
attracted; E and P stand for the amount of the employment
and population of traffic zone i, respectively; and ξ0, ξ1, ξ2,
ψ0, ψ1, and ψ2 are adjustable coefficients of this simple linear
equation set, and their values are 0, 0.5, 1, 0, 1, and 0.5,
respectively.

3.2.2. Trip Distribution Model. For the general distribution
process, themostly used doubly constrained trip distribution
model is adopted, that is, a gravity-based model, to match
both trip generation and attraction of locations based on a
negative exponential function that assumes that the inter-
actions of zones decrease with the travel time between them
[50, 54]:

Tij � KiKj OiDje
−ϕtij �

OiDje
−ϕtij

iKiOie
−ϕtij × jKjDje

−ϕtij 
,

(21)

Increase of accessibility

Increase of network ability 

Improvement of 
urban land-use

Increase of trip generation

Increase of trip attraction

Increase of attraction

Increase of 
traffic demand

Improvement of 
urban multi-layer
 traffic networks

Figure 3: ,e simple coevolution relationships between traffic multilayer network and urban land-use.
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where Tij is the number of trips from zone i to zone j, and its
table can be gained as the OD matrix; Oi is the number of
trips attracted in zone i; Dj is the number of trips attracted
by zone j; and tij is the travel cost. (KiKj) � (1/(iKiOi

e− ϕtij × jKjDje
−ϕtij )) are the balancing coefficients which

were precalibrated [55, 56].

3.2.3. Measurement of the Network Structure Related to
Generalised Travel Cost. ,e generalised travel cost as
normal travel cost tij is measured by travel time, a gener-
alised concept considering the congested travel cost, zonal

accessibility, and so forth from zone i to zone j and con-
sidering the intrazonal and interzonal costs. Hence, the
equation can be written as

tij �


a

δa
i,j, ta  + tm,i + tm,j, for i≠ j,

tm,i, for i � j,

⎧⎪⎨

⎪⎩
(22)

where a(δa
i,j, ta) is the interzonal travel time which is the

summation of travel costs along the shortest path between i
and j, and ta represents the generalised travel time that
vehicle spends on the link a; if this link exactly belongs to the

 Traffic 
demand
model

Road 
Investment 

modelUrban 
land-use 
growth 
model 

Coevolution 
model

Urban traffic 
network 

optimisation

 Collected
data

Initial 
urban 

land use
 status

Initial 
urban 
traffic 

network

Multilayer
network 

representation

Traffic 
network
growth 
model 

Population 
growth and 
movement 

model

Convergence check

Final urban
 form

YES

NONO

Ite
ra

tio
n 
k 

+ 
1

Figure 4: ,e framework of CNIMUGOM.
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shortest path between zone i and zone j, δa
i,j � 1; otherwise,

δa
i,j � 0. ,e tm,i embodies the generalised intrazonal travel
time in zone i; this is a simplified measure method also for
the convenient calculation. Sometimes, the intrazonal costs
are neglected for convenient calculation, but they will be
counted especially when the zone has higher land-use in-
tensity and density; they capture a variety of costs incurred
on trips associated with land-use and traffic network
structure differences.

,e travel time on the link a is measured as ta; normally,
it can be calculated as the ratio between the street length la
and the speed va; however, it is always constrained by the
traffic flow fa and the collected revenue of this link Ra:

ta �
la
va

+
Ra/η
fa

. (23)

Here, η is the balance parameter, which represents the av-
erage value of time.

,e BPR function is used to reflect the relationship of the
free flow time v

f
a and congested speed vc

a on link a, Ca is the
link capacity, and αBPR and βBPR are correction factors equal
to 0.15 and 4, respectively:

v
c
a �

v
f
a

1 + αBPR fa/Ca( 
βBPR 

. (24)

For example, in a zone with higher land-use intensity
and density, maybe the jobs provided and population
amount are much more than the average level; thus, the
travel cost will increase correspondingly considering the
traffic congestion levels, longer elevator wait time in sky-
scrapers, and greater difficulty of finding parking. On the
other hand, influenced by the traffic network structure,
within most of the situations (without considering Braess’s
paradox), with higher traffic network structure service level,
it will alleviate the traffic congestion and increase the ac-
cessibility, and usually the cost will be reduced. Based on
these assumptions it can be measured as

tm,i � χt
0
m

1 + Gi/G( 
2

 

