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Streamflow is associated with several sources on nonstationaries and hence developing machine learning (ML) models is always the
motive to provide a reliable methodology to understand the actual mechanism of streamflow. *e current research was devoted to
generating monthly streamflows from annual streamflow. In this study, three different ML models were applied for this purpose,
including Multiple Additive Regression Trees (MART), Group Methods of Data Handling (GMDH), and Gene Expression Pro-
gramming (GEP). *e models were developed based on annual streamflow and monthly time index of three rivers (i.e., Upper Zab,
Lower Zab, andDiyala) located in the north region of Iraq.*emodeling results indicated an optimistic simulation for generating the
monthly streamflow time series from annual streamflow time series. *e potential of the MARTmodel was superior to the GMDH
and GEP models for Upper Zab River (R2 0.84, 0.64, and 0.47), Lower Zab River (R2 0.75, 0.46, and 0.40), and Diyala River (R2 0.78,
0.42, and 0.5).*e results of RMSEwere 113, 169, and 208 for Upper Zab River, 95, 149, and 0.5 for Lower Zab River, and 73, 118, and
109 for Diyala River. *e results have proved the possibility of changing the timescale in generating streamflow data.

1. Introduction

*e hydrological processes are associated with several ele-
ments such as evaporation, evapotranspiration, precipita-
tion, runoff, river flow, infiltration, and groundwater. In
nature, the hydrological cycle is featured by high stochas-
ticity, nonstationarity, and nonlinearity [1], and thus
studying the hydrological process is one of the significant
topics in the field of water resources engineering. Over the
past literature, several models have been introduced for
modeling hydrology cycle processes and evidently proofed
their capacity [2–4]. Between several components of the
hydrology cycle, streamflow is a very important process and
has received major interest by the hydrologists and com-
puter scientists [1]. *e establishment of accurate and re-
liable models “forecasting, prediction, or optimization” for

the long scale, such as yearly, seasonally, or monthly, is very
magnificent for reliable water resources management and
planning [5]. In addition, for short scale like day, hour, and
minutes, streamflow recording is very essential for flooding
warning andmonitoring in order to lessen andmitigate their
effects on various structure and human well-being [6].

*e data-driven streamflow models are regression-based
where the relationships between model inputs and output are
directly defined [7, 8]. With the advances of computer aided
models, ML models such as fuzzy logic, neural network,
nature-based algorithm, support vector machine, decision
tree, and optimizers have been successfully implemented for
modeling streamflow patterns. *ese models can help in
detecting the nonlinear, dispensable, and dynamic pattern of
the time series [9–12]. However, a number of problems are
associated with most of the ML-based techniques due to their
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inherent limitations [13]. *e ML-based models need pre-
vious information of the stochastic behavior of the addressed
research issue (i.e., hydrology or climatology processes or
water quality data) [14, 15]. Hence, it is essential to configure
reliably in terms of learning process to obtain the important
information from the chronological data of streamflow. In
addition, it is required to optimize a number ofmodel internal
parameters [16, 17]. Over the time, many hybrid models have
been also implemented such as fractionally autoregressive
integrated moving average (FARIMA) and self-exciting
threshold autoregressive (SETAR) with GEP, MARS, and
MLR [18]. Similarly, another authors used autoregressive
conditional heteroscedasticity (ARCH) to hybridized GEP
and MARS models [19]. In particular, the conventional ML-
based models need numerous trial-and-error processes to
determine the optimum architecture design. For example,
hydrological models using neural network require optimi-
zation of the number of hidden layers, the type of the transfer
function, and the number of neurons in a hidden layer’s
choices [20]. Hybrid models are one of the updated models
that have started to be used extensively in hydrology science
[21]. Correspondingly, fuzzy models are one of the traditional
models that lack handling complex problems and too many
rules [22] and same goes for MLR model when dealing with
multiple output and complexity [23]. *e highlighted limi-
tations of the existing ML-based streamflow forecasting
models have necessitated the search for more sophisticated
ML-based modeling techniques.

