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A new process of agile turn with engine reignition is proposed in this paper. Compared with the traditional process, this process
includes deceleration phase, larger angle manoeuvre phase, and engine reignition phase. Firstly, the paper describes the new
process of agile turn. %en, several constraints in this process are described. Considering all these constraints and assumptions, a
new dynamic model including two-stage engine and deceleration parachute is established. %en, the optimal control laws are
designed and the timing point determination of the secondary engine ignition is discussed. By using Pontryagin principle, the
optimal control laws for each actuator are derived. In terms of determining the optimal timing point of the secondary engine
ignition, the paper gives the process of proof. Finally, several numerical simulations are given to demonstrate the effectiveness of
the method proposed in this paper. According to all these numerical simulations, it is obvious that the new process of agile turn
proposed in this paper is better than traditional process especially in having a smaller turning radius, a shorter turning time, and a
high terminal velocity.

1. Introduction

With the instant development of world militarily, agile turn
is widely used in tactical and strategic weapons, especially in
air-air missile, ground-to-air missile, and others. In air
combat, to seize the transient opportunity, it requires pilots
to have the ability of random launch. At the same time, the
missile should have the ability of agile turn. As the coun-
teraction becoming more and more fierce, the manoeu-
vrability of the moving target becomes so stronger that the
traditional process of agile turn is not adapted to the current
air combat mode. Beyond that, to attack the concealed
targets in urban or the reverse side of the mountain, the
missile should not only have the stronger manoeuvrability
comparing with the traditional process of agile turn but also
complete the turning process in a shorter time. In addition,
to ensure attacking the moving target, it is usually that the
missile should have a high terminal velocity after great
manoeuvring. All these problems challenge traditional agile
turn process. So, how to realize supermanoeuvrable turning
with having a high terminal velocity, a smaller turning

radius, and decreasing the time in turning phase and others
has become a research hotspot in the field of missile.

As is known to all, the angle between the orientation of
velocity and LOS (Line of Sight) is very large when launching
missile. With the effectiveness of initial guidance, the missile
pointing can be soon adjusted to near LOS. %is will be
instrumental in terminal guidance. In terms of agile turn,
there are too many literatures about it. In the early research,
TVC (%rust Vector Control) and RCS (Reaction jet Control
System) had been widely used in USA [1].%ese two kinds of
methods are investigated to provide direct control force and
moment for missile. Reference [2] focuses on how to control
the orientation of velocity and a new method combining
with RCS is proposed in this paper. At the same time,
considering the property of RCS, a sliding mode control
method is used for attitude control. In terms of using direct
lateral force, considering multiple constraints for agile turn,
a turning law employing the optimal axis control principle is
designed in [3] and several numerical simulations are given
to realize it. To improve the accuracy of a control system, a
parameter selection method for lateral thrust and
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aerodynamic force is introduced in [4], but the influence of
instruction form is not considered in this method. To avoid
the limit cycles and blended control logic problem, a new
control logic about RCS method is designed in [5]. Several
simulations show the effectiveness of this method, but it just
considers the problem of blended control logic. In [6], the
agile turn problem was formulated as an optimal control
problem, and the optimization goal is having a max terminal
velocity during the whole phase. In [7], a novel extended
modal series method for solving the infinite horizon optimal
control problem of nonlinear interconnected large-scale
dynamic systems is presented. In this method, the infinite
horizon nonlinear large-scale two-point boundary value
problem (TPBVP), derived from Pontryagin’s maximum
principle, is transformed into a sequence of linear time-
invariant TPBVPs. In [8], a new guidance law for initial turn
manoeuvre is presented. In this paper, a backstepping
controller is designed to follow the attack angle command
generated from the guidance model. While this method
divides this process into two phases of turning and accel-
eration, each phase is analysed separately. In [9], a new
method for solving optimal guidance problems is proposed
via the theory of connections. %is paper applies this ap-
proach to solve the boundary value problems for differential
equations to solve optimal space guidance problems. To
solve the optimal control problem of linear time-varying
systems with state time-delay, a recursive shootingmethod is
presented in [10]. Firstly, the original time-delay optimal
control problem is transformed into a sequence of linear
two-point boundary value problems (TPBVPs) without
delay and advance terms. %en, by using a shooting method
for the solution of latter sequence in a recursive manner, an
optimal control law is achieved which consists of feedback
and forward terms. At last, several comparative results are
included to illustrate the effectiveness of the proposed ap-
proach. Reference [11] uses the particle swarm optimizing
method to design the control law for agile turn. Several
numerical simulations had been done to verify the effec-
tiveness, but this method is not better viewed from the
turning radius. Reference [12] deals with a general form of
fractional optimal control problems involving the fractional
derivative with singular or nonsingular kernel. A new nu-
merical method with Mittag-Leffler kernel is designed to
solve these equations effectively. Above all these methods
based on optimal control theory, there are many other
approaches based on sliding control method. In [13], in
terms of the canard control that may saturate at large angles,
an integrated fuzzy sliding mode control method is devel-
oped for missile. %is method using the double-sliding
mode, zero miss-distance, and a variable related to autopilot
parameter are selected as two sliding surfaces. Even though
using this method can derive the appropriate control law, it
is just suitable for snake maneuverer. Based on sliding mode
control method and adaptive synchronization, a new
adaptive sliding mode disturbance-observer in a class of
fractional-order chaotic systems is designed in [14]. Using
the Lyapunov stability theory, the designed controller fulfills
that the states of the fractional-order master and slave
chaotic systems are synchronized hastily. Several

