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&is research article expands the formal representation of human thinking to a most generalized hybrid theory, namely, complex
q-rung orthopair fuzzy N-soft set. It is able to capture a great deal of graded imprecision and vagueness, which so often appear
together in human interpretations. &is model renders a parameterized mathematical tool for the ranking-based fuzzy modeling
of two-dimensional paradoxical data. To that purpose, the proposed theory integrates complex q-rung orthopair fuzzy sets with
the parametric structure of N-soft sets. &e framework that arises captures information beyond the confined space of complex
intuitionistic fuzzy N-soft sets and complex Pythagorean fuzzy N-soft sets, with the assistance of a parameter q. We establish the
basic set-theoretical operations of this model and prove some of its fundamental properties. &e Einstein and other elementary
algebraic operations on complex q-rung orthopair fuzzy N-soft values shall be introduced to broaden the mathematical toolbox of
this field. Its relationships with contemporary approaches shall demonstrate its outstanding flexibility. Moreover, we establish two
competent multicriteria decision-making algorithms that capture the nuances of periodical inconsistent data. &eir feasibility
shall be demonstrated with an explicit application to the selection of optimum aerospace technology required for the economic
development of the Mexican space agency. A comparative analysis of both strategies with the prevailing techniques substantiates
their rationality. In addition, we illustrate this comparative study with an explicative bar chart that shows the compatibility of their
outcomes. Finally, we examine the functionality of the proposed model and compare it with alternative theories.

1. Introduction

Decision-making plays a substantial role in almost every
discipline of actual life, from engineering to the social sci-
ences or medicine. It is an analytical process whereby real-
world problems are modeled and their best solutions are
identified after careful examination of all rational alterna-
tives. In this competitive era, decision-making has become a
quite challenging task due to the presence of multiple criteria
for the appraisement of the alternatives. &is has resulted
into a growing interest in multiple criteria decision-making
(MCDM) as a thriving branch of operation research. In
recent decades, MCDM methodologies have gained prestige
in numerous territories, including information technology,
robotics, automotive industries, social sciences, business

management, and various other disciplines of science and
technology. In classical MCDM techniques, the assessments
of the performance of the alternatives regarding their
characteristics are entirely precise and exact in nature.
However, most of the actual-world decision-making prob-
lems cannot be modeled with such clear-cut interpretations
because of inherent vagueness and ambiguity of human
perceptions. &e limitations that this imprecision impose on
the traditional approaches has lead the researchers to es-
tablish novel theories with more flexible structures. &eir
target is the incorporation of ample forms of inconsistent
knowledge into the umbrella of MCDM.

Zadeh [1] initially put forward the pioneer solution of
such difficulty by establishing the foundations of fuzzy sets
(FSs). In a fuzzy set, each element is endowed with a

Hindawi
Complexity
Volume 2021, Article ID 3690597, 29 pages
https://doi.org/10.1155/2021/3690597

mailto:m.akram@pucit.edu.pk
https://orcid.org/0000-0001-7217-7962
https://orcid.org/0000-0001-5559-5951
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3690597


membership degree lying within the unit interval [0, 1].
Fuzzy set theory provides a simple but powerful tool for
coping with certain types of imprecision of inexact infor-
mation. Atanassov [2] extended the idea of FS into intui-
tionistic fuzzy set (IFS) by adding a nonmembership degree
(Θ) to the membership degree (Ψ) of FS. For reasons of
consistency, he imposed that that the sum of both degrees
should not exceed 1. Later on, Yager [3] introduced the
notion of Pythagorean fuzzy set (PFS) which relaxes the
aforementioned constraint condition of IFSs to Θ2 + Ψ2 ≤ 1.
Although both FSs and its extension by IFSs have succeeding
in producing remarkable applications, these theories restrict
the opinions of the decision-makers since they must be
confined to a fixed boundary. To overcome this complexity,
Yager [4] proposed the idea of q-rung orthopair fuzzy set
(q-ROFS) in which the sum of the q-th power of both
membership and nonmembership degrees lies between 0
and 1. Nowadays, the q-ROFS is regarded as a most gen-
eralized model of the partial membership approach to un-
certainty. Concerning decision-making, Akram and
Shahzadi [5] developed a hybrid decision-making technique
based on q-rung orthopair fuzzy soft information and il-
lustrated its application in the field of medical diagnosis.
Shaheen et al. [6] proposed an alternative algorithm by
employing relative frequency distributions to generate
membership and nonmembership grades of q-ROFSs. Re-
cently, Yang et al. [7, 8] have discussed new decision-making
methods in this context.

&ese traditional and recent models that expand fuzzy
set theory are limited to address nonperiodic information.
To address periodic phenomena, Ramot et al. [9] remodeled
the notion of fuzzy sets by introducing the novel theory of
complex fuzzy sets (CFSs) in which the range of membership
function is extended from the unit interval [0, 1] to the
complex unit disc w | w ∈ C, |w|≤ 1{ }. Alkouri and Salleh
[10] developed the concept of complex intuitionistic fuzzy
set (CIFS) by proposing the complex-valued membership
(ΘeiΩ) and nonmembership (ΨeiΥ) degrees. Ullah et al. [11]
presented the idea of complex Pythagorean fuzzy sets
(CPFSs) and improved the restricted conditions of CIFSs.

Liu et al. [12] have established the most generalized
extension of complex fuzzy sets, namely, the theory of
complex q-rung orthopair fuzzy sets (Cq-ROFSs) which
significantly relaxed the constraints in terms of a parameter
q. &e Cq-ROFS provides an effective tool for capturing both
vagueness and periodicity within the semantics of human
assessments. &e remarkable potentialities of Cq-ROFS have
sparked the attention of many researchers who have
implemented this outstanding theory in various scientific
areas, including image processing, electromagnetism, pat-
tern recognition, fluid dynamics, networking, relativity, and
thermodynamics. Mahmood and Ali [13] developed a novel
TOPSIS method that uses the correlation coefficient of
Cq-ROFS and showed its applications for the evaluation of
firewall productions and security assessment of computer
systems. Garg et al. [14] successfully established AHP and
TOPSIS methods for complex interval-valued q-rung
orthopair fuzzy sets (CIVq-ROFSs). Jana et al. [15] developed
a remarkable MCDM method based on some novel

aggregation operators of single-valued trapezoidal neu-
trosophic (SVTN) numbers for the prioritization of the best
commercial software systems.

Despite the benefits and applications of the models
explained above, including FSs [1], CFSs [9], CIFSs [10], CPFSs
[11], andCq-ROFSs [12], onemajor common limitation is their
inadequacy for parameterized descriptions. An entirely novel
escape was provided by the theory of soft sets (SSs) which
presents a competent mathematical tool integrating parame-
trization for the description of the alternatives [16] and their
comparisons [17]. &e idea of soft set theory was further
hybridized with other fuzzymathematical structures to develop
new models such as fuzzy soft sets (FSSs) [18], intuitionistic
fuzzy soft sets (IFSSs) [19], Pythagorean fuzzy soft sets (PFSSs)
[20], and q-rung orthopair fuzzy soft sets (q-ROFSSs) [21].
Altogether they produce a rich variety of environments for the
fuzzy modeling of parameterized noncrisp data. Later on,
Chinram et al. [22] established a competent multicriteria de-
cision-making technique by employing novel geometric ag-
gregation operators to diagnose the ailments of patients. Garg
et al. [23] presented the concepts of generalized dice similarity
measures for Cq-ROFSs and demonstrated its empirical ap-
plication in pattern recognition. Wang et al. [24] developed an
advanced MABAC method under q-rung orthopair fuzzy
information for selection of the best construction project. Yang
and Pang [25] proposed a novel q-rung orthopair hesitant
fuzzy decision-making technique based on TOPSIS and linear
programming for the inspection of self-service book sterilizer
problems. Jana et al. [26] employed novel Dombi aggregation
operators of q-rung orthopair fuzzy numbers for the pro-
duction of an advanced decision-making strategy. Further-
more, they demonstrated its potential applicability in the
emerging field of information technology. Wang et al. [27]
established the Pythagorean fuzzy interactive Hamacher power
aggregation operators along with a novel MCDM technique.
&is procedure was applied to the evaluation of the quality of
an express service.

A routine inspection of the research work on soft-set-
inspired theories will show that they tended to prioritize the
use of binary interpretations (either 0 or 1) or else real
numbers lying within the unit interval [0, 1]. In spite of this
fact, numerous decision-making settings are equipped with
multinary, discrete-type data. &erefore, a generic modeli-
zation of soft set theory was required for coping with such
daily-life parameterized ranking-based systems. All these
practical concerns lead Fatimah et al. [28] to introduce the
now thriving theory of N-soft sets (NSSs) along with ap-
propriate decision-making techniques. Real examples were
used to highlight the importance of ordered grades and
ranking-based annotations in practical applications. Akram
et al. [29, 30] soon launched hybrid theories such as hesitant
N-soft set (HNSS) and fuzzy N-soft set (FNSS) by amal-
gamating the idea of N-soft set theory with specific math-
ematical declinations such as hesitancy and fuzziness,
respectively. Beyond these first attempts, Akram et al. [31]
established another hybrid theory of intuitionistic fuzzy
N-soft set (IFNSS) and proposed decision-making algo-
rithms under such a versatile environment. &en, Akram
et al. [32] developed the more advanced idea of complex
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Pythagorean fuzzy N-soft sets (CPFNSSs) which integrated
N-soft sets with the very general complex Pythagorean fuzzy
sets. &e literature on NSS theory was further extended after
analyzing its rich potentiality for empirical applications in
various directions such as optimization theory, data analysis,
forecasting, algebraic structures, information systems, and
mathematical analysis and in sundry other decision-making
complications. Shahzadi et al. [33] proposed an innovative
MCDM strategy based on novel Hamacher interactive ag-
gregation operators of Fermatean fuzzy numbers to properly
classify the air quality (AQ) of Guangzhou for 16th Asian
Olympic Games. Feng et al. [34] proposed Minkowski score
function and a novel decision-making algorithm for the
appraisement of sophisticated benchmark problems. Lin
et al. [35] developed the linguistic q-rung orthopair fuzzy
sets (Lq-ROFSs) and their interactional partitioned Hero-
nian mean aggregation operators in order to evaluate the
credibility of cloud service productions. For the other no-
tation and application, the reader are referred to [36–55]

&e following arguments and evidences condense the
motivation and significance of the theory that shall be
studied in this work:

(i) &e Cq-ROFS theory has succeeded to model both
the uncertainty and periodicity of source data at the
same time. However, it has some limitations be-
cause of its inadequacy in situations with graded
parametrizations, which cannot be related with this
theory as it stands. Our proposed theory is designed
to address such parameterized fuzziness of 2-di-
mensional vague data, which makes it superior to
the Cq-ROFS model since its inception.

(ii) &e spirit of the NSS model is exclusively concerned
with the grading-based uncertainty of the inspected
universe of objects, but it has no abilities to cope
with other sources of inexactness. In this regard, our
proposed Cq-ROFNSS theory renders a more
generalized and constructive mathematical frame-
work that allows for parameterized modeling of
periodical and fuzzy data.

(iii) Although the existing CIFSS and CPFSS theories
have great abilities to deal with the parameterized
vagueness of 2-dimensional problems, their
boundary ranges are restricted by some rigid con-
ditions. Our developed model relaxes them, and at
the same time, it enables us to capture the graded
imprecision embodied in some parameterized un-
certain environments.

(iv) From another position, also the q-ROFNSS model
provides a proficient mathematical structure for
addressing the uncertainty of a parameterized
dataset. However, it is constrained by a one-di-
mensional purpose. Our theory generalizes the
q-ROFNSS model by the inclusion of periodical
fuzzy interpretations of inconsistent information.

In conjunction with the previous point, both advantages
demonstrate the robust generalization ability of the pro-
posed concept.

Motivated by all these facts, this research article estab-
lishes an advanced hybrid model, namely, complex q-rung
orthopair fuzzy N-soft set (Cq-ROFNSS). To do so, it merges
the advantageous features of Cq-ROFS with outstanding
mathematical theory of NSS. In this way, the proposed
mathematical framework is designed to capture the graded
evaluations of parameterized decision-making problems.
&e Cq-ROFNSS model is highly competent to express a
great deal of two-dimensional ambiguous human evalua-
tions. It is a robust generalization of CIFNSSs and CPFNSSs
that widens their restricted boundary space by relaxing their
constraint conditions in terms of an adjustable parameter q.
Moreover, the fundamental set-theoretic operations and
mathematical properties of this theory are elaborated. &e
remarkable flexibility of the proposed model is briefly il-
lustrated with a description of its relationship with existing
competing approaches. &en, the Einstein operators and
some other elementary algebraic operations of
Cq-ROFNSVs are properly formulated. We develop two
advanced decision-making algorithms and demonstrate
their effectivity by investigating a heuristic application for
the prioritization of aerospace technologies of the Mexican
space agency. At the end, a comparative analysis along with
an explicative bar chart is presented to vindicate the reli-
ability and functionality of the proposed strategies.

In a nutshell, the paramount contributions of this article
can be summarized as follows:

(i) &is research article systematically expands the
literature by introducing a multiskilled and most
generalized hybrid model Cq-ROFNSS. It is
designed for the correct modelization of ranking-
based fuzzy modeling of two-dimensional param-
eterized inconsistent data.

(ii) &e rationality and accountability of the proposed
techniques are substantiated by an empirical ap-
plication to the discipline of heavy aerospace
industries.

(iii) We present a comparative analysis with existing
MCDM techniques based on q-ROFSftWG,
Cq-ROFWA and Cq-ROFWG operators. It proves
both the feasibility of the strategies developed in this
paper and the compatibility of their final outcomes.

(iv) &e merits and potentiality of the MCDM meth-
odologies here formulated shed light on their
flexibility, competency, and prominence over the
contemporary decision-making techniques.

&e remainder of this article is organized as follows:
Section 2 briefly recalls some fundamental preliminary
concepts and terminologies preceding the target theory.
Section 3 establishes the framework and basic set-theoretic
operations of the proposed Cq-ROFNSS model. Section 4
demonstrates the Einstein and other algebraic operational
laws on Cq-ROFNSVs. Section 5 introduces two decision-
making algorithms and illustrates their applicability by
means of a potential application for the selection of aero-
space technology. Furthermore, Section 6 substantiates the
versatility of the proposed strategies by conducting a
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comparative study with existing MCDM techniques based
on q-ROFSftWG, Cq-ROFWA, and Cq-ROFWG operators.
Section 7 expounds the merits and superiority of the de-
veloped Cq-ROFNSS theory over other contemporary de-
cision-making models. Finally, Section 8 elaborates the
concluding remarks of the article and raises some future
research questions. &e entire contribution of this research
article is graphically interpreted in Figure 1.

2. Preliminaries

In this section, we briefly explicate some basic rudimentary
concepts and terminologies required for the proficient
modeling of elementary ideas of coming sections.

Definition 1 (see [2]). Let W be a universe of discourse. An
intuitionistic fuzzy set T over the universe W is an object
having the following form:

T � w,ΘT(w),ΨT(w)( 􏼁􏼉 | w ∈W􏼈 􏼉, (1)

where real-valued functions ΘT: W⟶ [0, 1] and
ΨT: W⟶ [0, 1] specify the membership and nonmem-
bership degrees of an element w ∈W, satisfying the con-
straint condition 0≤ΘT(w) + ΨT(w)≤ 1. For all w ∈W,
AT(w) � (1 − ΘT(w) − ΨT(w)) represents the degree of
indeterminacy. &e pair of membership and nonmember-
ship degrees (ΘT(w),ΨT(w)) can be referred as an intui-
tionistic fuzzy number (IFN).