Streamflow forecasting plays an essential role for the
researchers and engineers to better understand the river
pattern which in turn helps to design more sustainable and
efficient infrastructure and management project. Streamflow
data is important yet presents itself with various issues such as
missing data, noncontinuous data, nonlinearity, and extreme
events [24, 25]. Researchers have devised various techniques
and tools to overcome them, yet to grasp the full scope of such
data in terms of seasonality, point source pollution, and
sudden changes due to event of heavy rain or other calamities,
and more work is needed to be done. Disaggregating
streamflow can sever an essential procedure for reservoir
operation and river basin management in general [26, 27].
*is topic has received an extensive capacity by several hy-
drology scholars. Stedinger andVogel [28] developed a simple
class of a disaggregation model that can reproduce a co-
variance matrix of streamflow and reasonable approximation
to the lead times that should be imposed for the disaggre-
gation approach. Of recent advanced computer models, the
disaggregation procedure was investigated by several scholars.
A stochastic model was proposed to disaggregate streamflow
at multiple sites preserving their temporal and spatial de-
pendencies [29]. An integrated nonparametric model with
genetic algorithm was to simulate seasonal streamflow dis-
aggregating [30]. Monthly streamflow scale was disaggregated
into daily scale using simple stochastic, as conducted in [31].
Various other research studies were conducted on the
streamflow disaggregation [32–35]. All the reported research
over the literature evidenced the capacity of studying the
streamflow disaggregation. However, the implementation of
the ML models for the streamflow disaggregation is limited

and needs to be investigated. ML models such as Multiple
Additive Regression Trees (MART), Group Methods of Data
Handling (GMDH), and Gene Expression Programming
(GEP) are yet to be explored for the generating monthly
streamflow time series from annual streamflow time series.
*ere was no established research over the literature using
those models yet to be tested.

*e main objective of the current research is to inves-
tigate the feasibility of MART, GMDH, and GEP models for
generating monthly streamflow time series from annual
streamflow time series.*e proposed models represent three
different types of MLmodels. *eMARTmodel is one of the
most popular decision tree models that strengthen the weak
learning, which results in strong learning process and better
generalization [36], while the GMDH model is chosen to
represent self-learning models. *e GEP model was applied
as revolutionary model. *e proposed models were evalu-
ated statistically among each other and analyzed based on
their predictability capacity. *e study aims to demonstrate
the possibility of changing the timescale in generating
streamflow. *is is the first application of using the GMDH,
GEP, and MART models to generate monthly streamflow
data from annual monthly streamflow data without using
method of fragments which is usually used to disaggregate
the annual streamflow to monthly streamflow.

2. Materials and Models

2.1. Study Area andData. Upper Zab, Lower Zab, and Diyala
Rivers are the major tributaries of Tigris River in Iraq, which
were selected for the case study in this research. *e Tigris
River is one of the largest rivers in theMiddle East.*e river is
about 1718 km long that goes through Turkey then Syria then
Iraq. However, the major percentage (253,000 km) of about
85% of the river travels through Iraq region. *e Tigris River
along with the Euphrates River contributes to the Iraqi region
as the main natural resources of fresh water that is required for
diverse necessity of water usages. *e Upper Zab River
headwaters are located in Turkey’s territory, while the head-
waters of the Lower Zab and Diyala rivers are located in Iran’s
territory [37]. Figure 1 shows the location of Upper Zab, Lower
Zab, and Diyala Rivers in Iran. Table 1 summarizes the
morphological and flow data characteristics for the Upper Zab,
Lower Zab, and Diyala upstream Bekhme, Dokan, and Der-
bindi-Khan flow gauging stations, respectively. *e climate of
the basin is predominantly semiarid. *e temperature in the
basin varies from maximum 45°C during summer to mini-
mum 10°C in winter. *e mean monthly discharge and the
standard deviation of Tigris River flow at Baghdad station are
411.35m3/s and 234.52m3/s, respectively. Monthly flow data
for the period 1932–2004 were selected. *is period was se-
lected because there was no missing data during this period.
*e first 70%of datawas selected for training themodels, while
the second 30% of data was selected to validate the models.

2.2. Introduction to the Gene Expression Programming (GEP)
Model. GEP was invented by Ferreira as an extension of
traditional genetic programming. *e program is developed
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as linear strings of fixed chromosome’s length and then
encoded as a nonlinear form with different dimensions [38].
In GEP, expressions are generated automatically by
encoding the expression in the form of a tree consisting of
nodes representing functions and leaves (terminal) repre-
senting constants and variables. *e generated candidates
were evaluated by a fitness function. *e genes included two
parts: tail that includes variables and head that includes
variables and constants [39]. Five steps are used to develop
the GEP model: (i) selecting a set of predictor variables,
which can be used in discrete programs; (ii) selecting the
specific functions and arithmetic operations; (iii) choosing
the fitness measure; (iv) selecting the appropriate head
length, quantity of genes, and the linking function; and (v)

selecting the genetic operators which include inversion rate
and mutation rate [40]. More details for GEP are found in
[41]. Figure 2 shows the flowchart of gene expression
programming algorithm.