1 + NSi/NS( 
2

 
, (25)

where t0m is a specified base intrazonal travel cost for all
zones, χ is a changeable parameter to balance the impact of
network structure, and χ � 1. Gi is the number of activities
(the employment and population) in zone i; the function is
Gi � Ei + Pi, connecting with the trip generation model. G is
the average number of activities for all zones. NSi is the
measurement of network structure status; generally for a
zone with higher traffic infrastructure level, the time used to
pass this zone will lower; hence, considering those funda-
mental traffic network indicators and MCA indicators, this
study chooses the node degree centrality DC, the be-
tweenness Cbetweenness, and the closeness centrality Ccloseness
as related indicators because of the previous analysis, and the
function is

NSi � εDCDC + εBCCbetweenness + εCCCcloseness, (26)

where εDC, εBC, and εCC are parameters equal to 1000, 1, and
10000, respectively, and NS is the average status of network
structure for all zones.

3.2.4. Mode Choice in aMultilayer Network. In this research,
mode choice is used to connect the travel demand with
multilayer networks. Over this process, the trips between a
given origin and destination are split into trips using transit
and automobile for simplicity. ,e most frequently used
function is Binary Logit Model [57], also called “econometric
formulation,” which merely refers a log ratio of the possi-
bility of choosing a mode (Poi) to the possibility of not
choosing this mode (1 − Poi), and the function is

log
Poi

1 − Poi

  � v xi(  � β0 + β1 cA − cR(  + β2 tA − tR( 

+ β3Ic + β4Nt,

(27)

where β0,1,2,3,4 are related parameters, cA and cR are the travel
costs of using the mode of street and rail transit (the
measurement of cA only considers the situation of travel
using the street system, but cR considers using street and rail
systems and the cooperation parts), tA and tR are the travel
times for using the mode of street and rail transit, Ic stands
for income, and Nt is the number of travellers. ,is function
has deterministic meaning; that is, when faced with the same
options, they will always make the same choices. Hereby
considering the multilayer relationship, a function set is
proposed; related parameters refer to the basic multilayer
network indicators, combined with the BPR function and
the real traffic loads on the link a. ,is function set is

cA � wsτs( la  fa,

cR � wsτs( la  fa + wcτc( lc + wrτr( lr  fr,

tA �
la

v
f
a 1 + α fa/Ca( 

β
 

+
Ra/η
fa

,

tR �
lr

vr

+
Rr/η
fr

,

(28)

where la and lr are the length of automobile and train transit
routes, vr is the average speed of rail transit, fr is the rail
traffic flow, and Rr is the collected revenue of this rail link.
,e part ((Rr/η)/fr) also means the transfer and wait time
cost; for a higher investment rail line, the transfer and wait
time are usually smaller.

3.2.5. Traffic Assignment Model. Here, User Equilibrium
(UE) model is chosen; this model is proposed by Sheffi [42]
and has been well recognised and validated by the traffic
researchers; here, it will not be discussed further, and these
conditions can be referred to in Sheffi [42].
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maxE(G),

min Csystem �  xatA

S.T.
la, xa ≥ 0,

 fa( ij � Tij, ∀i, j.

⎧⎨

⎩

(29)

,en, the lower-level function is shown as

minZ(x) � 
a


xa

0
ta xa( dx 

p

f
i,j
p � qij, ∀i, j,

S.T.

xa � 
i


j


p

δi,j
a,pf

i,j
p , ∀a,

f
i,j
a ≥ 0, ∀p, i, j,

xa ≥ 0, a ∈ Slink.

(30)

Here, xa is the equilibrium flows of link a, ta is travel
time, and the function is purposed to get the lowest travel
costs.,e p is the path, fi,j

p is the traffic flow of OD pair i and
j, qij is the trips between i and j, δa

i,j is a definitional con-
straint, and Slink is the set of links in the network.