simulations demonstrate the efficiency of the offered scheme
on the fractional-order Dadras-Momeni chaotic system in
the existence of external disturbances. Reference [15] uses
the computational fluid dynamics (CFD) method to analyze
the influence of interaction flow field with multilateral jets,
when attacking the target at large angles. %e paper reveals
the mechanism of the jet interaction effect on the aerody-
namic characteristics of the missile at different attack angles,
and several simulations verify the effectiveness of this
method. A new control algorithm based on supertwisting
sliding mode for a gearless wind turbine by a permanent
magnet synchronous generator (PMSG) is shown in [16].
%e main features of this method are being chattering-free
and its robustness against external disturbances such as grid
fault conditions. %e simulation results show better per-
formance and robustness under different conditions for
designed STSM controller. To solve the problem of the fault
ride-through (FRT) capability and fault current issues, a
nonlinear sliding mode controller (SMC) for the BFCL to
enhance the FRT performance of the DFIG-based WT is
proposed in [17]. Compared with other methods, this
controller has robust performance in unpredicted voltage
sag level and nonlinear features. Simulation results reveal
that the SMC-based BFCL provides better performance
compared with the conventional and PI controller-based
BFCL to enhance the FRT. In [18], an interceptor can align
itself with an impact angle frame in finite time, but this
method has a drawback of the potential singularity problem
when the error is a very small. In [19], a fast fixed-time
second order sliding mode control method is presented for
three-axis stabilized double slider mass moment missile.
%is method establishes the attitude dynamics model of the
mass moment with complete coupling dynamics charac-
teristics. For intercepting a manoeuvring target, a novel
smooth adaptive fixed-time convergent nonsingular ter-
minal sliding mode guidance law is designed in [20]. %e
sliding mode guidance control law designed in this paper has
the characteristics of having no singularity and chattering.
%ough the paper designs an appropriate control law, it
studies the manoeuvring target with engagement geometries
and impact angles only. In [21], a new guidance law with
impact angle constraints, which ensure finite-time conver-
gence to a desired impact angle, was developed. In [22], the
same singularity problem can also be found in a Finite-Time
Guidance Law (FTGL) that only focuses on interception
without considering impact angle constraints. Of course,
there are also other methods for high manoeuvre flight
especially in agile turn. But it is easy to find that although
many methods have been proposed, they all just consider
how to realize agile turn rather than considering multiple
constraints in the process of agile turn. %erefore, it is
meaningful to study the problem of agile turn with multiple
constraints. Particularly, the process shows the engine
reignition to guarantee the terminal velocity.