2.3. Introduction to the Multiple Additive Regression Trees
(MART) Model. MART was developed by Derrig and
Francis [42] to increase the accuracy of the traditional de-
cision tree model result. *e researchers found that the
models developed using MARTare more accurate models in
comparison with any known modeling methodologies. *e
model can handle categorical and continuous inputs and
target variables. *e model is more stable due to the use of
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Figure 1: Upper Zab, Lower Zab, and Diyala Rivers’ location.
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Table 1: Morphological and flow data characteristics.

Upper Zab Lower Zab Diyala
Basin area (km2) 16863 11706 15765
Basin slope (m/m) 0.350 0.265 0.252
Average over land flow (m) 5.878 6.05 6.92
Perimeter (km) 1141.2 1053 1368.16
Basin length (km) 189.9 125 165.76
Mean basin elevation (m) 1870 1381.60 1551.15
Flow data record 1932–2004 1932–2004 1932–2004
Maximum flow (m3/s) 1681 1135 947
Minimum flow (m3/s) 32 9 3
Standard deviation (m3/s) 277 180 148
Mean (m3/s) 369 193 150
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Programs selection
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Figure 2: Flowchart of gene expression programming algorithm (Ferreira, 2001).
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the Humber M-regression loss function in its algorithm.
MART algorithm is started by fitting the inputs to first tree
and then the biases from the first tree are inserted to the next
tree to minimize the error [43]. *is procedure is repeated
through a series of following trees. *e final results are
adjusted by adding contribution weight of each tree. *e
MART algorithm can be expressed as [36]

Target � S + C1 × T1(N) + C2 × T2(N) + · · · + Cn × Tn(N),

(1)

where S is the mean value of the target variable; N is a
pseudoresidual as set value’s vector, T1 (N), T2 (N), . . . Tn (N)
is tree fixed to the pseudoresiduals, and C1, C2, . . ., Cn are the
tree node predicted coefficients. Figure 3 shows a simple
MART structure and Figure 4 shows the flowchart of ran-
dom trees algorithm.

2.4. Introduction to the Group Method of Data Handling
(GMDH). GMDH was developed to solve the problems of
predication, complex system, and optimization by using a
nonlinear regression algorithm. GMDH structure is classi-
fied as a self-organizing polynomial neural network’s
method [44]. GMDH is a specific type of supervised artificial
neural network.*e algorithm of GMDHuses the concept of
natural selection to control the network size, complexity,
and accuracy [45].*e GMDHmodel starts by selecting a set
of functions that showed highest prediction accuracy at
previously unseen data. In GMDH model, layers of neurons
are created using one or more inputs. *e connections
between neurons in the network are self-selected during
training phase. *e determination of number of layers and
neurons in the network is automatic. *e GMDH solutions
are subsets of functions called partial models [46]. *e best
model is reached by gradually increasing the number of
partial models.*e GMDH algorithm uses the two variables’
quadratic equation to develop the model.
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1
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, (3)

where m presents the number of variables, (x1, x2, x6) are
vectors of input variables, and (a1, a2, . . ., a6) are vectors of
parameters. Figure 5 shows the structure of GMHD and
Figure 6 shows the flowchart of GMDH algorithm. More
details of GMHD are found in [44].

2.5. Performance Evaluation. In this research, two different
performance metrics were selected to evaluate the proposed
models: coefficient of determination (R2) and root mean
square error (RMSE) [47].
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where Qio and Qip are the observed and generated
streamflow values, respectively, Qo is the observed
streamflowmean value, and n is the data record number.*e
best models are those which showed low RMSE and are close
to 1 value for R2.