3.3. Link Investment Model for Multilayer Network. ,e
network growth process from the network structure parts is
discussed previously, but in fact, this process is constrained
by the investment inputs too. As mentioned before, this
study is mainly considering a close network system; here,
this study also treats the growth process as autonomous
investment process. ,e link investment models are fol-
lowing the definition of Levinson et al. [49] and Xie and
Levinson [11], where they describe the economic decisions
of individual links autonomously; that is, the price for using
the street during a given period, which users should pay for
this autonomous agent, is dependent on the general traffic
flow and the total length of these links. After a period, all the
revenues are used to improve the network structure and link
capacity. In each period, it is assumed that the collected
revenues of toll from links by a general toll rate ι1 � 0.1, and
this is an iteration process:

R
k+1
a � ι1 · l

k
a · f

k
a− + f

k
a+  � ι1 · l

k
a · 2f

k
a , (31)

where if the study treats the network as a directed graph, and
the total traffic flow in a given period k can be given as fk

a−

and fk
a+, or for an undirected graph as 2fk

a, then the con-
nection between the collected revenues and the travel time
on the link a can be discussed; that is, ta is determined by the
Rk−1

a . lka is the link length of iteration k.
On the other hand, the maintenance cost function is

based on the toll function; considering the link capacity Ck
a

and average speed vk
a, ι2 � 0.0001, for an ordinary street or

rail line, the capacities in two directions are normally equal
to each other, and the overall spending function Sa is

S
k+1
a � ι2 · l

k
a f

k
a− + f

k
a+ C

k
av

k
a � ι2 · l

k
a 2f

k
a C

k
av

k
a. (32)

,e function of this profit part is

P
k

�  R
k
a −  S

k
a � I

k+1
. (33)

Here, it is assumed that Pk is the profit of iteration k, also
equal to the general investment Ik+1 of iteration k + 1, then
connect with the network growth models and network
optimisation models in the next sections.

,e investment model considers the general revenues
and expenditure of the system. Here, as per these previously
proposed models, if the gathered revenue exceeds the
maintenance cost, the profit part will be spent at the end of a
time period without saving it for the future, with all being
used for the capacity increase of each line, with the function

C
k+1
a � C

k
a

Rk
a

Sk
a

 

ρ

, (34)

where ρ � 0.1. ,e free flow speed of new links with new
capacity can be measured by a log-linear relationship cali-
brated by Zhang and Levinson [58] as v

f
a � −30.6+

9.8 × ln(Ca).

3.4. 2e Population Growth Model. ,e coevolution model
has illustrated some basic points of the population move-
ments and their impacts; they will be further discussed here.
When dealing with the urban expansion process, especially
the land-use change process and the evolution of the urban
street network, the population is treated as the most fre-
quently considered mechanism and has the most significant
consequence [59]. Typically, the population evolution model
includes two parts: the population movement and the
natural increase. ,e natural increase of population will
change the amount of the total population, whereas the
population movement will change the population distri-
bution [60].

For simplicity, it can be assumed that the natural in-
crease rate of the population is a constant, and then a simple
exponential function can be limitedly used, as follows:

dP op
k+1

dt
� rp∗Popk

, (35)

where (dP opk+1/dt) is the population increment of iteration
k + 1, Popk is the population amount of iteration k, and rp is
the increase rate, as rp � 0.015 per iteration [61].

3.5. Urban Land-Use Change Model. For the evolution
models, inspired by the research of Levinson et al. [49] and
Xie and Levinson [11], accessibility A was used to reflect the
desirability of a land parcel by calculating the accessibility of
opportunities and activities [62], showing that smaller op-
portunities provide diminishing influences, also called
gravity-based measurement, assuming that it fits a negative
exponential cost function:

Ai � 

J

j�1
Dje

− ϑcij , (36)
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where Ai is the accessibility of node i to all opportunities Dj

in node j if the total number of traffic analysis nodes is J. ,e
ϑ is the travel cost sensitivity parameter (ϑ � 0.048) to the
node which also indicates how the accessibility of a node
declines with the increase of travel time, and cij is the travel
cost from i to j.

,e only factors which affect location choice of
households and companies are accessibility and population
density. ,en, for the accessibility of employment and
population in a land parcel, the function can be expanded as

A
E
i � 

J

j�1
Eje

− ϑcij ,

A
P
i � 

J

j�1
Pje

− ϑcij ,

(37)

where AE
i is the accessibility to employment from node i

while AP
i is the accessibility to population. In the multilayer

model, cij � cA + cR; hence, the accessibility considered
different travel modes.,is potential measuremethod has its
specific practical advantage; that is, it can be easily calculated
by the existing land-use and transport data.