Definition 2 (see [4]). Let W be a universe of discourse. A
q-rung orthopair fuzzy set T over the universe W can be
characterized as

T � w,ΘT(w),ΨT(w)( 􏼁􏼉 | w ∈W􏼈 􏼉, (2)

where real-valued functions ΘT: W⟶ [0, 1] and
ΨT: W⟶ [0, 1] indicate membership and nonmember-
ship degrees of an elementw ∈W, subjected to the condition
0≤Θq

T(w) + Ψq

T(w)≤ 1. For all w ∈W, AT(w) ������������������

1 − Θq

T(w) − Ψq

T(w)
q

􏽱

represents the degree of indetermi-
nacy. &e pair of membership and nonmembership degrees
(ΘT(w),ΨT(w)) is called a q-rung orthopair fuzzy number
(q-ROFN).

Definition 3 (see [12]). Let W be a universe of discourse. A
complex q-rung orthopair fuzzy set T over the universe W

can be elaborated as follows:

T � w,ΘT(w)e
iΩT(w)

,ΨT(w)e
iΥT(w)

􏼐 􏼑 | w ∈W􏽮 􏽯, (3)

where i �
���
− 1

√
, and the amplitude terms

ΘT(w),ΨT(w) ∈ [0, 1] and phase terms ΩT(w),ΥT(w) ∈
[0, 2π] subjected to the conditions 0≤Θq

T(w) + Ψq

T(w)≤ 1
and 0≤ (ΩT(w)/2π)q + (ΥT(w)/ 2π)q ≤ 1. For all w ∈W,
AT(w) �

�����������������

1 − Θq

T(w) − Ψq

T(w)
q

􏽱

ei2π
������������������
1− (ΩT(w)/2π)q− (ΥT(w)/2π)qq

√

represents the degree of indeterminacy. &e pair of mem-
bership and nonmembership degrees (ΘT(w)eiΩT(w),

ΨT(w)eiΥT(w)) can be referred as a complex q-rung orthopair
fuzzy number (Cq-ROFN).

Definition 4 (see [21]). Let W be a universe of discourse and
J be a collection of parameters, M⊆J. A pair T � (I, M) is
said to be a q-rung orthopair fuzzy soft set over W if
I: M⟶ q − ROF(W), where q − ROF(W) is the
family of all q-ROFSs over the universe W. A q-ROFSS T

over the universe W can be represented as follows:

T � mα,I mα( 􏼁( 􏼁 | mα ∈M,I mα( 􏼁 ∈ q − ROF(W)􏼈 􏼉,

(4)

where I(mα) � (wη,Θηα(wη),Ψηα(wη)) | wη ∈W􏽮 􏽯 repre-
sents the q-ROFS over the universe W. &e membership
Θηα(wη) and nonmembership Ψηα(wη) degrees belong to
the unit interval [0, 1] satisfying the
condition 0≤Θq

ηα(wη) + Ψq
ηα(wη)≤ 1. &e Aηα(w) �

������������������
1 − Θq

ηα(w) − Ψq
ηα(w)q

􏽱
represents the degree of indeter-

minacy, for all w ∈W. &e pair of membership and non-
membership degrees (Θηα(w),Ψηα(w)) is called a q-rung
orthopair fuzzy soft number (q-ROFSN).

Definition 5 (see [21]). &e score function for any q-ROFSN,
Vηα � (Θηα,Ψηα) can be characterized as follows:

L Vηα􏼐 􏼑 � Θq
η − Ψq

η +
e
Θq

η− Ψq
η

e
Θq

η − Ψq
η + 1

−
1
2

⎛⎝ ⎞⎠ πq
η, for q≥ 1,

(5)

where L represents the score function of q-ROFSN and
L(Vηα) lies inside the closed interval [− 1, 1].

Definition 6 (see [21]). Let V1α � (Θ1α,Ψ1α)(α � 1, 2) and
V � (Θ,Ψ) be any three q-ROFSNs and H> 0 be any real
number. &en, the operations based on these three
q-ROFSNs can be explicated as follows:

(1) V11 ⊕V12 � (

�����������������

Θq
11 +Θq

12 − Θq
11Θ

q
12,

q

􏽱

Ψ11Ψ12 )

(2) V11 ⊗V12 � (Θ11Θ12,
����������������

Ψq
11 + Ψq

12 − Ψq
11Ψ

q
12

q

􏽱

)

(3) HV � (

������������

1 − (1 − Θq)H,
q

􏽱

ΨH )

(4) VH � (ΘH,

������������

1 − (1 − Ψq)H
q

􏽱

)

Definition 7 (see [28]). Let W be a universe of discourse and
J be a collection of attributes. Let M⊆J and
K � 0, 1, . . . , N − 1{ } be a set of ordered grades, where
N ∈ 2, 3, . . .{ }. A triplet T � (℘, M, N) is said to be a N-soft
set over the universe W if ℘: M⟶ 2W×K having property
that for each m ∈M, there exist an unique dyad
(w, km) ∈W × K such that (w, km) ∈ ℘(m), w ∈W, and
km ∈K. &e N-soft set T over the universe W can be ex-
plicated as follows:

T � mα,℘ mα( 􏼁( 􏼁 | mα ∈M,℘ mα( 􏼁 ∈ 2W×K
􏽮 􏽯. (6)
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3. Complex q-RungOrthopair FuzzyN-Soft Sets

Definition 8. Let W be a universe of discourse and J be a
collection of attributes. Let M⊆J and K � 0, 1, . . . , N − 1{ }

be a set of ordered grades with N ∈ 2, 3, . . .{ }. A triplet 􏽥T �

(pq, Y, N) is said to be a complex q-rung orthopair fuzzy
N-soft set on W, when Y � (P, M, N) is NSS on the universe
W and pq: M⟶ Cq − ROFW×K, where Cq − ROFW×K

is the collection of all complex q-rung orthopair fuzzy sets
over W × K. &e Cq-ROFNSS (pq, Y, N) can be charac-
terized in the following decorum:
􏽥T � mα, pq mα( 􏼁􏽄 􏽅 | mα ∈M, pq mα( 􏼁 ∈ Cq − ROF

W×K
􏽮 􏽯,

(7)

where pq(mα) � ((wη, kηα),Θηα(wη, kηα)eiΩηα(wη,kηα),Ψηα􏽮

(wη, kηα)eiΥηα(wη ,kηα)) | (wη, kηα) ∈W × K} represents the

Cq-ROFS over W × K. &e amplitude terms Θηα(wη, kηα),
Ψηα(wη, kηα) belong to unit interval [0, 1] satisfying the
condition

0≤Θq
ηα wη, kηα􏼐 􏼑 + Ψq

ηα wη, kηα􏼐 􏼑≤ 1, (8)

and phase termsΩηα(wη, kηα), Υηα(wη, kηα) belong to closed
interval [0, 2π] subjected to the condition

0≤
Ωηα wη, kηα􏼐 􏼑

2π
⎛⎝ ⎞⎠

q

+
Υηα wη, kηα􏼐 􏼑

2π
⎛⎝ ⎞⎠

q

≤ 1, (9)

where i �
���
− 1

√
. For all (wη, kηα) ∈W × K, the degree of

indeterminacy can be explicated as follows:

Aηα wη, kηα􏼐 􏼑 � 1 − Θq
ηα wη, kηα􏼐 􏼑 − Ψq

ηα wη, kηα􏼐 􏼑􏼐 􏼑
1/q

e
i2π 1− Ωηα wη,kηα( 􏼁/2π( 􏼁

q

− Υηα wη,kηα( 􏼁/2π( 􏼁
q

( 􏼁
1/q

. (10)

In other words, Cq-ROFNSS is a ranking-based pa-
rameterized family of complex q-rung orthopair fuzzy sets of
W × K; that is, the mapping pq assigns each parameter
mα ∈M to a complex q-rung orthopair fuzzy set pq(mα) of
W × K.

Now, we present tabular representation of general
complex q-rung orthopair fuzzy N-soft set:

Let W be a collection of ℘ objects and M be a set of Z

attributes, then the tabular characterization of Cq-ROFNSS
is illustrated in Table 1.

Definition 9. &e Cq-ROFNSS can be interpreted as ℘ × Z

table, where ℘ � |W|, Z � |M|whose ηα th element is called a
complex q-rung orthopair fuzzy N-soft value
(Cq-ROFNSV), and it has the representative form, which is
interpreted as follows:

Vηα � kηα, Θηαe
iΩηα ,Ψηαe

iΥηα􏼐 􏼑􏽄 􏽅, (11)

where η � 1, 2, . . . ,℘; α � 1, 2, . . . , Z.

Definition 10. &e score function L for any Cq-ROFNSV,
Vηα � kηα, (ΘηαeiΩηα ,ΨηαeiΥηα)􏽄 􏽅 can be demarcated as
follows:

L Vηα􏼐 􏼑 � Θq
ηα − Ψq

ηα􏼐 􏼑 +
Ωηα
2π

􏼠 􏼡

q

−
Υηα
2π

􏼠 􏼡

q

􏼠 􏼡 +
kηα

N − 1
􏼠 􏼡

q

,

(12)
where L(Vηα) ∈ [− 2, 3].

Definition 11. &e accuracy function Q for any
Cq-ROFNSV, Vηα � kηα, (ΘηαeiΩηα ,ΨηαeiΥηα)􏽄 􏽅 can be ex-
plicated as follows:

Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8

Merits of
Cq-ROFNESS

model

Concluding
remarks

Comprehensive
discussion

Application in
aerospace
industry

Einstein
operations of
Cq-ROFNSVs

Restricted
and

extended
unions

Restricted
and

extended
intersections
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Figure 1: Graphical demonstration of proposed work.
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Q Vηα􏼐 􏼑 � Θq
ηα + Ψq

ηα􏼐 􏼑 +
Ωηα
2π

􏼠 􏼡

q

+
Υηα
2π

􏼠 􏼡

q

􏼠 􏼡

+
kηα

N − 1
􏼠 􏼡

q

,

(13)

where Q(Vηα) ∈ [0, 5].

Definition 12. Let V11 � k11, (Θ11eiΩ11 ,Ψ11eiΥ11)􏼊 􏼋 and
V12 � k12, (Θ12eiΩ12 ,Ψ12eiΥ12)􏼊 􏼋 be any two Cq-ROFNSVs,
then the comparison between V11 and V12 can be deter-
mined as follows:

(1) If L(V11)<L(V12), then V11≺V12 (V11 is inferior
to V12)

(2) If L(V11)>L(V12), then V11≻V12 (V11 is superior
to V12)

(3) If L(V11) � L(V12), then

(i) if Q(V11)<Q(V12), then V11≺V12 (V11 is
inferior to V12)

(ii) if Q(V11)>Q(V12), then V11≻V12 (V11 is
superior to V12)

(iii) if Q(V11) � Q(V12), then V11 ∼ V12 (V11 is
equivalent to V12)

&e motivation and prominence of this newly estab-
lished model is clearly demonstrated by the following real-
life practical application. In order to develop intuition for
this advanced theory, this application has been kept com-
paratively simple. &is empirical application interprets the
deficiencies of the existing q-rung orthopair fuzzy N-soft
model, proposed by Zhang et al. [36] and authenticates the
remarkable effectuality of the proposed model in the current
sophisticated decision-making problems.

Example 1. Spillways are the hydraulic structures con-
structed on the hydroelectric dams to provide a safe pathway
for surplus floodwater to discharge from a reservoir to a
downstream area.&ese are the most important part of dams
that significantly protects the infrastructural integrity of the
dam. Nowadays, the selection of the most efficient spillway is
one of the most crucial decision-making problems. Suppose
that a spillway has to be constructed on the rockfill dam in
the north of Greece for the irrigation purpose. An appro-
priate spillway is determined by star rankings and ratings
awarded by the designated experts of the selection board.
&ese ratings are based on the proficiency of spillways in the
last 5 years. Let W � w1 �􏼈 Chute spillway, w2 � Shaft
spillway, w3 �Ogee spillway, w4 � Siphon spillway, and
w5 � Labyrinth spillway} be a collection of five spillways and

M � m1 �􏼈 Topography, m2 �Construction cost,
m3 �Discharge rate, and m4 �Reservoir capacity} be a set of
four parameters which are employed to assign grades to
these spillways.

A 5-soft set can easily be obtained from Table 2, where

(i) Four stars represent “Excellent”
(ii) &ree stars represent “Superb”
(iii) Two stars represent “Good”
(iv) One star represents “Average”
(v) Big inverted delta represents “Poor”

&e grades K � 0, 1, 2, 3, 4{ } can be definitely associated
with the ranking-based evaluation carried out by stars as
follows:

(i) 0 stands for “ ”
(ii) 1 stands for “ ”
(iii) 2 stands for “ ”
(iv) 3 stands for “ ”
(v) 4 stands for “ ”

&e appointed experts of the panel rank each spillway on
the basis of their overall competency which is further pre-
sented in Table 2.

Now, the tabular representation of its corresponding
identified 5-soft set is provided in Table 3.

&e selection panel comprehensively evaluate all the
identified spillways to determine their ratings by virtue of
both membership (Θηα) and nonmembership degrees
(Ψηα). So, we extract a 3-rung orthopair fuzzy 5-soft set
(3-ROF5SS) by following a certain grading criteria which is
given as follows.

For all wη ∈W and q � 3, 0≤Θ3ηα + Ψ3ηα ≤ 1 with

0.0≤Θηα wη􏼐 􏼑< 0.2when kηα � 0,

0.2≤Θηα wη􏼐 􏼑< 0.4when kηα � 1,

0.4≤Θηα wη􏼐 􏼑< 0.6when kηα � 2,

0.6≤Θηα wη􏼐 􏼑< 0.8when kηα � 3,

0.8≤Θηα wη􏼐 􏼑≤ 1.0when kηα � 4.

(14)

&en, 3-ROF5SS can be explicated as follows:

p3, Y, 5( 􏼁 � m1, p3 m1( 􏼁( 􏼁, m2, p3 m2( 􏼁( 􏼁􏼁, m3, p3 m3( 􏼁( 􏼁,􏼈

m4, p3 m4( 􏼁( 􏼁􏼉,

(15)

where

Table 1: Tabular representation of Cq-ROFNSS.