3. Modeling Results and Discussion

In this study, the three ML models were applied to develop
the best models to generate monthly streamflow from annual
streamflow. *e models were developed using monthly
streamflow as a target variable while the annual streamflow
and monthly time index as predictor variables. *e time
index is an index that represents the monthly sequence
within a year, and its values range from 1 (January) to 12
(December). Selecting the best model for predicting the
monthly streamflow of the three proposed rivers requires
choosing the best model settings for theMART, GMDH, and
GEP models. *e best MART model requires selecting the
best settings for the three parameters in the model that
includes the amount of trees in series, depth of discrete trees,
and number of splits (least size). *ese values for the three
rivers are 600, 5, and 10 for the Upper Zab River, 800, 5, and
10 for the Lower Zab River, and 300, 5, and 10 for Diyala
River. *e best GMDH model requires selecting the best
settings for the four parameters in the model that include
maximum network layers, maximum polynomial order,
number of neurons per layer, and network layer connections
type. *e optimum parameter’s settings of the GMDH
model for the three rivers in this study are 20 for maximum
network layers and 16 for maximum polynomial order, same
number of neurons as inputs’ option for the number of
neurons per layer, and previous layer and original input
variables for the network layer connections’ type. *ere are
five major steps for GEP modeling in this study: (1) selecting
the set of functions to be used: 5 basic mathematical
functions were used: +; −; ×; ÷; and power; (2) selecting the

Dataset 1

Dataset 2

Dataset n

Tree 1

Tree 2

Tree n

Linear
combination Output

Figure 3: *e structure of the MART model.
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fitness function: the root relative square error (RRSE) was
selected; (3) choosing the optimum general parameters:
here, population size, genes per chromosomes, and gene
head length were chosen; (4) choosing linking function:
addition was chosen; and (5) we selected genetic operators,
mutation rate of 0.044, and inversion rate of 0.1. Table 2
summarizes the best GEP model setting for the three rivers.

*e results of the optimum symbolic fit regression functions
from GEP model are explained in the following generated
expressions for the Upper Zab, Lower Zab, and Diyala
Rivers, respectively:

Qm �
−90151.84

T
− 0.0012708T

2
+ 80992.678

+ Qa +
89130.39

T
,

Qm � 167.44 − T + Qa − 16.4182T − T,

Qm � 262.276 − 22.8876T + Qa

+
���
Qa


+ 383.9346 +

64.230
T − 2.6546

,

(5)

where Qm is a monthly flow, Qa is an annual flow, and T is a
time index (1, 2, 3, . . ., 12).*e values of monthly streamflow
change with the change in the value of the time index in the
previous functions. *e performance of the proposed
models was evaluated utilizing the couple of statistical
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metrics and graphical visualization. Based on the reported
statistical result in Table 3, the Upper Zab River simulation
has shown that the performance of the MART model is
superior over the performance of GMDH and GEP models.
*e R2 values are 0.93, 0.81, and 0.53 for the training phase
and 0.84, 0.64, and 0.47 in the validating phase for MART,
GMDH, and GEP models, respectively. On the other hand,
and using the absolute error measures, the results of RMSE
have proved the accuracy of MART model in comparison
with the other models, which can be due to the model of
learning used by MART model where weak learning is

boosted by regression learning leading to higher accuracy.
*e RMSE values are 85, 141, and 222m3/s in training phase
and 113, 169, and 208m3/s in the validating phase for the
MART, GMDH, and GEP models, respectively. For the
Lower Zab River, R2 values are 0.90, 0.47, and 0.41 in training
phase and 0.75, 0.46, and with lowest of 0.40 through the
validating phase for the MART, GMDH, and GEP models,
respectively. *e RMSE results have also proved the per-
formance of MARTmodel in comparison with the GMDH
and GEP models. *e RMSE values during the validating
phase are 62, 144, and 151m3/s, and during the training

Start

Divide the sample into training set and validating set

Input neurons: X1, X2, X3, …., Xn

Select neurons according to the criterion and put them into

Calculate the coefficients in the training set; calculate the
degree of determination (R2) in the validating set

Calculate the coefficients in the training set; calculate the
degree of determination (R2) in validating set

Respectively, combine one neuron with another neuron
including itself, and mix with neurons of last layer

Select neuron according to the criterion and put them into
f (x)

If R2 decreases and the
number of layers < max
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Figure 6: Flowchart of GMDH algorithm.
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phase the errors produced are 95, 149, and 157m3/s for the
MART, GMDH, and GEP models, respectively. *e R2

values are 0.85, 0.51, and 0.50 in training phase and 0.78,
0.42, and 0.50 in the validating phase.