3.6. Network Structure, Land-Use, and Population Coevolu-
tion Model. ,e desirability function sets are developed to
illustrate the dynamics of employment accessibility and
population accessibility based on independent decisions
concerning their locations and network structure service
grade NSi. For the people desirability, the parameters
λ1, λ2, λ3 are all equal to 1:

Ui,P � A
Eλ1
i A

Pλ2
i NS

λ3
i , (38)

and, for the dynamics of employment desirability, λ4, λ5, λ6
are equal to 0.9, −0.9 and 0.9, respectively:

Ui,E � A
Eλ4
i A

Pλ5
i NS

λ6
i , (39)

where, for the independent decisions made by people, the
competition between employment accessibility and pop-
ulation accessibility acted as centrifugal forces. Conversely,
for the independent decisions made by businesses, the
employment accessibility and population accessibility both
strengthen the employment desirability and serve as cen-
tripetal forces. λ1, . . . , λ6 are the related parameters, and
these relationships between parameters were discussed in
Xie and Levinson [10] as follows: “. . . accessibility to jobs did
show a statistically significant positive effect on home sale
values, while accessibility to resident workers did show a
statistically significant negative effect . . .” (p.164).

,e increase in employment and population in zone i is
proportional to the single node’s desirability difference
quantity; here, Uk

P and Uk
E are the average desirability at

iteration k, considering the natural increase rate r, and
λ7 � λ8 � 1; then, we have the function

ΔP � P
k+1
i − P

k
i � λ7

U
k
i,P − U

k
P P

k
i

U
k
P

+ rP
k
,

ΔE � E
k+1
i − E

k
i � λ8

U
k
i,E − U

k
E E

k
i

U
k
E

+ rE
k
.

(40)

3.7. 2e Multilayer Network Growth Process. ,e multilayer
network coevolution process is combined with the coevo-
lution model. ,e design purpose of the rail network is to
serve more people and increase convenience. Hence, the first
objective is to maximise the total population covered. ,e
second objective is to minimise the total travel costs—or to
obtain a better network structure. For the upper-layer, a new
node is randomly selected from these lower-layer nodes
which have the highest population, and a new scale-free
network is generated. For the lower-layer, a random number
of new nodes (less than 10) will be added in, and a new scale-
free network is generated. ,e network user will choose to
use the rail networks for saving travel cost, and then, based
on the limited capacity of rail networks, it has the upgraded
distribution of traffic flow. Based on this, the population will
be redistributed.

4. Solution Process and Related
Simulation Scenarios

To solve the model, this section proposed a solution process
given here, and the related simulation scenarios are
discussed.

4.1. Solution Process. Here is the solution process by steps:

Step 1. Set the initial amount of population and em-
ployment (different land-use situations) and the travel
speeds, and distribute them in a square area with
100 km of side length and 100 nodes. Here, the random
network is used to discuss the growth model, and the
population is equal to the employment.
Step 2. Based on the functions of traffic demand model,
at each step, it can have the initial OD matrix and the
initial travel costs, and the traffic flows can be measured
based on the traffic assignment model by User Equi-
librium (UE) model and Frank–Wolfe algorithm and
converge to 5% of estimation error range.
Step 3.,e collected revenues and overall expenditure can
be calculated by the traffic flows. Generally, consider the
spending of the total profit for the network growth, and
the multilayer network growth process introduced here.
With the growth of multilayer networks, the network
growth will be based on themwith optimised APL,D, and
travel cost. After the network growth and considering
these flows on the rail networks, the free flow speed of
new links, and link capacity, traffic flows on different links
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including upper-layers can be updated, and an equilib-
rium status can be reached again.
Step 4. Considering the change of population growth
and network structures, land-use accessibility and
desirability are changed, which causes the redistribu-
tion of population and employment, and then the OD
matrix and traffic flows change. ,en, with the new
distribution of population and employment, the new
travel speeds and network structure can be obtained;
return to Step 1.

4.2. Related Simulation Scenarios. As per Step 3 and the
initial status of the simulated city proposed, some scenarios
will be considered here as in Table 1. For simplicity, here, we
merely tested the model with the regular network not
growing, and then more focus was given to the multilayer
network growth-related models. Here, this study considers 8
different simulation scenarios; for example, RRR stands for
the initial population and employment, travel speeds are
randomly distributed (see Figure 5), and so on. As the re-
lationship between land-use and population density could be
modelled well [48], the discussion of different land-use
scenarios can turn to the discussion of the distribution of
population and employment.