(pq, Y, N) m1 m2 · · · mZ

w1 |k11, (Θ11eiΩ11 ,Ψ11eiΥ11 )| k12, (Θ12eiΩ12 ,Ψ12eiΥ12 )􏼊 􏼋 · · · k1Z, (Θ1ZeiΩ1Z ,Ψ1ZeiΥ1Z )􏼊 􏼋

w2 k21, (Θ21eiΩ21 ,Ψ21eiΥ21 )􏼊 􏼋 k22, (Θ22eiΩ22 ,Ψ22eiΥ22 )􏼊 􏼋 · · · k2Z, (Θ2ZeiΩ2Z ,Ψ2ZeiΥ2Z )􏼊 􏼋

⋮ ⋮ ⋮ ⋮ ⋮
w℘ k℘1, (Θ℘1eiΩ℘1 ,Ψ℘1eiΥ℘1 )􏽄 􏽅 k℘2, (Θ℘2eiΩ℘2 ,Ψ℘2eiΥ℘2 )􏽄 􏽅 · · · k℘Z, (Θ℘ZeiΩ℘Z ,Ψ℘ZeiΥ℘Z )􏽄 􏽅
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p3 m1( 􏼁 � w1, 4( 􏼁, 0.96, 0.01􏼊 􏼋, w2, 2( 􏼁, 0.68, 0.74􏼊 􏼋, w3, 0( 􏼁, 0.03, 0.97􏼊 􏼋􏼈 ,

w4, 3( 􏼁, 0.86, 0.19􏼊 􏼋􏼉, w5, 2( 􏼁, 0.16, 0.72􏼊 􏼋􏼉,

p3 m2( 􏼁 � w1, 3( 􏼁, 0.45, 0.14􏼊 􏼋, w2, 1( 􏼁, 0.45, 0.57􏼊 􏼋, w3, 3( 􏼁, 0.68, 0.11􏼊 􏼋,􏼈

w4, 4( 􏼁, 0.97, 0.03􏼊 􏼋􏼉, w5, 0( 􏼁, 0.04, 0.97􏼊 􏼋􏼉,

p3 m3( 􏼁 � w1, 0( 􏼁, 0.01, 0.99􏼊 􏼋, w2, 4( 􏼁, 1.00, 0.02􏼊 􏼋, w3, 2( 􏼁, 0.75, 0.81􏼊 􏼋,􏼈

w4, 1( 􏼁, 0.43, 0.55􏼊 􏼋􏼉, w5, 3( 􏼁, 0.84, 0.16􏼊 􏼋􏼉,

p3 m4( 􏼁 � w1, 2( 􏼁, 0.56, 0.63􏼊 􏼋, w2, 3( 􏼁, 0.76, 0.26􏼊 􏼋, w3, 0( 􏼁, 0.05, 0.98􏼊 􏼋,􏼈

w4, 2( 􏼁, 0.57, 0.48􏼊 􏼋􏼉, w5, 4( 􏼁, 0.95, 0.35􏼊 􏼋􏼉.

(16)

&e tabular representation of 3-ROF5SS is demonstrated
in Table 4.

&e experts of the selection panel analyze all the
inspected spillways and assign membership and nonmem-
bership degrees Θηα(wη, kηα), Ψηα(wη, kηα), respectively, to
each spillway. Now, suppose an expert interprets that “&e
discharge rate of a spillway w1 is very low in the first 3 years
but dramatically increases in the last 2 years because of rapid
climate change and global warming.” &en, the values of
Θ11(w1, 4) � 0.96 andΨ11(w1, 4) � 0.01 are paradoxical and
all the information regarding the time frame of discharge
rate would be lost which may badly collapse the infra-
structure of spillway as well as corresponding dam also. To
avoid such possible disaster, it is better to assign complex-
valuedmembership and nonmembershipΨ11(w1, 4) degrees
for the instant elaboration of all the information scrutinized
by the expert. Hence, we establish complex 3-rung orthopair
fuzzy 5-soft set (C3-ROF5SS) rather than 3-rung orthopair
fuzzy 5-soft set (3-ROF5SS) for the proper settlement of such
deficiency.Now, the following values may be allocated to
Θ11(w1, 4) and Ψ11(w1, 4) in the light of redefined grading
criteria:

Θ11 w1, 4( 􏼁 � 0.96e
i1.98π

,

Ψ11 w1, 4( 􏼁 � 0.01e
i0.02π

.
(17)

Here, phase term illustrates all the time-dependent in-
formation regarding discharge rate of spillway under con-
sideration. &erefore, C3-ROF5SS (p3, Y, 5) is proposed by
integrating the peculiarities of both 3-ROFS and 5-soft set
theories for the two-dimensional ranking-based assessment
of these investigated spillways. Now, we reshape the grading
criteria on the basis of score degrees of C3-ROF5SVs
L(Vηα), whereVηα � kηα, (ΘηαeiΩηα ,ΨηαeiΥηα)􏽄 􏽅, which can
be defined as follows:

− 2.0≤L Vηα􏼐 􏼑< − 1.0when kηα � 0,

− 1.0≤L Vηα􏼐 􏼑< 0.0when kηα � 1,

0.0≤L Vηα􏼐 􏼑< 1.0when kηα � 2,

1.0≤L Vηα􏼐 􏼑< 2.0when kηα � 3,

2.0≤L Vηα􏼐 􏼑≤ 3.0when kηα � 4.

(18)

Finally, an advanced C3-ROF5SS can be interpreted as
follows:

p3, Y, 5( 􏼁 � m1, p3 m1( 􏼁( 􏼁, m2, p3 m2( 􏼁( 􏼁􏼁, m3, p3 m3( 􏼁( 􏼁,􏼈

m4, p3 m4( 􏼁( 􏼁􏼉,

(19)

where

Table 2: Ranking of spillways.

W/M m1 m2 m3 m4

w1
w2
w3
w4
w5

Table 3: Associated 5-soft set.

(P, M, 5) m1 m2 m3 m4

w1 4 3 0 2
w2 2 1 4 3
w3 0 3 2 0
w4 3 4 1 2
w5 2 0 3 4
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p3 m1( 􏼁 � w1, 4( 􏼁, 0.96e
i1.98π

, 0.01e
i0.02π

􏽄 􏽅, w2, 2( 􏼁, 0.68e
i1.56π

, 0.74e
i1.47π

􏽄 􏽅, w3, 0( 􏼁, 0.03e
i0.02π

, 0.97e
i1.94π

􏽄 􏽅,􏽮

w4, 3( 􏼁, 0.86e
i1.75π

, 0.19e
i0.07π

􏽄 􏽅􏽯, w5, 2( 􏼁, 0.16e
i1.89π

, 0.72e
i1.66π

􏽄 􏽅􏽯,

p3 m2( 􏼁 � w1, 3( 􏼁, 0.45e
i1.84π

, 0.14e
i1.17π

􏽄 􏽅, w2, 1( 􏼁, 0.45e
i0.34π

, 0.57e
i0.45π

􏽄 􏽅, w3, 3( 􏼁, 0.68e
i1.84π

, 0.11e
i0.12π

􏽄 􏽅,􏽮

w4, 4( 􏼁, 0.97e
i1.96π

, 0.03e
i0.04π

􏽄 􏽅􏽯, w5, 0( 􏼁, 0.04e
i0.02π

, 0.97e
i1.99π

􏽄 􏽅􏽯,

p3 m3( 􏼁 � w1, 0( 􏼁, 0.01e
i0.04π

, 0.99e
i1.95π

􏽄 􏽅, w2, 4( 􏼁, 1.00e
i1.94π

, 0.02e
i0.01π

􏽄 􏽅, w3, 2( 􏼁, 0.75e
i1.45π

, 0.81e
i1.37π

􏽄 􏽅,􏽮

w4, 1( 􏼁, 0.43e
i0.42π

, 0.55e
i0.56π

􏽄 􏽅􏽯, w5, 3( 􏼁, 0.84e
i1.72π

, 0.16e
i0.08π

􏽄 􏽅􏽯,

p3 m4( 􏼁 � w1, 2( 􏼁, 0.56e
i1.85π

, 0.63e
i1.76π

􏽄 􏽅, w2, 3( 􏼁, 0.76e
i1.79π

, 0.26e
i0.04π

􏽄 􏽅, w3, 0( 􏼁, 0.05e
i0.03π

, 0.98e
i1.96π

􏽄 􏽅,􏽮

w4, 2( 􏼁, 0.57e
i1.67π

, 0.48e
i1.60π

􏽄 􏽅􏽯, w5, 4( 􏼁, 0.95e
i1.98π

, 0.35e
i0.08π

􏽄 􏽅􏽯.

(20)

Evidently, C3-ROF5SS can be easily demonstrated in
tabular form by Table 5.

Remark 1

(1) Any Cq-ROF2SS (pq, Y, 2) can be definitely associ-
ated with complex q-rung orthopair fuzzy soft set
(Cq-ROFSS). We can generally identify the
Cq-ROF2SS pq: M⟶ Cq − ROFW× 0,1{ } through
Cq-ROFSS 􏽥p: M⟶ Cq − ROF(W), which is
characterized as follows:

􏽥p mα( 􏼁 � wη,Θηα wη􏼐 􏼑e
iΩηα wη( 􏼁

,Ψηα wη􏼐 􏼑e
iΥηα wη( 􏼁

􏼒 􏼓 | wη, 1􏼐 􏼑,Θηα wη, 1􏼐 􏼑e
iΩηα wη ,1( 􏼁

,Ψηα wη, 1􏼐 􏼑e
iΥηα wη ,1( 􏼁

􏼜 􏼝 ∈ pq mα( 􏼁􏼚 􏼛,

(21)

for every mα ∈M.
(2) A Cq-ROFNSS (pq, Y, N) over the universe W is said

to be efficient if Y � (P, M, N) is NSS on W and
(wη, N − 1),Θ(wη, N − 1)eiΩ(wη,N− 1),Ψ(wη, N − 1)􏽄

eiΥ(wη,N− 1)〉 ∈ pq(mα), for some mα ∈M, wη ∈W.
(3) Grade 0 ∈ K in Definition 8 indicates the lowest

score. It does not interpret that there is insufficient
information or lack of proper evaluations.

We now proceed to elaborate the various fundamental
notions of complementarity in the advanced framework of
complex q-rung orthopair fuzzy N-soft sets.

Definition 13. Let (pq, Y, N) be a Cq-ROFNSS over the
universe W, where Y � (P, M, N) be its corresponding NSS
on W. &en, the complex q-rung orthopair fuzzy comple-
ment (pc

q, Y, N) of (pq, Y, N) can be explicated as

p
c
q, Y, N􏼐 􏼑 � mα, p

c
q mα( 􏼁􏽄 􏽅 | mα ∈M, p

c
q mα( 􏼁 ∈ Cq􏽮

− ROF
W×K

􏽯,

(22)

where

p
c
q mα( 􏼁 � wη, kηα􏼐 􏼑,Ψ wη, kηα􏼐 􏼑e

iΥ wη ,kηα( 􏼁
,Θ wη, kηα􏼐 􏼑e

iΩ wη ,kηα( 􏼁
􏼜 􏼝 | wη, kηα􏼐 􏼑 ∈W × K􏼚 􏼛. (23)

Definition 14. Let (pq, Y, N) be a Cq-ROFNSS over the
universe W, where Y � (P, M, N) be its respective NSS on

W. &en, the weak complex q-rung orthopair fuzzy com-
plement (pc

q, Yc, N) of (pq, Y, N) is defined as

Table 4: Tabular representation of 3-ROF5SS.

(p3, Y, 5) m1 m2 m3 m4

w1 4, (0.96, 0.01)〈 〉 3, (0.45, 0.14)〈 〉 0, (0.01, 0.99)〈 〉 2, (0.56, 0.63)〈 〉

w2 2, (0.68, 0.74)〈 〉 1, (0.45, 0.57)〈 〉 4, (1.00, 0.02)〈 〉 3, (0.76, 0.26)〈 〉

w3 0, (0.03, 0.97)〈 〉 3, (0.68, 0.11)〈 〉 2, (0.75, 0.81)〈 〉 0, (0.05, 0.98)〈 〉

w4 3, (0.86, 0.19)〈 〉 4, (0.97, 0.03)〈 〉 1, (0.43, 0.55)〈 〉 2, (0.57, 0.48)〈 〉

w5 2, (0.16, 0.72)〈 〉 0, (0.04, 0.97)〈 〉 3, (0.84, 0.16)〈 〉 4, (0.95, 0.35)〈 〉
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p
c
q, Y

c
, N􏼐 􏼑 � mα, p

c
q mα( 􏼁􏽄 􏽅 | mα ∈M, p

c
q mα( 􏼁 ∈ Cq􏽮

− ROF
W×K

􏽯,

(24)

where pc
q(mα) � (wη, kηα),Ψ(wη, kηα)eiΥ(wη,kηα),Θ(wη,􏽄􏽮

kηα)ei(Ωwη ,kηα)〉 | (wη, kηα) ∈W × K} and for all mα ∈M,
Pc(mα)∩P(mα) � ∅.

Example 2. Consider the C3-ROF5SS as illustrated in Ex-
ample 1. &en, its complex 3-rung orthopair fuzzy

complement (pc
3, Y, 5) and weak complex 3-rung orthopair

fuzzy complement (pc
3, Yc, 5) are provided in Tables 6 and 7,

respectively.

Definition 15. Let (pq, Y, N) be a Cq-ROFNSS over the
universe W, where Y � (P, M, N) be the corresponding NSS
on W. &en, its top complex q-rung orthopair fuzzy weak
complement, represented by (pt

q, Yt, N), can be demarcated
as

p
t
q, Y

t
, N􏼐 􏼑 �

p
t
q mα( 􏼁 � wη, N − 1􏼐 􏼑, Ψ wη, kηα􏼐 􏼑e

iΥ wη ,kηα( 􏼁
, Θ wη, kηα􏼐 􏼑e

iΩ wη,kηα( 􏼁
􏼜 􏼝, if kηα <N − 1,

p
t
q mα( 􏼁 � wη, 0􏼐 􏼑, Ψ wη, kηα􏼐 􏼑e

iΥ wη,kηα( 􏼁
, Θ wη, kηα􏼐 􏼑e

iΩ wη ,kηα( 􏼁
􏼜 􏼝, if kηα � N − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

Definition 16. Let (pq, Y, N) be a Cq-ROFNSS over the
universe W, where Y � (P, M, N)is the respective NSS on
W. &en, its bottom complex q-rung orthopair fuzzy weak

complement, represented by (pb
q, Yb, N), can be interpreted

as

p
b
q, Y

b
, N􏼐 􏼑 �

p
b
q mα( 􏼁 � wη, 0􏼐 􏼑, Ψ wη, kηα􏼐 􏼑e

iΥ wη,kηα( 􏼁
, Θ wη, kηα􏼐 􏼑e

iΩ wη,kηα( 􏼁
􏼜 􏼝, if kηα > 0,

p
b
q mα( 􏼁 � wη, N − 1􏼐 􏼑, Ψ wη, kηα􏼐 􏼑e

iΥ wη,kηα( 􏼁
, Θ wη, kηα􏼐 􏼑e

iΩ wη ,kηα( 􏼁
􏼜 􏼝, if kηα � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Example 3. Consider the C3-ROF5SS as provided in Ex-
ample 1. &en, its top complex 3-rung orthopair fuzzy weak
complement (pt

3, Yt, 5) and bottom complex 3-rung
orthopair fuzzy weak complement (pb

3 , Yb, 5) are summa-
rized in Tables 8 and 9, respectively.

We now interpret two significant practicable approaches
for the union and intersection of novel complex q-rung
orthopair fuzzy N-soft sets.