*e RMSE values in the validating period are 66, 120,
and 121m3/s in the training phase and 73, 118, and 109m3/s
for the MART, GMDH, and GEP models, respectively, for
the Diyala River. Both the R2 and RMSE metrics results have
proved the accuracy of the MART model to disaggregate
annual flows to monthly streamflow in comparison with the
GMDH and GEP models. *e quality of the proposed
models was measured by equating between the three sta-
tistical time series parameters which are maximum flow,
standard deviation, and mean. Table 4 exhibits the results of
these parameters. In accordance with the reported results in
Table 4, it is apparent that the performance capacity of the
MART model was superior to the performance of GMDH
and GEP models. *e observed data of the maximum
monthly streamflow with the results of the applied models
shows that the maximum monthly streamflow values in the
validating phase were 1631, 1486, 1435, and 885m3/s for the
Upper Zab River, 1569, 1215, 769, and 588m3/s for the
Lower Zab River, and 864, 769, 626, and 570m3/s for the
Diyala River of the observed, MART, GMDH, and GEP
models, respectively. Comparing the results of the statistical
parameters, standard deviation, and the mean of the ob-
served monthly streamflow with the results of the applied
models as in Table 4 shows improved competence of the
MART model compared to the GMDH and GEP models.

*e predicted monthly streamflow over the validating
period was assessed using the scatter plots variation as il-
lustrated in Figures 7(a)–7(c). *e plots in Figure 7 dem-
onstrated a good relationship between the observed value
and the generated monthly streamflow using the potential of
the MART model in comparing to the other models. Also,
the efficiency of the applied models was evaluated by
comparing monthly statistical parameters for each month.
*e models’ capability to handle streamflow data decreases
with increased stochasticity of the data; however, the results
depict that MART is more capable of predicting such data.
*e results of the maximum monthly flow, mean flow, and
standard deviation for each month were compared with the
results of observed monthly streamflow in the validating
phase. *e comparisons were made by plotting the maxi-
mum monthly flow, mean flow, and standard deviation
against the months; see Figure 8. *e results of Figure 8 also
demonstrated that MART model is accurate and thus su-
perior with respect to the GMDH and GEP models’ per-
formance to generate monthly streamflow from annual
streamflow. As per the results of the statistical parameters, it
is apparent that the MART model performance is accurate
when compared to the observed data for the three studied
rivers (Figure 8). It is apparent that rivers have diverging
hydrological characteristics and model behavior and per-
formance can change greatly according to that. As per the
figure, it can be observed that each river presents different
seasonality and deviation over the time period because of
which models generate more error during modeling.

Table 2: Model setting.

Upper Zab Lower Zab Diyala
Function set
Addition + + +
Subtraction − − −

Multiplication × × ×

Division ÷ ÷ ÷
Power ∗∗ ∗∗ ∗∗

General parameters
Population size 50 100 100
Genes per chromosomes 4 4 4
Gene head length 8 8 8
Fitness function RRSE RRSE RRSE
Linking function Addition Addition Addition
Genetic operators
Mutation rate 0.044 0.044 0.044
Inversion rate 0.1 0.1 0.1

Table 3:*e performance metrics of the applied ML predictive models through the training and validating phases when modeling the three
investigated rivers.

Model
Upper Zab Lower Zab Diyala

Training Validating Training Validating Training Validating
R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s) R2 RMSE (m3/s)

MART 0.93 85 0.84 113 0.90 62 0.75 95 0.85 66 0.78 73
GMDH 0.81 141 0.64 169 0.47 144 0.46 149 0.51 120 0.42 118
GEP 0.53 222 0.47 208 0.41 151 0.40 157 0.50 121 0.5 109
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Table 4: Statistical analysis of observed and modeling results of the monthly streamflow values.