5. Simulation and Validation

In the same way as the simulated city, suppose that a square
urban area with length equal to 10 × 104 meters has an initial
number of nodes (randomly and regularly distributed when
the network is not growing to test the proposed model, and
randomly distributed when the network is growing)
(n � 100), with an initial population of 500 thousand, and
the natural increase rate of population is 1.5% per iteration.
,en, the model validation part is proposed at the end of this
section.

5.1. When the Network Is Not Growing. ,e total profits are
used for the capacity increase of each line, which means that
although the network is not growing, the capacities are
improving. Because the network structure is not changed, it
cannot measure the change of APL,D, EG, and so on; hence,
the study will more focus on the total travel times which not
only show how easily one citizen can arrive one area but also
describe the traffic status of the whole network. With the
initial traffic flows on each street, the total travel time cost
through these congested streets is also shown in Figure 6.
With iteration, we can see that this time cost of different
simulation scenarios decreases sharply until reaching a
stable state (Figure 7) (results come from 10 times of
simulation), which means that the street capacity is opti-
mised during the population redistribution process. No
matter what kind of simulation scenarios the network ini-
tially chose, at last, they have similar trends. ,e population
is redistributed following the network travel cost change,
and some areas with higher population also emerge because
of the change of street capacity and travel speed.

Here, the red lines are the travel times of each street, and
the width stands for their values. ,e black lines are the
traffic flows on these streets. Here is the performance of the
random network and regular network in 6 iterations.

5.2. When the Network Is Growing. With the growth of
networks, based on a random network shown in Figure 8, in
line with previous researches, the change trends of APL and
D can be obtained. Considering these different scenarios, we
can see that, with the increase of multilayer networks, the
APL and D are ultimately decreased. With the growth of the
rail network, it is clear that more traffic flows are attracted by
the rail network, and after a few steps, the traffic flow be-
comes more evenly distributed.

APL decreased from more than 5.9×103 to around
4×103, a decrease of about 32% (see Figure 9), and D de-
creased from 15×104 to 8×104, a decrease of about 46%
(see Figure 10). With the network growth process, the in-
crease of network efficiency (Figure 11) by around 27% to
44% can be seen, with the URU having the lowest change
rate and RUU having the highest change rate, which means
that, with the multilayer network growth model, the pro-
posed network structure became optimised. ,e total traffic
flow is optimised by around 30% of decrease (Figure 12) by
the process of redistribution of population and employment
and land-use change, which reduce the movement between
two nodes and make the population and employment reach
the balance in an area, and intrazonal movement increases.
Obviously, the total travel cost is also decreased; this also
means the improvement of network efficiency. Some nodes
with higher population have emerged with their advanced
traffic accessibility, and “new town” or “developing area”
also emerged, as more andmore new nodes are located in the
right middle area.

5.3. Model Validation. ,e change of average travel speed
ratio can influence the model choice and the growth of
networks [23]. To validate the simulation results, another
quantitative index is proposed here as beta, the average
travel speed ratio between upper-layer and lower-layer
networks, and the function is

beta �
v

k
a

vr

, beta ∈ (0, 1), (41)

where vk
a is the average travel speed of the street network and

vr is the average travel speed of the rail network. Here, we set
the average travel speed of the rail network as a constant;
then, as the value of beta increases from 0 to 1, this means
that the average travel speed of the street network is
increasing.

Here, to validate the model, we have run the CNIMU-
GOM 100 times with UUU simulation scenario with the
same network and have the average value of the APL (see
Figure 13) and traffic flow (see Figure 14) with different beta
values. It is shown that, with the value of beta belonging to
0.2 to 0.3, the APL has the lowest value. While the situation
changes a little bit when the traffic flow is considered,
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Table 1: ,e simulation scenarios.

No. ,e population distribution ,e employment distribution ,e limited street speeds
Proposed models Randomly (R)/uniformly (U) Randomly (R)/uniformly (U) Randomly (R)/uniformly (U)
1 R R R
2 R R U
3 R U R
4 R U U
5 U R R
6 U R U
7 U U R
8 U U U

×104

8

6

4

2

10

(a)

×104

8

6

4

2

10

(b)

×104

8

6

4

2

10

(c)

×104

8

6

4

2

10

(d)

Figure 5:,e initial distribution of population, employment, and travel speeds. Here, for each network, 100 nodes are plotted, and the black
edges here stand for the travel speeds. (a) ,e population, employment, and travel speeds are randomly distributed. (b) ,e population and
employment are randomly distributed, but the travel speeds are unified. (c) ,e population and employment are unified, but the travel
speeds are randomly distributed. (d) All of them are uniformly distributed. ,e colour bar stands for the population amount, the colour of
each node can stand for the population and employment amount, and the same is true for the multilayer network representation.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 6: ,e optimisation of population distribution and travel times on the streets.
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Figure 7: ,e total time cost of different simulation scenarios decreases sharply.