Definition 17. Let (pa
q, Ya, Na) and (pb

q, Yb, Nb) be two
Cq-ROFNSS over the universe of discourse W, where Ya �

(Pa, F, Na) and Yb � (Pb, G, Nb) be corresponding NSSs on
W. &en, their restricted intersection symbolized by
(pa

q, Ya, Na) ∩ R(pb
q , Yb, Nb) � (zq, Ya ∩ RYb, min(Na,

Nb)), where Ya ∩ RYb � (Z, F∩G, min(Na, Nb)) can be
characterized as follows:

∀mα ∈ F∩G, wη ∈W, (wη, kηα),X,Y􏽄 􏽅 ∈ zq(mα)⇔kηα
� min(ka

ηα, kb
ηα), X � min(ΘS(wη, ka

ηα), ΘT(wη, kb
ηα))

eimin(ΩS(wη ,ka
ηα),ΩT(wη ,kb

ηα)), Y � max(ΨS(wη, ka
ηα),ΨT(wη, kb

ηα))

eimax(ΥS(wη,ka
ηα),ΥT(wη ,kb

ηα)), if (wη, ka
ηα),ΘS(wη, ka

ηα)eiΩS(wη,ka
ηα),􏽄

ΨS(wη, ka
ηα)eiΥS(wη ,ka

ηα) 〉 ∈ pa
q(mα) and (wη, kb

ηα),ΘT(wη,􏽄

kb
ηα)eiΩT(wη,kb

ηα),ΨT(wη, kb
ηα)eiΥT(wη ,kb

ηα)〉 ∈ pb
q(mα), and S and

T are Cq-ROFSs on pa
q(mα) and pb

q(mα), respectively.

Definition 18. Let (pa
q, Ya, Na) and (pb

q, Yb, Nb) be two
Cq-ROFNSSs over the universe of discourse W, where Ya �

(Pa, F, Na) and Yb � (Pb, G, Nb) are respective NSSs on
W. &en, their extended intersection represented
by (pa

q, Ya, Na)∩ E(pb
q, Yb, Nb) � (dq, Ya ∩ EYb, max(Na,

Table 5: Tabular representation of C3-ROF5SS.

(p3, Y, 5) m1 m2 m3 m4

w1 4, (0.96ei1.98π , 0.01ei0.02π)􏼊 􏼋 3, (0.45ei1.84π , 0.14ei1.17π)􏼊 􏼋 0, (0.01ei0.04π, 0.99ei1.95π)􏼊 􏼋 2, (0.56ei1.85π , 0.63ei1.76π)􏼊 􏼋

w2 2, (0.68ei1.56π , 0.74ei1.47π)􏼊 􏼋 1, (0.45ei0.34π , 0.57ei0.45π)􏼊 􏼋 4, (1.00ei1.94π, 0.02ei0.01π)􏼊 􏼋 3, (0.76ei1.79π , 0.26ei0.04π)􏼊 􏼋

w3 0, (0.03ei0.02π , 0.97ei1.94π)􏼊 􏼋 3, (0.68ei1.84π , 0.11ei0.12π)􏼊 􏼋 2, (0.75ei1.45π, 0.81ei1.37π)􏼊 􏼋 0, (0.05ei0.03π , 0.98ei1.96π)􏼊 􏼋

w4 3, (0.86ei1.75π , 0.19ei0.07π)􏼊 􏼋 4, (0.97ei1.96π , 0.03ei0.04π)􏼊 􏼋 1, (0.43ei0.42π, 0.55ei0.56π)􏼊 􏼋 2, (0.57ei1.67π , 0.48ei1.60π)􏼊 􏼋

w5 2, (0.16ei1.89π , 0.72ei1.66π)􏼊 􏼋 0, (0.04ei0.02π , 0.97ei1.99π)􏼊 􏼋 3, (0.84ei1.72π, 0.16ei0.08π)􏼊 􏼋 4, (0.95ei1.98π , 0.35ei0.08π)􏼊 􏼋
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Nb)), where Ya ∩ EYb � (D, F∪G, max(Na, Nb)) can be
delineated as

dq mα( 􏼁 �

p
a
q mα( 􏼁, if mα ∈ F − G,

p
b
q mα( 􏼁, if mα ∈ G − F,

wη, kηα􏼐 􏼑,X,Y􏽄 􏽅,

such that kηα � min k
a
ηα, k

b
ηα􏼐 􏼑,

X � min ΘS wη, k
a
ηα􏼐 􏼑,ΘT wη, k

b
ηα􏼐 􏼑􏼐 􏼑e

imin ΩS wη ,ka
ηα􏼐 􏼑,ΩT wη ,kb

ηα􏼐 􏼑􏼐 􏼑
,

Y � max ΨS wη, k
a
ηα􏼐 􏼑,ΨT wη, k

b
ηα􏼐 􏼑􏼐 􏼑e

imax ΥS wη ,ka
ηα􏼐 􏼑,ΥT wη,kb

ηα􏼐 􏼑􏼐 􏼑
,

where wη, k
a
ηα􏼐 􏼑,ΘS wη, k

a
ηα􏼐 􏼑e

iΩS wη ,ka
ηα􏼐 􏼑

,ΨS wη, k
a
ηα􏼐 􏼑e

iΥS wη ,ka
ηα􏼐 􏼑

􏼪 􏼫 ∈ p
a
q mα( 􏼁,

and wη, k
b
ηα􏼐 􏼑,ΘT wη, k

b
ηα􏼐 􏼑e

iΩT wη,kb
ηα􏼐 􏼑

,ΨT wη, k
b
ηα􏼐 􏼑e

iΥT wη ,kb
ηα􏼐 􏼑

􏼪 􏼫 ∈ p
b
q mα( 􏼁,

S andT are Cq − ROFSs onp
a
q mα( 􏼁 andp

b
q mα( 􏼁, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Table 6: Complex 3-rung orthopair fuzzy complement.

(pc
3, Y, 5) m1 m2 m3 m4

w1 4, (0.01ei0.02π , 0.96ei1.98π)􏼊 􏼋 3, (0.14ei1.17π , 0.45ei1.84π)􏼊 􏼋 0, (0.99ei1.95π, 0.01ei0.04π)􏼊 􏼋 2, (0.63ei1.76π , 0.56ei1.85π)􏼊 􏼋

w2 2, (0.74ei1.47π , 0.68ei1.56π)􏼊 􏼋 1, (0.57ei0.45π , 0.45ei0.34π)􏼊 􏼋 4, (0.02ei0.01π, 1.00ei1.94π)􏼊 􏼋 3, (0.26ei0.04π , 0.76ei1.79π)􏼊 􏼋

w3 0, (0.97ei1.94π , 0.03ei0.02π)􏼊 􏼋 3, (0.11ei0.12π , 0.68ei1.84π)􏼊 􏼋 2, (0.81ei1.37π, 0.75ei1.45π)􏼊 􏼋 0, (0.98ei1.96π , 0.05ei0.03π)􏼊 􏼋

w4 3, (0.19ei0.07π , 0.86ei1.75π)􏼊 􏼋 4, (0.03ei0.04π , 0.97ei1.96π)􏼊 􏼋 1, (0.55ei0.56π, 0.43ei0.42π)􏼊 􏼋 2, (0.48ei1.60π , 0.57ei1.67π)􏼊 􏼋

w5 2, (0.72ei1.66π , 0.16ei1.89π)􏼊 􏼋 0, (0.97ei1.99π , 0.04ei0.02π)􏼊 􏼋 3, (0.16ei0.08π, 0.84ei1.72π)􏼊 􏼋 4, (0.35ei0.08π , 0.95ei1.98π)􏼊 􏼋

Table 7: Weak complex 3-rung orthopair fuzzy complement.

(pc
3, Yc, 5) m1 m2 m3 m4

w1 1, (0.01ei0.02π , 0.96ei1.98π)􏼊 􏼋 2, (0.14ei1.17π , 0.45ei1.84π)􏼊 􏼋 1, (0.99ei1.95π , 0.01ei0.04π)􏼊 􏼋 3, (0.63ei1.76π , 0.56ei1.85π)􏼊 􏼋

w2 3, (0.74ei1.47π , 0.68ei1.56π)􏼊 􏼋 2, (0.57ei0.45π , 0.45ei0.34π)􏼊 􏼋 3, (0.02ei0.01π , 1.00ei1.94π)􏼊 􏼋 4, (0.26ei0.04π , 0.76ei1.79π)􏼊 􏼋

w3 2, (0.97ei1.94π , 0.03ei0.02π)􏼊 􏼋 4, (0.11ei0.12π , 0.68ei1.84π)􏼊 􏼋 0, (0.81ei1.37π , 0.75ei1.45π)􏼊 􏼋 1, (0.98ei1.96π , 0.05ei0.03π)􏼊 􏼋

w4 4, (0.19ei0.07π , 0.86ei1.75π)􏼊 􏼋 3, (0.03ei0.04π , 0.97ei1.96π)􏼊 􏼋 2, (0.55ei0.56π , 0.43ei0.42π)􏼊 􏼋 0, (0.48ei1.60π , 0.57ei1.67π)􏼊 􏼋

w5 3, (0.72ei1.66π , 0.16ei1.89π)􏼊 􏼋 1, (0.97ei1.99π , 0.04ei0.02π)􏼊 􏼋 4, (0.16ei0.08π , 0.84ei1.72π)􏼊 􏼋 3, (0.35ei0.08π , 0.95ei1.98π)􏼊 􏼋

Table 8: Top complex 3-rung orthopair fuzzy weak complement.

(pt
3, Yt, 5) m1 m2 m3 m4

w1 0, (0.01ei0.02π , 0.96ei1.98π)􏼊 􏼋 4, (0.14ei1.17π , 0.45ei1.84π)􏼊 􏼋 4, (0.99ei1.95π , 0.01ei0.04π)􏼊 􏼋 4, (0.63ei1.76π , 0.56ei1.85π)􏼊 􏼋

w2 4, (0.74ei1.47π , 0.68ei1.56π)􏼊 􏼋 4, (0.57ei0.45π , 0.45ei0.34π)􏼊 􏼋 0, (0.02ei0.01π , 1.00ei1.94π)􏼊 􏼋 4, (0.26ei0.04π , 0.76ei1.79π)􏼊 􏼋

w3 4, (0.97ei1.94π , 0.03ei0.02π)􏼊 􏼋 4, (0.11ei0.12π , 0.68ei1.84π)􏼊 􏼋 4, (0.81ei1.37π , 0.75ei1.45π)􏼊 􏼋 4, (0.98ei1.96π , 0.05ei0.03π)􏼊 􏼋

w4 4, (0.19ei0.07π , 0.86ei1.75π)􏼊 􏼋 0, (0.03ei0.04π , 0.97ei1.96π)􏼊 􏼋 4, (0.55ei0.56π , 0.43ei0.42π)􏼊 􏼋 4, (0.48ei1.60π , 0.57ei1.67π)􏼊 􏼋

w5 4, (0.72ei1.66π , 0.16ei1.89π)􏼊 􏼋 4, (0.97ei1.99π , 0.04ei0.02π)􏼊 􏼋 4, (0.16ei0.08π , 0.84ei1.72π)􏼊 􏼋 0, (0.35ei0.08π , 0.95ei1.98π)􏼊 􏼋

Table 9: Bottom complex 3-rung orthopair fuzzy weak complement.

(pb
3 , Yb, 5) m1 m2 m3 m4

w1 0, (0.01ei0.02π , 0.96ei1.98π)􏼊 􏼋 0, (0.14ei1.17π, 0.45ei1.84π)􏼊 􏼋 4, (0.99ei1.95π , 0.01ei0.04π)􏼊 􏼋 0, (0.63ei1.76π , 0.56ei1.85π)􏼊 􏼋

w2 0, (0.74ei1.47π , 0.68ei1.56π)􏼊 􏼋 0, (0.57ei0.45π, 0.45ei0.34π)􏼊 􏼋 0, (0.02ei0.01π , 1.00ei1.94π)􏼊 􏼋 0, (0.26ei0.04π , 0.76ei1.79π)􏼊 􏼋

w3 4, (0.97ei1.94π , 0.03ei0.02π)􏼊 􏼋 0, (0.11ei0.12π, 0.68ei1.84π)􏼊 􏼋 0, (0.81ei1.37π , 0.75ei1.45π)􏼊 􏼋 4, (0.98ei1.96π , 0.05ei0.03π)􏼊 􏼋

w4 0, (0.19ei0.07π , 0.86ei1.75π)􏼊 􏼋 0, (0.03ei0.04π, 0.97ei1.96π)􏼊 􏼋 0, (0.55ei0.56π , 0.43ei0.42π)􏼊 􏼋 0, (0.48ei1.60π , 0.57ei1.67π)􏼊 􏼋

w5 0, (0.72ei1.66π , 0.16ei1.89π)􏼊 􏼋 4, (0.97ei1.99π, 0.04ei0.02π)􏼊 􏼋 0, (0.16ei0.08π , 0.84ei1.72π)􏼊 􏼋 0, (0.35ei0.08π , 0.95ei1.98π)􏼊 􏼋

10 Complexity



Example 4. Consider the tabular form of C2-ROF6SS
(pa

2 , Ya, 6) and C2-ROF4SS (pb
2, Yb, 4) as presented in Ta-

bles 10 and 11, respectively, where Ya � (Pa, F, 6) and Yb �

(Pb, G, 4) are 6-soft set and 4-soft set over the universe W,
respectively. &en, their restricted intersection
(z2, Ya ∩ RYb, 4) and extended intersection (d2, Ya ∩ EYb, 6)

are encapsulated in Tables 12 and 13, respectively.

Definition 19. Let (pa
q, Ya, Na) and (pb

q, Yb, Nb) be two
Cq-ROFNSSs over the universe of discourse W, where Ya �

(Pa, F, Na) and Yb � (Pb, G, Nb) be corresponding NSSs on
W. &en, their restricted union symbolized
by (pa

q, Ya, Na)∪R(pb
q, Yb, Nb) � (zq, Ya ∪ RYb, max(Na,

Nb)), where Ya ∪ RYb � (Z, F∩G, max(Na, Nb)) can be
explicated as follows:
∀mα ∈ F∩G, wη ∈W, (wη, kηα),X,Y􏽄 􏽅 ∈ zq(mα)⇔kηα

� max(ka
ηα, kb

ηα), X � max(ΘS(wη, ka
ηα),ΘT(wη, kb

ηα))

eimax(ΩS(wη ,ka
ηα),ΩT(wη ,kb

ηα)), Y � min(ΨS(wη, ka
ηα),ΨT(wη, kb

ηα))

eimin(ΥS(wη,ka
ηα),ΥT(wη ,kb

ηα)), if (wη, ka
ηα),ΘS(wη, ka

ηα)eiΩS(wη,ka
ηα),􏽄

ΨS(wη, ka
ηα)eiΥS(wη ,ka

ηα)〉 ∈ pa
q(mα) and (wη, kb

ηα),ΘT(wη,􏽄

kb
ηα)eiΩT(wη,kb

ηα),ΨT(wη, kb
ηα)eiΥT(wη ,kb

ηα)〉 ∈ pb
q(mα), and S and

T are Cq-ROFSs on pa
q(mα) and pb

q(mα), respectively.