River name Observed MART GMDH GEP
Training

Upper Zab
Maximum flow (m3/s) 1681 1558 1897 993

Standard deviation (m3/s) 326 303 293 229
Mean (m3/s) 397 393 393 402

Lower Zab
Maximum flow (m3/s) 1406 1215 827 628

Standard deviation (m3/s) 198 179 131 125
Mean (m3/s) 198 196 199 203

Diyala
Maximum flow (m3/s) 1451 850 908 617

Standard deviation (m3/s) 171 134 119 113
Mean (m3/s) 156 150 154 160

Validating

Upper Zab
Maximum flow (m3/s) 1631 1486 1435 885

Standard deviation (m3/s) 286 287 282 228
Mean (m3/s) 353 364 388 370

Lower Zab
Maximum flow (m3/s) 1569 1215 769 588

Standard deviation (m3/s) 205 201 149 129
Mean (m3/s) 198 201 195 207

Diyala
Maximum flow (m3/s) 864 769 626 570

Standard deviation (m3/s) 150 145 111 116
Mean (m3/s) 150 148 157 160

R2 = 0.8511

0

500

1000

1500

2000

0 500 1000 1500 2000

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

MART

Upper zab

1 : 1 lin
e

R2 = 0.6427

0

500

1000

1500

2000

0 500 1000 1500 2000

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GMDH

Upper zab

1 : 1 lin
e

R2 = 0.5323

0

500

1000

1500

2000

0 500 1000 1500 2000

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GEP

Upper zab

1 : 1 lin
e

(a)

R2 = 0.7943

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

MART

0

500

1000

1500

0 500 1000 1500

Lower zab

1 : 1 lin
e

R2 = 0.4748

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GMDH

0

500

1000

1500

0 500 1000 1500

Lower zab

1 : 1 lin
e

R2 = 0.4435

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GEP

0

500

1000

1500

0 500 1000 1500

Lower zab

1 : 1 lin
e

(b)

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

MART

R2 = 0.7919

0

200

400

600

800

1000

0 200 400 600 800 1000

Diyala

1 : 1 lin
e

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GMDH

R2 = 0.4575

0

200

400

600

800

1000

0 200 400 600 800 1000

Diyala

1 : 1 lin
e

Pr
ed

ic
te

d 
(m

3 /s
)

Observed (m3/s)

GEP

R2 = 0.5335

0

200

400

600

800

1000

0 200 400 600 800 1000

Diyala

1 : 1 lin
e

(c)

Figure 7:*e scatter plots between the observed and predicted streamflow values for all applied predictive models. (a) Upper Zab River, (b)
Lower Zab River, and (c) Diyala River.
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Figure 8: Continued.
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Figure 8: Continued.
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Figure 8: Results of the statistical parameters against the months.
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Figure 9:*e graphs show the yearly time series flow of the three rivers and observed and generatedmonthly streamflow after application of
MART model during the validating phase.
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Figure 9 shows a comparison between the observed and
generated monthly streamflow generated using MART
model during the validation phase for the three rivers in this
study and it also shows how the monthly flows were gen-
erated from the annual flows data. *e results in Figure 9
show the proximity of the observed value and generated
monthly streamflow which also evidenced that the MART
model performance is able to produce monthly streamflow
time series from annual monthly streamflow time series
data.

*e results indicated the efficiency of MART model in
generating monthly flow data from annual flow data and this
is due to MART model’s structure, which enables the
building of robust models with a limited number of inputs
(the inputs included only the annual flow and time index).
*e results also showed the weakness of revolutionary and
self-learningmodels in creating robust models with a limited
number of inputs.

*e results indicated the efficiency of usingMARTmodel
to generate monthly streamflow from annual streamflow.
*is is the first application of usingMARTmodel to generate
the monthly streamflow from annual streamflow.*e results
showed the importance of using time index to improve the
accuracy of generating monthly streamflow from annual
streamflow. *e results of this paper are encouraging to
develop newmodels for generating monthly streamflow data
instead of the data of fragment method which is usually used
for this purpose.

4. Conclusions

In this study, three different ML models were used to
generate monthly streamflow time series from annual
streamflow time series. *e models included MART,
GMDH, and GEP. *e models input only included the
annual streamflows and monthly time index. *e results
showed that the MARTmodel is superior to the GMDH and
GEPmodels in producingmonthly streamflow time series by
applying annual monthly streamflow time series data. *e
results indicated that the structure of MARTmodel is better
than the structure of polynomial neural networks or revo-
lutionary models in generating modeling. *e efficiency of
MARTmodel was better than the results of GMDH and GEP
models for Upper Zab (R2 0.84, 0.64, and 0.47), Lower Zab
(R2 0.75, 0.46, and 0.40), and Diyala (R2 0.78, 0.42, and 0.5).
*e MART model accuracy is relating to its specific archi-
tecture, which may include number of trees growing in
equivalence in addition to the use of boosting technique
which helped to improve the prediction function.*e results
demonstrated the possibility of changing the timescale in
generating streamflow. *e application of MART model is
easier than the method of data of fragment that is usually
used to disaggregate the annual streamflow to monthly
streamflow.
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*e data used to support the findings of this study are
available from the corresponding author upon request.
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