On the other hand, combining with the missile dynamic
model and multiple constraints, the problem of agile turn
can be regarded as a nonlinear optimal control problem. In
terms of nonlinear optimal control problem, corresponding
algorithms were also proposed in previous literatures.
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Reference [23] discusses the conditions on finite-time sta-
bility in time-delay systems and gives the whole process. At
the same time, it introduces time-delay systems in the ap-
plication of nonlinear systems. In [24], for the hyperchaotic
Chen system, a piecewise spectral homotropy analysis
method (PSHAM) is used for solving it. At the same time, an
adaptive control approach and a parameter estimation
update law are introduced for the hyperchaotic Chen system
with completely unknown parameters. In [25], a fixed-time
integral sliding mode controller based on fixed-time stability
theory is proposed, which ensures precise convergence of the
state variables for the system.%e controller designed in this
paper realizes the nonsingular chattering-free control of
chaotic oscillation in nonlinear system. In [26], a smooth
fixed-time convergent sliding mode controller is proposed,
which is used for a missile flight system considering aero-
dynamic uncertainties.%e drawback of this approach is that
it does not introduce any discontinuous items to avoid the
problem of chattering consequently. In addition, it also just
considers the influence of aerodynamic force. %e problem
of a full-order and reduced-order unknown input observers
for a particular class of time-delay systems is researched in
[27]. It establishes the asymptotic stability and existence
conditions for the designed observers. At the same time, the
paper uses the quadruple-tank process as a benchmark to
prove the efficiency of the proposed algorithms. For the
uncertain systems with time-varying uncertainties, nonlin-
earities, and external disturbances, a linear matrix in-
equality-based second order sliding set control is proposed
in [28]. Using this approach, the stability analysis can
simplify the nonlinear system into a linear matrix inequality
problem.%e corresponding simulation results are displayed
to show the effectiveness of the proposed approach. Ref-
erence [29] presents a controller in sense of the fixed-time
concept for rigid spacecraft and the attitude of the spacecraft
converging to the equilibrium. In [30], a global nonsingular
terminal sliding mode control strategy for nonlinear systems
is developed to overcome the singularity problem of ter-
minal slidingmode control systems. Using this approach can
guarantee the finite-time reachability of the systems to get
the terminal sliding mode surface. In addition, to solve the
dynamic load carrying capacity problems for mechanical
manipulators, the optimal control theory was used in
[31, 32]. %e aim of all these researches is to calculate the
maximum-allowed load that a mechanical manipulator with
flexible links can carry while traversing an optimal path.
Moreover, to find the optimal trajectory of the flexible
mobile manipulators in point-to-point motion, the optimal
control approach is used in [33]. In this paper, the study
emphasizes modelling of the complete optimal control
problem by keeping all nonlinear states and costate variables
as well as control constraints. %e motions of articulated
systems along specified paths are researched in [34]. Using
optimal control theory, the paper establishes the optimi-
zation to minimize a time-energy cost function and the
optimization problem is solved using the Pontryagin
maximum principle.

Inspired by the previous discussion, the paper mainly
focuses on proposing a new process of agile turn and

establishing the missile dynamic model with deceleration
parachute and two-stage engine. Compared with the tra-
ditional process, the new process can have a smaller turning
radius, a shorter turning time, and a high terminal velocity.
%is scenario is necessary in air-air combat, attacking the
concealed target in urban or the reverse side of the mountain
and others. Firstly, considering the existence of two-stage
engine and deceleration parachute, the paper defines the new
process of agile turn and gives a detailed description for each
phase.%en, several constraints in the real scenario are given
in this paper. Combining all these conditions and some
assumptions, a new dynamic model including two-stage
engine and deceleration parachute is established. %en,
using optimal control theory and monotonicity principle,
the paper designs the nonlinear optimal control laws for
each actuator for each phase with multiple constraints. At
the same time, to ensure the terminal velocity, the paper
gives the method to determine the optimal timing point of
the second engine reignition based on optimal control
theory, monotonicity principle, and the flight procedure of
the missile.