Definition 20. Let (pa
q, Ya, Na) and (pb

q, Yb, Nb) be two
Cq-ROFNSSs over the universe of discourse W, where Ya �

(Pa, F, Na) and Yb � (Pb, G, Nb) are respective NSSs on W.
&en, their extended union represented
by (pa

q, Ya, Na)∪ E(pb
q, Yb, Nb) � (dq, Ya ∪ EYb, max(Na,

Nb)), where Ya ∪ EYb � (D, F∪G, max(Na, Nb)) is inter-
preted as follows:

dq mα( 􏼁 �

p
a
q mα( 􏼁, if mα ∈ F − G,

p
b
q mα( 􏼁, if mα ∈ G − F,

wη, kηα􏼐 􏼑,X,Y􏽄 􏽅,

such that kηα � max k
a
ηα, k

b
ηα􏼐 􏼑,

X � max ΘS wη, k
a
ηα􏼐 􏼑,ΘT wη, k

b
ηα􏼐 􏼑􏼐 􏼑e

imax ΩS wη,ka
ηα􏼐 􏼑,ΩT wη,kb

ηα􏼐 􏼑􏼐 􏼑
,

Y � min ΨS wη, k
a
ηα􏼐 􏼑,ΨT wη, k

b
ηα􏼐 􏼑􏼐 􏼑e

imin ΥS wη ,ka
ηα􏼐 􏼑,ΥT wη,kb

ηα􏼐 􏼑􏼐 􏼑
,

where wη, k
a
ηα􏼐 􏼑,ΘS wη, k

a
ηα􏼐 􏼑e

iΩS wη ,ka
ηα􏼐 􏼑

,ΨS wη, k
a
ηα􏼐 􏼑e

iΥS wη,ka
ηα􏼐 􏼑

􏼪 􏼫 ∈ p
a
q mα( 􏼁

and wη, k
b
ηα􏼐 􏼑,ΘT wη, k

b
ηα􏼐 􏼑e

iΩT wη,kb
ηα􏼐 􏼑

,ΨT wη, k
b
ηα􏼐 􏼑e

iΥT wη ,kb
ηα􏼐 􏼑

􏼪 􏼫 ∈ p
b
q mα( 􏼁,

S andT are Cq − ROFSs onp
a
q mα( 􏼁 andp

b
q mα( 􏼁, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Example 5. Consider the C2-ROF6SS and C2-ROF4SS as
defined in Example 4. &en, their restricted union
(z2, Ya ∪ RYb, 6) and extended union (d2, Ya ∪ EYb, 6) are
illustrated in Tables 14 and 15, respectively.

Remark 2. &eDefinitions 17–20 of extended (or restricted)
union and intersection will suffice the defined grading
criteria if and only if Na � Nb.

&e notion of Cq-ROFNSS can be easily identified with
contemporary theories including complex q-rung orthopair

fuzzy soft set (Cq-ROFSS), q-rung orthopair fuzzy N-soft
set, N-soft set, and soft set. Now, we are going to derive
Cq-ROFSS and SS from the proposed Cq-ROFNSS by
employing the following definitions:

Definition 21. Let (pq, Y, N) be a Cq-ROFNSS over a uni-
verse of discourse W, where Y � (P, M, N) be its respective
NSS on W. Let 0<H<N be a threshold. &en, Cq-ROFSS
over the universe W associated with (pq, Y, N) and H is
(pH

q , M), which can be interpreted as follows:

p
H
q mα( 􏼁 �

Θηαe
iΩηα ,Ψηαe

iΥηα􏽄 􏽅, if kηα, Θηαe
iΩηα ,Ψηαe

iΥηα􏼐 􏼑􏽄 􏽅 ∈ pq mα( 􏼁 and kηα ≥H,

0.00e
i0.00π

, 0.50e
i1.00π

􏽄 􏽅, if
kηα

N
≥ 0.50,

0.00e
i0.00π

, 1.00e
i2.00π

􏽄 􏽅, if
kηα

N
< 0.50.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)
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Specifically, (p1
q, M) is said to be the bottom Cq-ROFSS

and (pN− 1
q , M) is said to be the top Cq-ROFSS relative to

Cq-ROFNSS.

Definition 22. Let 0<H<N and σ ∈ [− 2, 3] be thresholds.
&e soft set over the universe W corresponding to (pq, Y, N)

and (H, σ) is represented by (p(H,σ)
q , M) and can be ex-

plicated by the assignment:

p
(H,σ)
q mα( 􏼁 � w ∈W: L p

H
q mα( 􏼁􏼐 􏼑> σ􏽮 􏽯, for eachmα ∈M,

(30)

Table 10: C2-ROF6SS.

(pa
2 , Ya, 6) m1 m2 m3

w1 4, (0.96ei1.84π , 0.15ei0.12π)􏼊 􏼋 3, (0.74ei1.45π, 0.36ei0.69π)􏼊 􏼋 2, (0.53ei1.32π , 0.46ei0.83π)􏼊 􏼋

w2 5, (0.98ei1.97π , 0.01ei0.02π)􏼊 􏼋 1, (0.15ei0.28π, 0.92ei1.78π)􏼊 􏼋 0, (0.01ei0.03π , 0.97ei1.95π)􏼊 􏼋

w3 3, (0.82ei1.44π , 0.38ei0.62π)􏼊 􏼋 0, (0.02ei0.01π, 0.99ei1.96π)􏼊 􏼋 3, (0.79ei1.46π , 0.42ei0.57π)􏼊 􏼋

w4 2, (0.58ei1.25π , 0.43ei0.76π)􏼊 􏼋 2, (0.65ei1.33π, 0.48ei0.86π)􏼊 􏼋 5, (0.95ei1.99π , 0.02ei0.03π)􏼊 􏼋

Table 11: C2-ROF4SS.

(pb
2, Yb, 4) m1 m2 m4

w1 2, (0.56ei1.99π , 0.12ei0.26π)􏼊 􏼋 1, (0.12ei0.22π , 0.88ei0.97π)􏼊 􏼋 3, (0.83ei1.69π , 0.24ei0.14π)􏼊 􏼋

w2 3, (0.91ei1.85π , 0.32ei0.06π)􏼊 􏼋 2, (0.68ei1.95π , 0.05ei0.24π)􏼊 􏼋 0, (0.04ei0.01π , 0.97ei1.98π)􏼊 􏼋

w3 0, (0.11ei0.04π , 0.96ei1.99π)􏼊 􏼋 2, (0.93ei0.97π , 0.52ei0.04π)􏼊 􏼋 2, (0.79ei1.78π , 0.13ei0.23π)􏼊 􏼋

w4 1, (0.23ei0.15π , 0.96ei1.86π)􏼊 􏼋 3, (0.88ei1.93π , 0.16ei0.12π)􏼊 􏼋 1, (0.25ei0.13π , 0.91ei1.89π)􏼊 􏼋

Table 12: Restricted intersection.

(z2, Ya ∩ RYb, 4) m1 m2

w1 2, (0.56ei1.84π , 0.15ei0.26π)􏼊 􏼋 1, (0.12ei0.22π , 0.88ei0.97π)􏼊 􏼋

w2 3, (0.91ei1.85π , 0.32ei0.06π)􏼊 􏼋 1, (0.15ei0.28π , 0.92ei1.78π)􏼊 􏼋

w3 0, (0.11ei0.04π , 0.96ei1.99π)􏼊 􏼋 0, (0.02ei0.01π , 0.99ei1.96π)􏼊 􏼋

w4 1, (0.23ei0.15π , 0.96ei1.86π)􏼊 􏼋 2, (0.65ei1.33π , 0.48ei0.86π)􏼊 􏼋

Table 13: Extended intersection.

(d2, Ya ∩ EYb, 6) m1 m2 m3 m4

w1 2, (0.56ei1.84π , 0.15ei0.26π)􏼊 􏼋 1, (0.12ei0.22π , 0.88ei0.97π)􏼊 􏼋 2, (0.53ei1.32π, 0.46ei0.83π)􏼊 􏼋 3, (0.83ei1.69π , 0.24ei0.14π)􏼊 􏼋

w2 3, (0.91ei1.85π , 0.32ei0.06π)􏼊 􏼋 1, (0.15ei0.28π , 0.92ei1.78π)􏼊 􏼋 0, (0.01ei0.03π, 0.97ei1.95π)􏼊 􏼋 0, (0.04ei0.01π , 0.97ei1.98π)􏼊 􏼋

w3 0, (0.11ei0.04π , 0.96ei1.99π)􏼊 􏼋 0, (0.02ei0.01π , 0.99ei1.96π)􏼊 􏼋 3, (0.79ei1.46π, 0.42ei0.57π)􏼊 􏼋 2, (0.79ei1.78π , 0.13ei0.23π)􏼊 􏼋

w4 1, (0.23ei0.15π , 0.96ei1.86π)􏼊 􏼋 2, (0.65ei1.33π , 0.48ei0.86π)􏼊 􏼋 5, (0.95ei1.99π, 0.02ei0.03π)􏼊 􏼋 1, (0.25ei0.13π , 0.91ei1.89π)􏼊 􏼋

Table 14: Restricted union.

(z2, Ya ∪ RYb, 6) m1 m2

w1 4, (0.96ei1.99π , 0.12ei0.12π)􏼊 􏼋 3, (0.74ei1.45π , 0.36ei0.69π)􏼊 􏼋

w2 5, (0.98ei1.97π , 0.01ei0.02π)􏼊 􏼋 2, (0.68ei1.95π , 0.05ei0.24π)􏼊 􏼋

w3 3, (0.82ei1.44π , 0.38ei0.62π)􏼊 􏼋 2, (0.93ei0.97π , 0.52ei0.04π)􏼊 􏼋

w4 2, (0.58ei1.25π , 0.43ei0.76π)􏼊 􏼋 3, (0.88ei1.93π , 0.16ei0.12π)􏼊 􏼋

Table 15: Extended union.

(d2, Ya ∪ EYb, 6) m1 m2 m3 m4

w1 4, (0.96ei1.99π , 0.12ei0.12π)􏼊 􏼋 3, (0.74ei1.45π , 0.36ei0.69π)􏼊 􏼋 2, (0.53ei1.32π, 0.46ei0.83π)􏼊 􏼋 3, (0.83ei1.69π , 0.24ei0.14π)􏼊 􏼋

w2 5, (0.98ei1.97π , 0.01ei0.02π)􏼊 􏼋 2, (0.68ei1.95π , 0.05ei0.24π)􏼊 􏼋 0, (0.01ei0.03π, 0.97ei1.95π)􏼊 􏼋 0, (0.04ei0.01π , 0.97ei1.98π)􏼊 􏼋

w3 3, (0.82ei1.44π , 0.38ei0.62π)􏼊 􏼋 2, (0.93ei0.97π , 0.52ei0.04π)􏼊 􏼋 3, (0.79ei1.46π, 0.42ei0.57π)􏼊 􏼋 2, (0.79ei1.78π , 0.13ei0.23π)􏼊 􏼋

w4 2, (0.58ei1.25π , 0.43ei0.76π)􏼊 􏼋 3, (0.88ei1.93π , 0.16ei0.12π)􏼊 􏼋 5, (0.95ei1.99π, 0.02ei0.03π)􏼊 􏼋 1, (0.25ei0.13π , 0.91ei1.89π)􏼊 􏼋
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where L(pH
q (mα)) is the score function of

pH
q (mα) � ΘH

ηαeiΩH
ηα ,ΨH

ηαeiΥH
ηα􏼜 􏼝.

Example 6. Consider the C3-ROF5SS (p3, Y, 5) as repre-
sented by Table 5. We have 0<H< 5, from Definition 21.
&e C3-ROFSS associated with feasible threshold H � 3 is
summarized in Table 16. Meanwhile, while taking
(H, σ) � (3, 1.5), we can define the soft set (p(3,1.5)

q , M)

which is illustrated in Table 17.
In view of above analysis, it is contemplated that

Cq-ROFNSSs can be transformed into Cq-ROFSSs and SSs
under specific conditions. In other words, Cq-ROFNSSs are
the potent generalization of Cq-ROFSSs and SSs.

Remark 3

(1) Let (pq, Y, N) be a Cq-ROFNSS over the universe W

and J be a set of parameters with M⊆J.&en, the NSS
interrelated with Cq-ROFNSS (pq, Y, N) is Y, where
Y � (P, M, N). &is simple assignment illustrates
that Cq-ROFNSS generalizes NSS as well as SS too.

(2) Every complex intuitionistic fuzzy N-soft set
(CIFNSS) and complex Pythagorean fuzzy N-soft set
(CPFNSS) are also a Cq-ROFNSS for all q≥ 3, but
converse is not true, because

(i) If 0≤Θ + Ψ≤ 1 or 0≤Θ2 + Ψ2 ≤ 1, then
0≤Θq + Ψq ≤ 1, for all Θ,Ψ ∈ [0, 1] and q≥ 3

(ii) If 0≤ (Ω/2π) + (Υ/2π)≤ 1 or 0≤ (Ω/2π)2+

(Υ/2π)2 ≤ 1, then 0≤ (Ω/2π)q + (Υ/2π)q ≤ 1, for
all Ω,Υ ∈ [0, 2π] and q≥ 3

&is implies that Cq-ROFNSS significantly extrap-
olates the ideal concepts of CIFNSS and CPFNSS.

(3) Cq-ROFNSS particularly becomes a q-rung ortho-
pair fuzzy N-soft set by taking phase terms of both
membership and nonmembership degrees equiva-
lent to zero; that is, when Ωηα � 0 � Υηα in Defini-
tion 8, we grasp the definition of q-ROFNSS which is
elucidated as follows:

pq, Y, N􏼐 􏼑 � mα, pq mα( 􏼁 | mα ∈M, pq mα( 􏼁􏽄 ∈ q􏽮

− ROF
W×K

􏽯,

(31)

where pq(mα) � ((wη, kηα),Θηα(wη, kηα),Ψηα(wη,􏽮

kηα) | (wη, kηα) ∈W × K} represents the q-ROFS and
q-ROFW×K denotes the family of all q-rung
orthopair fuzzy sets over W × K.

Also, it is understood that q-ROFNSSs generalize the
PFNSSs, IFNSSs, FNSSs, NSSs, PFSSs, IFSSs, and SSs as well.
&erefore, we can also claim that Cq-ROFNSSs admirably
generalizes all these extant models.

4. Operations

We now elaborate some rudimentary operational laws on
complex q-rung orthopair fuzzy N-soft values.