12 Complexity



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: ,e growth of multilayer network and redistribution of population and traffic flow, increasing from the top left to bottom right
with ten times of iterations.
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Figure 9: ,e change trends of APL of different simulation
scenarios.
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Figure 10: ,e change trends of D of different simulation
scenarios.
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Figure 11: ,e change trends of network efficiency of different
simulation scenarios.
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Figure 12: ,e change trends of traffic flow of different simulation
scenarios.
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showing that the traffic flow has the lowest value when the
value of beta belongs to 0.1 to 0.2. Furthermore, the CNI-
MUGOM works pretty stably with different beta values and
simulation scenarios.

6. Conclusion

Research about coevolution models and multilayer net-
work models remains somewhat superficial; the combi-
nations of coevolution models and multilayer network
models with land-use applications are relatively rare. While
research in this area is resolutely forward-looking and
fulfils the requirements of mathematical ability, as with
previous city models, it lacks a systematic and compre-
hensive economic description and combination with urban
economic theory.

,e proposed CNIMUGOM has expanded the tra-
ditional planar model to a multilayer network model,
which can better fit the real situations. ,is research also
considered the multilayer network coevolution process
further and considered the self-organisation properties of
networks. ,is model has proposed an efficient way to
combine these different traffic modes, well considering
the complex evolution and coevolution relationships
between network structure, land-use, and population.

CNIMUGOM can be used to optimise the APL and D, to
make the network have smaller total traffic flow, and save
the total travel cost; in other words, we can have a more
efficient network structure. ,e inner relationships be-
tween submodels such as the travel demand model, street
investment model, traffic network growth model, pop-
ulation growth model, urban land-use growth model, and
network optimisation model were analysed and
discussed.

,e proposed CNIMUGOM has some superior prop-
erties compared to other models, as it is a universal model
and can be used in many cities for their modelling optimal
planning schemes and for the large-scale investments.
However, some parts can be further improved. For example,
the growth rate of the population is based on the exponential
distribution for short-term analysis, which may not be very
close to the real situation, and the logistic population growth
model can be used for long-term analysis to adjust it. ,e
study of economic models is still open and can be combined
with big data; with the study of CNIMUGOM, the pop-
ulation distribution acquisition method of big data can be
adopted; for example, the cellphone signalling data and GPS
data can be used to represent the distribution of the urban
population. Next, we proposed that all the revenues are used
to improve the network structure and link capacity; how-
ever, in reality, the incomes can hardly be all used for the
improvement of the networks. ,irdly, the redistribution of
the population, for now, is relatively hard, which has to
consider the place attachment for the population and the
difficulty of its relocation, but from the experiences of
Beijing, based on the public rental housing projects, it can be
partly done. For now, the CNIMUGOM is based on the
simulated city data; for a real city, the model can be easily
applied with road network data, GPS data, and population
data.

Data Availability

,e simulated data used to support the findings of this study
are included within the article, and related codes are
available from the corresponding author upon request.

Disclosure

,is paper is modified and expanded based on Section 4.4 of
Rui Ding’s doctoral dissertation.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is study was funded by National Natural Science Foun-
dation of China (No. 72001053) and Science and Technology
Planning Project of Guizhou Province of China (No. Qian ke
he ji chu [2020]1Y283). Universiti Putra Malaysia is hereby
acknowledged.

4135
4306
4476
4647
4817
4988
5158
5329
5499
5670
5840

beta = 1beta = 0.9beta = 0.8beta = 0.7beta = 0.6beta = 0.5beta = 0.4beta = 0.3beta = 0.2beta = 0.1

Iteration

A
PL

5.8 × 103

5.6 × 103

5.4 × 103

5.2 × 103

5.0 × 103

4.8 × 103

4.6 × 103

4.4 × 103

4.2 × 103
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