In a brief, the main contribution of the research is that it
proposes a new process of agile turn. Using optimal control
theory, the paper designs the nonlinear optimal control law
with multiple constraints for turning radius, turning time,
and terminal velocity, which is different from previous
works that just consider one of these constraints. Besides,
using optimal control theory to solve the optimal inter-
mediate instant is always complex. So, combining with
monotonicity principle, the paper proposes an approach to
determine the optimal intermediate state to ignite the sec-
ondary engine. At last, the rest of this paper is structured as
follows. In Section 2, we give a brief introduction of the
process for different types of agile turn. In Section 3, several
constraints in the whole process of agile turn are presented.
In Section 4, the nonlinear dynamic model of the missile is
proposed, and the corresponding research problems are also
given in this section. In this section, using optimal control
theory, the optimal control laws and the optimal timing
point of engine reignition of the missile are investigated.
Several numerical simulations are reported in Section 5,
which is followed by some concluding remarks in Section 6.
After “Conclusions” section, the future recommendation is
added in Section 7 to further improve the work.

2. Definition of the New Process of Agile Turn

As we know, the traditional process of agile turn is that when
leaving the launcher, the missile quickly enters the initial
guidance phase. In this phase, through reaction jets or
aerodynamic force or others, the missile soon completes
pointing which is adjusted near the LOS. But, in the whole
process, it does not care about the terminal velocity, the
turning time, and the turning radius. %e traditional process
of agile turn is shown in Figure 1. %e red line shows the
variation of axial force.

As shown in Figure 1, it is obvious that the traditional
process of agile turn just includes one phase. Once the
missile leaves launcher, it does not care about the
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performance of agile turn. But, in the real combat scenario, it
is widely known that the target does not only have the
characteristics of great manoeuvring and high velocity. So,
how to reduce the time of turning, decrease the turning
radius, and have a high terminal velocity is very important.
%erefore, this paper presents a new process of agile turn
shown in Figure 2.

As shown in Figure 2, the new process of agile turn is
divided into three phases called deceleration phase, turning
phase, and engine reignition phase. When leaving the
launcher, the missile enters the initial guidance phase. In this
phase, the missile is affected by control force generated by air
rudder, deceleration force, and aerodynamics force. When
velocity decreased to a certain degree, the missile gets into
larger angle manoeuvre phase. In this section, the missile
accomplishes the large angle attitude manoeuvre affected by
control force. At last, to ensure the terminal velocity, the
secondary engine is ignited in the third phase.

3. Constraints Description

According to the real scenario, when carrying out the larger
angle manoeuvre to attack the rear target, the concealed
target in urban or the reverse side of the mountain and
others, the process of agile turn includes so many con-
straints. Several major constraints will be introduced in this
section.

3.1. Terminal Velocity Constraint. Figure 3 shows the missile
attacking the rear target. To attack the high velocity target,
the missile will be required to have a certain terminal ve-
locity which is larger than the target’s velocity. %en, the
terminal velocity would be described as follows:

vtf ≥ vtar, (1)

where vtf is the terminal velocity after agile turn phase and
vtar denotes the current target velocity.

3.2.MinimumTurningRadiusConstraint. In the real combat
scenario, which not only requires that the missile should
have a high terminal velocity, but also accomplishes the large

angle manoeuvre in a small space, the smaller the turning
radius, the more the missile will have a broad application
prospect, such as attacking the target which is closed to the
mountain shown in Figure 3. So, considering this aspect, we
require the turning radius to be smaller in large angle
manoeuvre phase.

As shown in Figures 3 and 4, the turning radius should
be smaller and theminimum turning radius can be described
as follows:

r≤min Rturn . . .{ }, (2)

where Rturn . . .{ } represents all the radii in each condition.