Definition 23. Consider any three Cq-ROFNSVs,
V � k, (ΘeiΩ,ΨeiΥ)􏼊 􏼋,V1α � k1α, (Θ1αeiΩ1α ,Ψ1αeiΥ1α)􏼊 􏼋(α �

1, 2) and H> 0 be any real number. &en, the elementary
algebraic operations relative to these Cq-ROFNSVs can be
defined as follows:

(1) V11 ⊕V12 � max(k11, k12), (

�����������������

Θq
11 + Θq

12 − Θq
11Θ

q
12

q

􏽱

􏼜

ei2π
��������������������������
(Ω11/2π)q+(Ω12/2π)q− (Ω11/2π)q(Ω12/2π)qq

√
,Ψ11Ψ12

ei2π((Υ11/2π)(Υ12/2π)))〉

(2) V11 ⊗V12 � min(k11, k12), (Θ11Θ12􏼊

ei2π((Ω11/2π)(Ω12/2π)),

����������������

Ψq
11 + Ψq

12 − Ψq
11Ψ

q
12

q

􏽱

ei2π
�������������������������
(Υ11/2π)q+(Υ12/2π)q− (Υ11/2π)q(Υ12/2π)qq

√
)〉

(3) HV � k, (

������������

1 − (1 − Θq)H
q

􏽱

ei2π
�����������
1− (1− (Ω/2π)q)H

q
√

,􏼜

ΨHei2π(Υ/2π)H)〉

(4) VH � k, ((ΘHei2π(Ω/2π)H ,

������������

1 − (1 − Ψq)H
q

􏽱

􏼜

ei2π
�����������
1− (1− (Υ/2π)q)H

q
√

)〉

Definition 24. Let V1α � k1α, (Θ1αeiΩ1α ,Ψ1αeiΥ1α)􏼊 􏼋

(α � 1, 2) and V � k, (ΘeiΩ,ΨeiΥ)􏼊 􏼋 be any three
Cq-ROFNSVs and H> 0 be any real number. &en, the
Einstein operations corresponding to these Cq-ROFNSVs
can be defined as follows:

(1) V11 ⊕ eV12 � max(k11, k12),􏼊
��������������������

(Θq
11 + Θq

12/1 + Θq
11Θ

q
12)

q

􏽱

e
i2π

����������������������������
((Ω11/2π)q+(Ω12/2π)q/1+(Ω11/2π)q(Ω12/2π)q)q

√

,

(Ψ11Ψ12/
�������������������

1 + (1 − Ψq
11)(1 − Ψq

12)
q

􏽱

)e
i2π((Υ11/2π)(Υ12/2π)/

�������������������
1+(1− (Υ11/2π)q)(1− (Υ12/2π)q)q

√
)

􏼠 􏼡〉

(2) V11 ⊗ eV12 � min(k11, k12),􏼊

(Θ11Θ12/
�������������������

1 + (1 − Θq

11)(1 − Θq

12)
q

􏽱

)e
i2π((Ω11/2π)(Ω12/2π)/

�������������������
1+(1− (Ω11/2π)q)(1− (Ω12/2π)q)q

√
)

,

�������������������

(Ψq
11 + Ψq

12/1 + Ψq
11Ψ

q
12)

q

􏽱

e
i2π

���������������������������
((Υ11/2π)q+(Υ12/2π)q/1+(Υ11/2π)q(Υ12/2π)q)q

√􏼠 􏼡〉

(3) H·eV � k,〈
����������������������������������������

((1 + Θq
)
H

− (1 − Θq
)
H/(1 + Θq

)
H

+ (1 − Θq
)
H

)
q

􏽱

e
i2π

��������������������������������������
((1+(Ω/2π)q)H − (1− (Ω/2π)q)H/(1+(Ω/2π)q)H+(1− (Ω/2π)q)H)

q
√

,

(
�
2q

√
ΨH/

����������������

(2 − Ψq
)
H

+ (Ψq
)
Hq

􏽱

) e
i2π(

��
[q]

√
2(Υ/2π)H/

������������������
[q](2− (Υ/2π)q)H+((Υ/2π)q)H

√
)

􏼒 􏼓〉

(4) VH � k,〈

(
�
2q

√
ΘH/

����������������

(2 − Θq
)
H

+ (Θq
)
Hq

􏽱

) e
i2π(

�
2q

√
(Ω/2π)H/

�����������������
(2− (Ω/2π)q)H+((Ω/2π)q)H

q
√

)
,

����������������������������������������

((1 + Ψq
)
H

− (1 − Ψq
)
H/(1 + Ψq

)
H

+ (1 − Ψq
)
H

)
q

􏽱

e
i2π

�������������������������������������
((1+(Υ/2π)q)H − (1− (Υ/2π)q)H/(1+(Υ/2π)q)H+(1− (Υ/2π)q)H)

q
√􏼒 􏼓〉

&ese operations of Cq-ROFNSVs are highly advanta-
geous and expedient in decision-making as compared to
other algebraic operations of Cq-ROFNSVs because they are
formulated on the basis of incredible Einstein t-norm and
t-conorm to provide end-results that demonstrate re-
markable accuracy and precision.

Theorem 1. Let V � k, (ΘeiΩ,ΨeiΥ )􏼊 􏼋, V11 � k11,􏼊

(Θ11eiΩ11 ,Ψ11eiΥ11)〉, andV12 � k12, (Θ12eiΩ12 ,Ψ12eiΥ12)􏼊 􏼋 be
any three Cq-ROFNSVs and H,H1,H2 > 0 be any three real
numbers, then

(1) V11 ⊕ eV12 � V12 ⊕ eV11

(2) V11 ⊗ eV12 � V12 ⊗ eV11

(3) H.e(V11 ⊕ eV12) � H.eV11 ⊕ eH.eV12

(4) (V11 ⊗ eV12)
H � (V11)

H ⊗ e(V12)
H

(5) (H1.e ⊕ eH2.e)V � H1.eV⊕ eH2.eV

(6) VH1 ⊗ eV
H2 � VH1+H2
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Proof
(1) V11⊕eV12 � max(k11, k12),􏼊

��������������������

(Θq
11 + Θq

12/1 + Θq
11Θ

q
12)

q

􏽱

e
i2π

����������������������������
((Ω11/2π)q+(Ω12/2π)q/1+(Ω11/2π)q(Ω12/2π)q)q

√

,􏼐

(Ψ11Ψ12/
�������������������

1 + (1 − Ψq
11)(1 − Ψq

12)
q

􏽱

)

e
i2π((Υ11/2π)(Υ12/2π)/

�������������������
1+(1− (Υ11/2π)q)(1− (Υ12/2π)q)q

√
)
)〉 �

max(k12, k11),
��������������������

(Θq
12 + Θq

11/1 + Θq
12Θ

q
11)

q

􏽱
􏼐􏽄

e
i2π((Ω12/2π)q+(Ω11/2π)q/

��������������
1+(Ω12/2π)q(Ω11/2π)qq

√
)
,

(Ψ12Ψ11/
�������������������

1 + (1 − Ψq
12)(1 − Ψq

11)
q

􏽱

)

e
i2π((Υ12/2π)(Υ11/2π)/

�������������������
1+(1− (Υ12/2π)q)(1− (Υ11/2π)q)q

√
)
)〉 �

V12⊕eV11.
Analogously, we can prove (2) in the similar fashion.

(2) First, consider the L.H.S, V11⊕eV12 � max(k11,􏼊

k12),
��������������������

(Θq
11 + Θq

12/1 + Θq
11Θ

q
12)

q

􏽱

e
i2π

����������������������������
((Ω11/2π)q+(Ω12/2π)q/1+(Ω11/2π)q(Ω12/2π)q)q

√

,

(Ψ11Ψ12/
�������������������

1 + (1 − Ψq
11)(1 − Ψq

12)
q

􏽱

) e
i2π((Υ11/2π)(Υ12/2π)/

�������������������
1+(1− (Υ11/2π)q)(1− (Υ12/2π)q)q

√
)

􏼒 􏼓〉.
Above equation can be transformed into the fol-
lowing mathematicalexpression:

V11⊕eV12 � max k11, k12( 􏼁,

���������������������������������
1 + Θq

11( 􏼁 1 +Θq
12( 􏼁 − 1 − Θq

11( 􏼁 1 − Θq
12( 􏼁

1 + Θq
11( 􏼁 1 +Θq

12( 􏼁 + 1 − Θq
11( 􏼁 1 − Θq

12( 􏼁

q

􏽳

⎛⎝􏼪

· e
i2π

������������������������������������������������������������������������������
1+ Ω11/2π( )

q
( ) 1+ Ω12/2π( )

q
( )− 1− Ω11/2π( )

q
( ) 1− Ω12/2π( )

q
( )/ 1+ Ω11/2π( )

q
( ) 1+ Ω12/2π( )

q
( )+ 1− Ω11/2π( )

q
( ) 1− Ω12/2π( )

q
( )( )

q􏽰

,

·

�
2q

√
Ψ11Ψ12������������������������

2 − Ψq
11( 􏼁 2 − Ψq

12( 􏼁 + Ψq
11Ψ

q
12

q
􏽱 e

i2π
�
2q

√
Υ11/2π( ) Υ12/2π( )/

���������������������������������
2− Υ11/2π( )

q
( ) 2− Υ12/2π( )

q
( )+ Υ11/2π( )

q
) Υ12/2π( )

q
)

q􏽰
􏼐 􏼑⎞⎟⎟⎟⎠􏼫.

(32)

Let us consider

d � 1 + Θq
11( 􏼁 1 + Θq

12( 􏼁,

f � 1 − Θq
11( 􏼁 1 − Θq

12( 􏼁,

g � 1 +
Ω11
2π

􏼒 􏼓
q

􏼠 􏼡 1 +
Ω12
2π

􏼒 􏼓
q

􏼠 􏼡,

h � 1 −
Ω11
2π

􏼒 􏼓
q

􏼠 􏼡 1 −
Ω12
2π

􏼒 􏼓
q

􏼠 􏼡,

m � Ψq
11Ψ

q
12,

p � 2 − Ψq
11( 􏼁 2 − Ψq

12( 􏼁,

s �
Υ11
2π

􏼒 􏼓
q Υ12

2π
􏼒 􏼓

q

,

r � 2 −
Υ11
2π

􏼒 􏼓
q

􏼠 􏼡 2 −
Υ12
2π

􏼒 􏼓
q

􏼠 􏼡. (33)

&en,

Table 16: Identified C3-ROFSS.

(p3
3, M) m1 m2 m3 m4

w1 0.96ei1.98π, 0.01ei0.02π􏼊 􏼋 0.45ei1.84π , 0.14ei1.17π􏼊 􏼋 0.00ei0.00π , 1.00ei2.00π􏼊 􏼋 0.00ei0.00π , 0.50ei1.00π􏼊 􏼋

w2 0.00ei0.00π, 0.50ei1.00π􏼊 􏼋 0.00ei0.00π , 1.00ei2.00π􏼊 􏼋 1.00ei1.94π , 0.02ei0.01π􏼊 􏼋 0.76ei1.79π , 0.26ei0.04π􏼊 􏼋

w3 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.68ei1.84π , 0.11ei0.12π􏼊 􏼋 0.00ei0.00π , 0.50ei1.00π􏼊 􏼋 0.00ei0.00π , 1.00ei2.00π􏼊 􏼋

w4 0.86ei1.75π, 0.19ei0.07π􏼊 􏼋 0.97ei1.96π , 0.03ei0.04π􏼊 􏼋 0.00ei0.00π , 1.00ei2.00π􏼊 􏼋 0.00ei0.00π , 0.50ei1.00π􏼊 􏼋

w5 0.00ei0.00π, 0.50ei1.00π􏼊 􏼋 0.00ei0.00π , 1.00ei2.00π􏼊 􏼋 0.84ei1.72π , 0.16ei0.08π􏼊 􏼋 0.95ei1.98π , 0.35ei0.08π􏼊 􏼋

Table 17: Identified SS.

(p
(3,1.5)
3 , M) m1 m2 m3 m4

w1 1 1 0 0
w2 0 0 1 1
w3 0 1 0 0
w4 0 1 0 0
w5 0 0 0 1
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V11 ⊕ eV12 � 􏼪max k11, k12( 􏼁,
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Now, assume the R.H.S,
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Let us consider
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&en, the above equations can be modified as follows:
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Now,
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Consequently, verify that H.e(V11 ⊕e V12) � H.eV11
⊕e H.eV12.

Similarly, we can prove (4) in the analogous manner.
(5) Assume that H1, H2 > 0:
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Now, considering R.H.S, we have
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Let us consider, for k � 1, 2,
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Hence, verify that (H1.e ⊕eH2.e)V � H1.eV⊕e H2.eV.
Analogously, we can prove (6) in the similar

decorum. □

5. Decision-Making Algorithms

In this section, we develop two eloquent MCDM algorithms
that implemented on the proposed multiskilled Cq-ROFNSS
model. &ese strategies are especially designed for the
identification of the optimal alternative of real-life heuristic
problems that are characterized by Cq-ROFNSSs. &e un-
derlying methodology of these established decision-making
algorithms can be interpreted as follows (Algorithms 1 and 2).

5.1. Application. In this section, we inspect an empirical
MCDM problem related to selection of the most proficient
industrial robot for automation, by executing our newly
formulated decision-making algorithms in order to dem-
onstrate the compatibility and functionality of the proposed
strategies.

5.2. Selection of Most Proficient Aerospace Technology.
Aerospace industry is a multidisciplinary branch of science
and technology that incredibly overlaps aeronautical and
astronautical engineering for the manufacturing of high
standard military aircrafts, cosmic shuttles, gliders, jets,
space stations, and all other related units. Its fascinating
technological progress has revolutionized the entire world
by accomplishing their iconic achievements such as landing
astronauts on the Moon, remodelling of advanced trans-
portation systems and generation of technical spinoffs. &e
rapid advancement of this fabulous industry has sparked the
attention of many practitioners and space enthusiasts to
reveal more about galaxies, stars, planets, and other astro-
nomical phenomena. Nowadays, spacecraft are one of the
most important aerospace technologies designed to make
significant contributions in telecommunication, navigation
systems, space colonization, meteorology, planetary explo-
ration, and the manipulation of information-transfer net-
works. Its remarkable technical capabilities play a substantial
role in the prestigious economic and political development
of a sovereign country. Acquisition of competent spacecraft
is one of the most tricky decision-making problems because
of its massive capital investment and availability of a wide
range of such amazing technologies with various dominant
specifications in global markets. To accomplish the current
need, suppose that a Mexican space agency is intended to
launch an outstanding spacecraft for the exclusive operation
of large-scale global missions. &e collection of seven
spacecraft W � w1, w2, . . . , w7􏼈 􏼉 is considered after scruti-
nizing their versatile potentialities, where

w1 is the penetrator spacecraft: this high-quality
spacecraft is a bullet-shaped projectile that remarkably
penetrates the surface of a moon, planet, or any other
such comet in space. &e penetrator spacecraft mon-
itors the inherent peculiarities of the penetrated surface

to determine whether life exists on other cosmic planets
of the solar system.
w2 is the orbiter spacecraft: this spacecraft is designed
for traveling to a distant celestial body with consid-
erable propulsive capacity in order to decelerate it at the
right moment for proper insertion of spacecraft in their
orbits. &e orbiter spacecraft can significantly analyze
the same planet from different heights without landing
on its surface.
w3 is the flyby spacecraft: this ideal spacecraft has
potential to spin continuously and utilize thrusters or
reaction wheels to be stabilized in 3 axes. &ese high-
speed flyby spacecraft productively utilized their on-
board optical instruments to critically observe the
apparent motion of its target at the highest possible
temporal resolution.
w4 is the lander spacecraft: the lander spacecraft rea-
ches the surface of an astronomical body and remains
long enough to measure the electrical, thermal, and
mechanical properties of its inner surface. It has an
incredible capability to perform geological and mete-
orological experiments and telemeter such precise in-
formation back to the Earth.
w5 is the atmospheric spacecraft: these competent
spacecraft are especially designed for comparatively
short-term exploration missions to take accurate
measurements of temperature, clouds content, light-
ning, pressure, density, and atmospheric composition
of a planet or satellite with the assistance of their ad-
vanced scientific instruments.
w6 is the rover spacecraft: this special type of spacecraft
can move across planetary celestial bodies and other
solid surfaces of cosmic planets. &is surface explo-
ration device is mainly developed to gather detailed
information about the terrain of astronomical objects
and to take their different crust specimens such as
rocks, soil, dust, and even liquids.
w7 is the observatory spacecraft: an observatory
spacecraft is launched to provide amazing capabilities
for the clearer observation of distant galaxies, planets,
and other important terrestrial events. Such spacecraft
competently perform their operations twenty-four
hours a day at low temperature, and their observing
tasks are free from blurring and obscuring impacts of
the Earth’s atmosphere.

All the aforementioned spacecraft are analyzed on the
basis of four identified decisive factors M � m1, m2, m3,􏼈

m4} that strongly influence the selection process of space-
craft will serve as decision-criteria for this inspected MCDM
problem, where

m1 is the propulsion system: this significant feature is
employed to accelerate the speed of spacecraft by pro-
viding required propelling force. While launching a
spacecraft from the Earth, a competent propulsion
system continually changes the velocity of the spacecraft
and overcomes the high gravitational pull of Earth.
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m2 is the communication and navigation: all spacecraft
require a good communication and navigation system
to avoid constraints on future space missions. &ese
potent capabilities of spacecraft provide a secure en-
vironment for constructive global telecommunication
and ensure the accurate tracking of their trajectories.
m3 is the payload capacity: the payload capacity is the
most important consideration in designing the infra-
structure of spacecraft. &is measurable parameter

usually quantifies the carrying capacity of spacecraft
which may include cargo, flight crew, munitions, and
other scientific equipment by analyzing the nature of
their flight missions.
m4 is the cosmic radiation protection: a broad spectrum
of ionizing radiation can penetrate spacesuits, solar
equipment, and spacecraft and can badly harm the
biological health of astronauts. &e cosmic radiation
protection plays an indispensable role in the proper

(1) Input W � w1, w2, . . . , w℘􏽮 􏽯 as a universe of ℘ objects.
(2) Input M � m1, m2, . . . , mZ􏼈 􏼉 as a collection of Z attributes.
(3) Input the N-soft set (P, M, N) with K � 0, 1, . . . , N − 1{ }, where N ∈ 2, 3, . . .{ }. &en, for each wη ∈W, mα ∈M, there exist

unique kηα ∈ K.
(4) Input Cq-ROFNSS (pq, Y, N), where pq: M⟶ Cq − ROFW×K and Y � (P, M, N).

(5) Calculate Uη � 􏽐
Z
α�1 Vηα, where Vηα � kηα, (ΘηαeiΩηα ,ΨηαeiΥηα )􏽄 􏽅 and the Einstein addition of two Vηα is interpreted as follows:

V11 ⊕e V12 � 􏼪max(k11, k12),
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(6) Evaluate its choice value Lη(Uη) � (Θq
η − Ψq

η) + ((Ωη/2π)q − (Υη/2π)q) + (kη/N − 1)q, for each wη ∈W and η � 1, 2, . . . ,℘.
(7) Compute all the indices ξj for which Lξj

� maxηLη.

(8) if Lξ1 � Lξ2 for some ξ1, ξ2 ∈ 1, 2, . . . ,℘􏼈 􏼉, then
Evaluate its accuracy degreeQη(Uη) � (Θq

η + Ψq
η) + ((Ωη/2π)q + (Υη/2π)q) + (kη/N − 1)q, for each wη ∈W, and choose the

alternative having maximum accuracy degree.
else

Identify the alternatives wξj
for which Lξj

� maxηLη.
(9) &e alternative with maximum score or accuracy degree will be selected.

ALGORITHM 1: &e algorithm of choice values of Cq-ROFNSS.

(1) Input W � w1, w2, . . . , w℘􏽮 􏽯 as a universe of ℘ objects.
(2) Input M � m1, m2, . . . , mZ􏼈 􏼉 as a collection of Z attributes.
(3) Input the N-soft set (P, M, N) with K � 0, 1, . . . , N − 1{ }, where N ∈ 2, 3, . . .{ } &en, for each wη ∈W, mα ∈M, there exist

unique kηα ∈ K.
(4) Input Cq-ROFNSS (pq, Y, N), where pq: M⟶ Cq − ROFW×K and Y � (P, M, N).
(5) Input H threshold.

(6) Compute pH
q (mα)(wη) �

Θηαe
iΩηα ,Ψηαe

iΥηα􏽄 􏽅, if kηα, (Θηαe
iΩηα ,Ψηαe

iΥηα )􏽄 􏽅 ∈ pq(mα) and kηα ≥H

0.00e
i0.00π

, 0.50e
i1.00π

􏽄 􏽅 if (kηα/N)≥ 0.50
0.00e

i0.00π
, 1.00e

i2.00π
􏽄 􏽅 if (kηα/N)< 0.50

⎧⎨

⎩

⎧⎪⎪⎨

⎪⎪⎩

(7) Calculate UH
η � 􏽐
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α�1 V

H
ηα, where VH

ηα � ΘH
ηαeiΩH
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ηαeiΥH

ηα􏼜 􏼝 and Einstein addition of two VH
ηα is presented as follows:
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(8) Evaluate its H-choice value LH
η (UH

η ) � ((ΘH
η )q − (ΨH

η )q) + ((ΩH
η /2π)q − (ΥH

η /2π)q), for each wη, and η � 1, 2, . . . ,℘.
(9) Compute all the indices ξj for which LH

ξj
� maxηL

H
η .

(10) if LH
ξ1 � LH

ξ2 for some ξ1, ξ2 ∈ 1, 2, . . . ,℘􏼈 􏼉, then
Evaluate its accuracy degree QH

η (UH
η ) � ((ΘH

η )q + (ΨH
η )q) + ((ΩH

η /2π)q + (ΥH
η /2π)q), for each wη ∈W and choose the

alternative having maximum accuracy degree.
else

Identify the alternatives wξj
for which Lξj

� maxηLη.
(11) &e alternative with maximum score or accuracy degree will be selected.

ALGORITHM 2: &e algorithm of H-choice values of Cq-ROFNSS.
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execution of large-scale space missions. &e adequate
shielding of spacecraft can minimize the risk of the
exposure of such harmful radiation.

&e main purpose of this analysis is the determination of
the best spacecraft for the remarkable strategic and eco-
nomic advancement of Mexican space agency. &e char-
acteristic selection of ideal spacecraft with mind-blowing
features will provide space-based solutions to the compli-
cated Earth-bound problems by the accomplishment of
ground-breaking scientific discoveries and plays a leading
role in exploration of various indispensable cosmological
phenomena which in turn dramatically optimizes the long-
term profit of aerospace industries. &e framework for the
identification of the scrutinized MCDM problem is dem-
onstrated in Figure 2.

Now, an identified 7-soft set can easily be obtained from
Table 18, where

(i) six-spade suit represents “Outstanding”
(ii) five-spade suit represents “Superb”
(iii) four-spade suit represents “Excellent”
(iv) three-spade suit represents “Very Good”
(v) two-spade suit represents “Good”
(vi) one-spade suit represents “Average”
(vii) big lozenge represents “Poor”

&e grades K � 0, 1, 2, 3, 4, 5, 6{ } can be definitely in-
terrelated with the ranking-based evaluations carried out by
the allocated spade suit as follows:

(i) 0 serves as “ ”
(ii) 1 serves as “ ”

(iii) 2 serves as “ ”
(iv) 3 serves as “ ”
(v) 4 serves as “ ”
(vi) 5 serves as “ ”
(vii) 6 serves as “ ”

Each space exploration technology is ranked on the basis
of their overall competency which is further presented in
Table 18.

Now, the tabular representation of its corresponding
specified 7-soft set is illustrated in Table 19.

In this respect, the grading criteria based on the score
degrees of C5-ROF7SVs are defined as follows:

− 2.00≤L Vηα􏼐 􏼑< − 1.29when kηα � 0,

− 1.29≤L Vηα􏼐 􏼑< − 0.58when kηα � 1,

− 0.58≤L Vηα􏼐 􏼑< 0.13when kηα � 2,

0.13≤L Vηα􏼐 􏼑< 0.84when kηα � 3,

0.84≤L Vηα􏼐 􏼑< 1.55when kηα � 4,

1.55≤L Vηα􏼐 􏼑< 2.26when kηα � 5,

2.26≤L Vηα􏼐 􏼑≤ 3.00when kηα � 6,

(42)

where L(Vηα) � (Θq
ηα − Ψq

ηα) + ((Ωηα/2π)q − (Υηα/2π)q) +

(kηα/N − 1)q and Vηα � kηα, (ΘηαeiΩηα ,ΨηαeiΥηα)􏽄 􏽅; η �

1, 2, 3, 4, 5, 6, 7; α � 1, 2, 3, 4.
&erefore, by Definition 8, C5-ROF7SS can be inter-

preted as follows:

p5, Y, 7( 􏼁 � m1, p5 m1( 􏼁( 􏼁, m2, p5 m2( 􏼁( 􏼁􏼁, m3, p5 m3( 􏼁( 􏼁, m4, p5 m4( 􏼁( 􏼁􏼈 􏼉, (43)

where

p5 m1( 􏼁 � w1, 4( 􏼁, 0.78e
i1.89π

, 0.44e
i1.55π

􏽄 􏽅, w2, 1( 􏼁, 0.14e
i0.12π

, 0.77e
i1.82π

􏽄 􏽅, w3, 3( 􏼁, 0.45e
i1.68π

, 0.29e
i1.57π

􏽄 􏽅,􏽮

· w4, 6( 􏼁, 0.95e
i1.95π

, 0.13e
i0.09π

􏽄 􏽅, w5, 2( 􏼁, 0.54e
i1.96π

, 0.99e
i1.24π

􏽄 􏽅􏽯, w6, 3( 􏼁, 0.34e
i1.64π

, 0.22e
i1.53π

􏽄 􏽅,

· w7, 5( 􏼁, 0.89e
i1.86π

, 0.21e
i0.02π

􏽄 􏽅􏽯,

p5 m2( 􏼁 � w1, 3( 􏼁, 0.49e
i1.77π

, 0.35e
i1.62π

􏽄 􏽅, w2, 2( 􏼁, 0.98e
i1.08π

, 0.62e
i1.97π

􏽄 􏽅, w3, 5( 􏼁, 0.81e
i1.93π

, 0.20e
i1.03π

􏽄 􏽅,􏽮

· w4, 4( 􏼁, 0.75e
i1.78π

, 0.16e
i1.18π

􏽄 􏽅, w5, 0( 􏼁, 0.07e
i0.05π

, 0.89e
i1.92π

􏽄 􏽅􏽯, w6, 1( 􏼁, 0.12e
i0.09π

, 0.74e
i1.75π

􏽄 􏽅,

· w7, 2( 􏼁, 0.68e
i1.34π

, 0.82e
i1.63π

􏽄 􏽅􏽯,

· p5 m3( 􏼁 � w1, 2( 􏼁, 0.78e
i1.55π

, 0.89e
i1.67π

􏽄 􏽅, w2, 1( 􏼁, 0.18e
i0.11π

, 0.82e
i1.76π

􏽄 􏽅, w3, 0( 􏼁, 0.04e
i0.06π

, 0.96e
i1.89π

􏽄 􏽅,􏽮

· w4, 6( 􏼁, 0.93e
i1.97π

, 0.05e
i0.04π

􏽄 􏽅, w5, 4( 􏼁, 0.76e
i1.86π

, 0.11e
i1.12π

􏽄 􏽅􏽯, w6, 5( 􏼁, 0.85e
i1.89π

, 0.01e
i0.05π

􏽄 􏽅,

· w7, 2( 􏼁, 0.53e
i1.45π

, 0.64e
i1.56π

􏽄 􏽅􏽯,

p5 m4( 􏼁 � w1, 1( 􏼁, 0.17e
i0.13π

, 0.84e
i1.85π

􏽄 􏽅, w2, 6( 􏼁, 0.94e
i1.96π

, 0.03e
i0.12π

􏽄 􏽅, w3, 2( 􏼁, 0.61e
i1.13π

, 0.85e
i1.54π

􏽄 􏽅,􏽮

· w4, 5( 􏼁, 0.87e
i1.87π

, 0.23e
i0.04π

􏽄 􏽅, w5, 2( 􏼁, 0.55e
i1.23π

, 0.67e
i1.57π

􏽄 􏽅􏽯, w6, 0( 􏼁, 0.01e
i0.03π

, 0.99e
i1.96π

􏽄 􏽅,

· w7, 3( 􏼁, 0.39e
i1.81π

, 0.27e
i1.72π

􏽄 􏽅􏽯.

(44)
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Table 18: Rating of spacecraft.

(P, M, 7) m1 m2 m3 m4

w1
w2
w3
w4
w5
w6
w7

Table 19: Identified 7-soft set.

(P, M, 7) m1 m2 m3 m4

w1 4 3 2 1
w2 1 2 1 6
w3 3 5 0 2
w4 6 4 6 5
w5 2 0 4 2
w6 3 1 5 0
w7 5 2 2 3

Identification
of inspected problem

Identified
decision-criteria

Aerospace
technologies

Cosmic radiation
protection

Propulsion system

Observatory
spacecra�

Rover spacecra�

Atmospheric
spacecra�

Lander spacecra�

Flyby spacecra�

Penetrator spacecra�

Orbiter spacecra�

Communication and
navigation system

Payload capacity

Figure 2: Specification of investigated problem.
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Now, the C5-ROF7SS can be easily demonstrated in
tabular form by Table 20.

5.3. Choice Values of C5-ROF7SS. &e quantified choice
values of C5-ROF7SS for the determination of best space-
craft are summarized in Table 21.

&e spacecraft are further categorized in an ascending
order of their respective choice values. &e hierarchical
ranking of inspected space exploration technologies is
highlighted in Table 22.

Consequently, we infer that the lander spacecraft (w4)

will be selected as the most competent space exploration
technology for the strategic and economic development of
Mexican space agency.

5.4. H-Choice Values of C5-ROF7SS. &e calibrated
H-choice values of C5-ROF7SS are encapsulated in Table 23,
where we select H � 3.

&e spacecraft are eventually organized in an ascending
order of their respective H-choice values, where H � 3. &e
hierarchical ranking of inspected aerospace technologies is
clearly demonstrated in Table 24.

Hence, we conclude that the lander spacecraft (w4) will
be selected as the most ideal spacecraft for the exploration of
various cosmological phenomena.

6. Comparative Analysis

In this section, a comparative study of our proposed deci-
sion-making techniques with contemporary MCDM tech-
nique based on the q-rung orthopair fuzzy soft weighted
geometric (q-ROFSftWG) operator is presented. We in-
vestigate the pragmatic application named “selection of the
most proficient aerospace technology” by applying existing
technique to authenticate the flexibility and sustainability of
our established strategies.

6.1. q-ROFSftWGOperator-BasedMCDMStrategy. We now
simplify the practical application 5.2 by implementing the
systematic methodology of q-ROFSftWG operator-based
MCDM technique, proposed by Chinram et al. [22].

Step 1. &e first step is to construct the 5-rung orthopair
fuzzy soft decision matrix (5-ROFSftDM) by scrutinizing
the credibility of each aerospace technology relative to
specific decision-criteria. &e 5-rung orthopair fuzzy soft
entries of 5-ROFSftDM I � (Fηα)7×4 are obtained by
omitting the grades and phase terms of all C5-ROF7SVs in
Table 20. &e calibrated 5-ROFSft-entries Fηα � Θ,Ψ〈 〉 of
5-ROFSftDM regarding proficiency of spacecraft are sum-
marized in Table 25.

Step 2. Normalize the evaluated 5-ROFSftDM I � (Fηα)7×4
according to the nature and specification of each identified
decision-criterion by utilizing the following expression:

Eηα �
F

c
ηα, for cost type parameter,

Fηα, for benefit type parameter,
⎧⎨

⎩ (45)

where F c
ηα � Ψ,Θ〈 〉 represents the complement of

Fηα � Θ,Ψ〈 〉. Here, the normalized 5-rung orthopair fuzzy
soft decision matrixE � (Eηα)7×4 is the same as presented in
Table 25 because all the specified decisive parameters of
inspected problem are of the same benefit type.