4. Dynamic Model and Research Problems

4.1. Nonlinear Dynamic Model. Before establishing the
nonlinear dynamic model, several fundamental assumptions
are introduced.

(1) %e variation of static parameters like mass and
moment of inertial through entire flight is not taken
into consideration

(2) Trustworthy measurements of attitude angles and
angular velocities are available with high precision
sensors

(3) Aerodynamic uncertainties and their derivatives are
bounded

(4) In deceleration phase, the parachute can be opened
in a moment

(5) In engine reignition phase, the engine force just
affects the direction of axis and without regard to the
ignition time

(6) %e thrust generated by reignition is defined as an
impulse force

(7) %e separation time between the missile and para-
chute is ignored

(8) %e missile includes two-stage engine and the sep-
aration time between the primary engine and sec-
ondary engine is ignored

Based on all these assumptions, the dynamic model of
the missile can be obtained, which is a strongly nonlinear
and multivariable one. %e model of the longitudinal dy-
namics of the missile shown in Figure 5 is given as follows,
and the corresponding dynamic equation in longitudinal
plane is shown in (3), which adds the deceleration force and
the thrust generated by the secondary engine compared with
the tradition equation [35].

As shown in Figure 5, the missile is made up of four parts
mainly, including deceleration parachute, grey part of the
primary engine, red part of the secondary engine, and the
actuator. To achieve reignition, the missile will cast away the
primary engine in amoment and ignite the secondary engine
soon. In this paper, it does not consider the time of igniting.

t1 t2

Axial Force

�e process of agile
turn

Terminal guidance

Figure 1: %e traditional process of agile turn.
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where V denotes the velocity of the missile. θ denotes the
trajectory inclination angle. wz is the pitch angular accel-
eration. ϑ is the pitch angle. α represents the attack angle. m

is the mass of the missile. x and y represent the position in
longitudinal plane.

In addition, Y is a function describing lift effects. Xx

denotes the dissertation force. Xsecthrust represents the sec-
ondary engine thrust, which is an impulsive force. %e other
control input of the model is Δδ which is the elevator’s
deflection.X is the function denoting the aerodynamic force.
P represents the primary thrust force. Mα

z , M
wz
z , and Mδ

z are
the function providing the pitching moment. G denotes the
gravitational constant.

Other functions that appear in the previous state-space
model are denoted as follows. cx is the lift coefficient. cy is
the drag coefficient. mα

z is the moment coefficient due to the
attack angle. m

wz
z is the moment coefficient due to damping

and mδ
z is the moment coefficient due to the elevator’s

deflection. ρ is the density of air. S is the reference area and L

is the mean aerodynamics cord.
Using state-space notation x � [x1, x2, x3, x4, x5, x6]

T,
and defining the modified control input
u1 � Xx, u3 � Δδ, u2 � Xsecthrust, one can obtain the fol-
lowing state-space description about the dynamics of the
missile.

Axial Force

t0 t1 t2

Reignition

Inotropic effect phrase

Terminal guidance

t3

�e new process of agile turn

Figure 2: %e new process of agile turn in this paper.

Missile
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plane

Turning radius O

r

L

Target

Optimal
Trajectory

x

y

z

o

vtf

vt0

Figure 3: %e terminal velocity constraint in agile turn.
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where x1 denotes the V. x2 denotes the θ. x3 denotes the wz.
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Figure 5: Diagram of the missile with deceleration parachute.
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Consequently, the state-space description of the missile
is written in the affine-in-the-input form.
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g(x)51 g(x)52 g(x)53

g(x)61 g(x)62 g(x)63

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u1

u2

u3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(12)

By denoting x ∈ R6×1, u ∈ R6×3, f(x) ∈ R6×1, and
g(x) ∈ R6×3, then the previous state-space model can also be
written in the concise form:

_x � f(x) + G(x)u

where : G(x) �

g(x)11 g(x)12 g(x)13

g(x)21 g(x)22 g(x)23

g(x)31 g(x)32 g(x)33

g(x)41 g(x)42 g(x)43

g(x)51 g(x)52 g(x)53

g(x)61 g(x)62 g(x)63

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (13)

where _x represents the matrix of [ _x1, _x2, _x3, _x4, _x5, _x6]
T.

f(x) represents the matrix of
[f(x)1, f(x)2, f(x)3, f(x)4, f(x)5, f(x)6]

T.