Step 3. Aggregate the evaluated interpretations of each
aerospace technology corresponding to identified decision-
criterion by employing the q-ROFSftWG operator, which is
defined as follows:
􏽥Eη � q− ROFSftWGH E

(1)
η1 , E

(2)
η2 , E

(3)
η3 , . . . , E

(τ)
ηZ􏼐 􏼑
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α�1
􏽙
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Θ(ζ)
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kζ⎛⎝ ⎞⎠

zα

,

�����������������������

1 − 􏽙
Z

α�1
􏽙

τ

ζ�1
1 − Ψ(ζ)

ηα􏼐 􏼑
kζ⎛⎝ ⎞⎠

zαq

􏽶
􏽴

􏼫,

(46)

where kζ indicates the weights of decision-makers and zα
denotes the relative weights of decisive parameters satisfying
the conditions that kζ , zα ∈ [0, 1] with 􏽐

τ
ζ�1 kζ and 􏽐

Z
α�1 zα.

Now, the appointed expert assigns weights z � (0.32, 0.20,

0.33, 0.15)T to the identified decision-criteria. &e aggre-
gated 5-ROFSftNs of each spacecraft corresponding to
decisive criteria are presented as follows:

􏽥E1 � 0.56554, 0.78625〈 〉,

􏽥E2 � 0.29868, 0.75104〈 〉,

􏽥E3 � 0.23834, 0.86201〈 〉,

􏽥E4 � 0.88799, 0.16690〈 〉,

􏽥E5 � 0.40281, 0.92670〈 〉,

􏽥E6 � 0.22009, 0.83050〈 〉,

􏽥E7 � 0.62802, 0.65689〈 〉.

(47)

Step 4. &e next step is to evaluate the score degrees (Lη) of
aggregated 5-ROFSftNs 􏽥Eη � 􏽥Θη, 􏽥Ψη􏽄 􏽅 of each aerospace
technology which is interpreted as follows:

L 􏽥Eη􏼐 􏼑 � Θq
η − Ψq

η +
e
Θq

η − Ψq
η

e
Θq

η− Ψq
η + 1

−
1
2

⎛⎝ ⎞⎠ πq
η, for q≥ 1,

(48)

where η � 1, 2, . . . , 7 and πη �
���������������
1 − ((Θ)q + (Ψ)q)q

􏽰
repre-

sents the hesitancy degree of q-ROFSftNs. &e quantified
score degrees of 􏽥Eη for each spacecraft are clearly illustrated
in Table 26.

Step 5. All the aerospace technologies of the inspected
MCDM problem are hierarchically ranked in an ascending

Complexity 23



order corresponding to their calibrated score degrees and
further demonstrated their systematic ranking in Table 27.

Hence, we conclude that lander spacecraft (w4) will be
selected as the most proficient aerospace technology having
maximum score degree for the accomplishment of large-
scale global missions.

6.2. Comprehensive Discussion

(1) We exhibit a comparison of developed methodolo-
gies with contemporaryMCDM techniques based on
q-ROFSftWG, Cq-ROFWA, and Cq-ROFWG op-
erators to substantiate the accountability and feasi-
bility of the proposed strategies. &e methodological
implications of both developed and compared
strategies are persuasively spotlighted in Table 28.

(2) All the proposed and compared strategies prioritize
lander spacecraft (w4) as the most productive
aerospace technology for the prestigious economic
advancement of Mexican space agency which
demonstrate the compatibility and enforceability of
remarkable decision-making skills of our established
techniques in the sophisticated MCDM problems.

(3) An explicative bar chart is illustrated in Figure 3 in
order to visualize the comparative final outcomes of
both proposed and compared MCDM techniques
regarding hierarchical ordering of aerospace tech-
nologies, which in turn authenticate the rationality
and plausibility of our developed methodologies.

(4) &e hierarchical ordering of inspected aerospace
technologies differ slightly in compared and pro-
posed strategies which is due to the appraisement of
distinct fuzzy environments as proposed method-
ologies significantly overcome all the deficiencies of
compared strategies by capturing the graded ob-
scurity of two-dimensional parameterized informa-
tion. In spite of all these, all the compared and
proposed approaches interpret the similar end-re-
sults which illuminate the effectuality of the pro-
posed strategies.

(5) &e q-ROFSftWG operator is not capable enough to
deal with Cq-ROFNS information because of its
limitations that arise due to the inadequacy of
multinary assessment grades. However, our pro-
posed systematic techniques have convincingly re-
solved these shortcomings of compared technique by
capturing the graded evaluations of such paradoxical

and uncertain data. &is remarkable flexibility of our
proposed strategies makes them more powerful as
compared to the existing techniques.

(6) Our developed strategies have an edge over the
compared techniques that are directly based on
Cq-ROFWA and Cq-ROFWG operators as it fan-
tastically addresses the vagueness and periodicity of
imprecise data at the same time, but the compared
techniques are constrained to model the ambiguity
of nonperiodic information only, which may lead to
the inconsistent and illogical decisions. &is in-
credible peculiarity of our proposed methodologies
stimulates them as the most generalized and sus-
tainable decision-making strategies for real-world
MCDM complications.

7. Merits of the Cq-ROFNSS Model

&e next bullet points summarize the main advantages of the
model proposed in this paper:

(1) We have proposed a Cq-ROFNSS model that pro-
vides a multiskilled and most proficient mathe-
matical framework for the fuzzy representation of
parameterized vague data.&e underlying features of
both NSSs and Cq-ROFSs are inherited by this ex-
tension. In fact, we believe that the theory arising
from this model has significantly resolved all the
flaws and limitations of existing models for the
representation of ambiguous knowledge.

(2) A paramount advantage of the proposed model is its
powerful ability to model two-dimensional impre-
cise information. It can address the periodicity and
vagueness of parameterized data at the same time in
a convincing manner. However, not only is the idea
of the proposed model restricted to the two-di-
mensional case, but also it can handle one-dimen-
sional uncertain data with similar accuracy and
precision.

(3) In the modern digital era, grading systems became
massively popular as they are standard tools for
collecting users’ inputs about their opinions on
electronic services, web pages, online products,
marketing sites, movies, and countless other online
applications. Our theory is especially crafted with an
aim to capture the graded assessments of a variety of
informational sources in order to meet future
challenges.

Table 20: Tabular representation of C5-ROF7SS.

(p5, Y, 7) m1 m2 m3 m4

w1 4, (0.78ei1.89π , 0.44ei1.55π)􏼊 􏼋 3, (0.49ei1.77π , 0.35ei1.62π)􏼊 􏼋 2, (0.78ei1.55π, 0.89ei1.67π)􏼊 􏼋 1, (0.17ei0.13π , 0.84ei1.85π)􏼊 􏼋

w2 1, (0.14ei0.12π , 0.77ei1.82π)􏼊 􏼋 2, (0.98ei1.08π , 0.62ei1.97π)􏼊 􏼋 1, (0.18ei0.11π, 0.82ei1.76π)􏼊 􏼋 6, (0.94ei1.96π , 0.03ei0.12π)􏼊 􏼋

w3 3, (0.45ei1.68π , 0.29ei1.57π)􏼊 􏼋 5, (0.81ei1.93π , 0.20ei1.03π)􏼊 􏼋 0, (0.04ei0.06π, 0.96ei1.89π)􏼊 􏼋 2, (0.61ei1.13π , 0.85ei1.54π)􏼊 􏼋

w4 6, (0.95ei1.95π , 0.13ei0.09π)􏼊 􏼋 4, (0.75ei1.78π , 0.16ei1.18π)􏼊 􏼋 6, (0.93ei1.97π, 0.05ei0.04π)􏼊 􏼋 5, (0.87ei1.87π , 0.23ei0.04π)􏼊 􏼋

w5 2, (0.54ei1.96π , 0.99ei1.24π)􏼊 􏼋 0, (0.07ei0.05π , 0.89ei1.92π)􏼊 􏼋 4, (0.76ei1.86π, 0.11ei1.12π)􏼊 􏼋 2, (0.55ei1.23π , 0.67ei1.57π)􏼊 􏼋

w6 3, (0.34ei1.64π , 0.22ei1.53π)􏼊 􏼋 1, (0.12ei0.09π , 0.74ei1.75π)􏼊 􏼋 5, (0.85ei1.89π, 0.01ei0.05π)􏼊 􏼋 0, (0.01ei0.03π , 0.99ei1.96π)􏼊 􏼋

w7 5, (0.89ei1.86π , 0.21ei0.02π)􏼊 􏼋 2, (0.68ei1.34π , 0.82ei1.63π)􏼊 􏼋 2, (0.53ei1.45π, 0.64ei1.56π)􏼊 􏼋 3, (0.39ei1.81π , 0.27ei1.72π)􏼊 􏼋
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(4) &e remarkable decision-making skills of
Cq-ROFNSS excellently increase the modeler’s
ability to express their two-dimensional ambiguous
assessments. &e outstanding generic structure of
our proposed model broadens the confined space of

traditional fuzzy models by relaxing their constraint
conditions. &e proposed hybrid model also renders
the most generalized tool for ranking-based com-
petent modeling of parameterized inexact data of
periodic and nonperiodic nature as well.

Table 22: Hierarchical ranking of spacecraft.

Spacecraft w1 w2 w3 w4 w5 w6 w7

Ranking 6 2 4 1 7 5 3

Table 23: 3-choice values of C5-ROF7SS.

(p3
5, M) m1 m2 m3 m4 U3

η L3
η

w1 0.78ei1.89π, 0.44ei1.55π􏼊 􏼋 0.49ei1.77π, 0.35ei1.62π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.79ei1.96π, 0.13ei1.16π􏼊 􏼋 1.1680
w2 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.94ei1.96π, 0.03eι0.12π􏼊 􏼋 0.94ei1.96π, 0.03ei0.12π􏼊 􏼋 1.6378
w3 0.45ei1.68π, 0.29ei1.57π􏼊 􏼋 0.81ei1.93π, 0.20ei1.03π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.81ei1.97π, 0.05ei0.72π􏼊 􏼋 1.2880
w4 0.95ei1.95π, 0.13ei0.09π􏼊 􏼋 0.75ei1.78π, 0.16ei1.18π􏼊 􏼋 0.93ei1.97π, 0.05ei0.04π􏼊 􏼋 0.87ei1.87π, 0.23ei0.04π􏼊 􏼋 0.99ei1.99π, 0.00ei0.00π􏼊 􏼋 1.9262
w5 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.76ei1.86π, 0.11ei1.12π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.76ei1.86π, 0.11ei1.12π􏼊 􏼋 0.8941
w6 0.34ei1.64π, 0.22ei1.53π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.85ei1.89π, 0.01ei0.05π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.85ei1.94π, 0.001ei0.03π􏼊 􏼋 1.3261
w7 0.89ei1.86π, 0.21ei0.02π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.00ei0.00π, 1.00ei2.00π􏼊 􏼋 0.39ei1.81π, 0.27ei1.72π􏼊 􏼋 0.89ei1.96π, 0.04ei0.01π􏼊 􏼋 1.4805

Table 24: Hierarchical ranking of spacecraft.

Spacecraft w1 w2 w3 w4 w5 w6 w7

Ranking 6 2 5 1 7 4 3

Table 25: Tabular representation of 5-ROFSftDM.

I m1 m2 m3 m4

w1 0.78, 0.44〈 〉 0.49, 0.35〈 〉 0.78, 0.89〈 〉 0.17, 0.84〈 〉

w2 0.14, 0.77〈 〉 0.98, 0.62〈 〉 0.18, 0.82〈 〉 0.94, 0.03〈 〉

w3 0.45, 0.29〈 〉 0.81, 0.20〈 〉 0.04, 0.96〈 〉 0.61, 0.85〈 〉

w4 0.95, 0.13〈 〉 0.75, 0.16〈 〉 0.93, 0.05〈 〉 0.87, 0.23〈 〉

w5 0.54, 0.99〈 〉 0.07, 0.89〈 〉 0.76, 0.11〈 〉 0.55, 0.67〈 〉

w6 0.34, 0.22〈 〉 0.12, 0.74〈 〉 0.85, 0.01〈 〉 0.01, 0.99〈 〉

w7 0.89, 0.21〈 〉 0.68, 0.82〈 〉 0.53, 0.64〈 〉 0.39, 0.27〈 〉

Table 26: Score degrees of 􏽥Eη

Lη/wη w1 w2 w3 w4 w5 w6 w7

Lη − 0.29785 − 0.29230 − 0.57764 0.66663 − 0.80079 − 0.48265 − 0.03048

Table 27: Hierarchical ranking of spacecraft.

Spacecraft w1 w2 w3 w4 w5 w6 w7

Ranking 4 3 6 1 7 5 2

Table 28: Comparative analysis.

Methods Ranking Best spacecraft
Proposed choice values of Cq-ROFNSS method w4 ≻w2 ≻w7 ≻w3 ≻w6 ≻w1 ≻w5 w4
Proposed H-choice values of Cq-ROFNSS method w4 ≻w2 ≻w7 ≻w6 ≻w3 ≻w1 ≻w5 w4
q-ROFSftWG operator-based MCDM method [22] w4 ≻w7 ≻w2 ≻w1 ≻w6 ≻w3 ≻w5 w4
Cq-ROFWA operator-based MADM method [12] w4 ≻w7 ≻w2 ≻w5 ≻w6 ≻w1 ≻w3 w4
Cq-ROFWG operator-based MADM method [12] w4 ≻w5 ≻w3 ≻w2 ≻w6 ≻w1 ≻w7 w4
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8. Conclusion

In this research article, we have accomplished our goal by
establishing the foundations of a multiskilled hybrid model
called Cq-ROFNSS. It can capture a wide range of im-
precision embedded in human cognition. &is highly
competent and most flexible theory sets up a mathematical
framework for the representation of two-dimensional in-
exact information. It has extended several contemporary
models by the integration of the expertise of Cq-ROFSs and
the remarkable parametric nature of NSSs. &is theory
means a powerful generalization of both CIFNSSs and
CPFNSSs. It broadens their limited boundary space by
relaxing their constraint conditions in terms of an ad-
justable parameter q. To this purpose, we have elaborated
the formal definition of Cq-ROFNSS and its basic funda-
mental set-theoretic operations. We have proposed the
Einstein and some other algebraic operations of
Cq-ROFNSVs. We have demonstrated the rationality of the
proposed model with a concise analysis of its relationships
with existing theories.

Another remarkable contribution of this study is the
development of two systematic MCDM algorithms for the
identification of a most favorable alternative on the basis
of their intrinsic characteristics. We have tested their
feasibility with a real-life application for the evaluation of
the most productive aerospace technology. We have
conducted a comparative analysis with contemporary
MCDM techniques to justify that our strategies are rea-
sonable extensions. We have accompanied the compar-
ative study with an interpretative bar chart in order to
illustrate the compatibility and veracity of the final

outcomes. Finally, we have investigated the dynamic
features of the proposed model in order to throw light on
its merits and preeminence over existing decision-making
theories.

Although we can argue that the developed model has an
edge over the contemporary approaches, this theory does
not lack for limitations. Its structure cannot capture the
abstinence and refusal aspect of inexact human expres-
sions. Also, the strategies that we used to solve MCDM
problems may be computationally costly, as they involve
rather cumbersome and tedious calculations. &us, in the
future, we are committed to reduce the massive calculations
of these MCDM techniques with the assistance of some
computer programming and to develop graphical repre-
sentations of the proposed model in order to elaborate this
proficient concept more effectively. Additionally, we are
planning to extend our research work by establishing more
advanced MCGDM strategies, including the Cq-ROFNS-
PROMETHEE method, Cq-ROFNS-VIKOR method,
Cq-ROFNS-AHP method, Cq-ROFNS-TOPSIS method,
and Cq-ROFNS-ELECTRE method. We intend to explore
the scope of the potential applications under the versatile
environment of the Cq-ROFNS model.
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