4.2.ResearchProblems. In this section, wemainly discuss the
optimal control problem with multiple constraints, such as
terminal velocity and turning radius. At the same time, we
will research how to determine the optimal time of the
secondary engine ignition and give the corresponding
process of proof. Firstly, the paper will design the optimal
control law for different phases.

4.2.1. Optimal Control Law Design

(1) Deceleration Phase and Larger Angle Manoeuvre Phase.
Firstly, during deceleration phase, the parachute is opened in
a moment. It is mainly to reduce the velocity to a certain
extent. %en, the missile will be soon accessed into the larger
angle manoeuvre phase. As mentioned in previous section,
the new process of agile turnmainly concerns the constraints
of terminal velocity and turning radius in this paper. So,
during these two phases, we will just consider the turning
radius and take the minimum turning radius as a constraint.
So, in this section, we will derive the optimal control laws of
u∗1 , u∗3 in deceleration phase and larger angle manoeuvre
phase. %e following chat of algorithm is shown in Figure 6.

Figure 6 shows the approximate flow of the algorithm in
deceleration phase and larger angle manoeuvre phase to

derive the optimal control input u∗1 , u∗3 . Now, we will give the
procedure of the algorithm in detail.

Theorem 1. 3e control laws equation (14) is the optimal
control laws for different actuators during deceleration phase
and larger angle manoeuvre phase of agile turn:

u
∗
1 � g(x)11

r

αg11(x) + f1(x)
  + r, t0 < t< t1( 

u
∗
3 � −g(x)33 −f3(x) + cg33(x)( , t0 < t< t1( 

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

Remark 1. Before giving the process of derivation, the paper
will declare that the secondary engine is not ignited during
these two phases. %erefore, the missile is just affected by
aerodynamic force, deceleration force, and control force
generated by air rudder. So, we can ignore the thrust gen-
erated by the secondary engine. %en, we can obtain the
following equation:

u2 � Xsecthrust � 0. (15)

Proof. As mentioned in previous section, during these two
phases, the paper will just concern the turning radius. So, the
corresponding constraint can be defined as follows:

Start

Establish performance index function J *

Considering the constraints

Establish the Hamiltonian equation

Hamilton-Jacobi equation

Establish the Canonical Equation In optimal 
condition

Derive the optimal control input u*1, u*3

End

Figure 6: %e approximate flow of algorithm.
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r �
1
i



t1

t0

rti
t0 < ti < t1( , (16)

where t0 denotes the initial time. t1 denotes the terminal
moment, which is also the initial time during reignition
phase. rti

denotes the turning radius at ti. From equation
(16), it is obvious that, to make r smallest, rti

should be
required to be smaller in each simulation step.

In general, the initial state of the missile is known, and it is
defined as x0. During these two phases, we just consider the
turning radius rather than considering the state at t1. So, we can
regard this problem as two-point boundary value problem
whose terminal time t1 and the terminal state are free.

%erefore, according to the dynamic program theory and
the turning radius constraint mentioned in previous section,
the optimal cost function can be defined as follows:

J
∗

� − min
u t0 ,t1[ ]∈Ω


t1

t0

rdt +
1
2


t1

t0

u
2
1 + u

2
3 dt , (17)

where r � x1/ _x2 denotes the turn radius. u1, u3 represent the
deceleration force and the control force, respectively.

For J∗, the corresponding Hamiltonian function is given
by

H � r +
1
2

u
2
1 + u

2
3  + λT

(f(x) + G(x)u), t0 < t< t1( ,

(18)

where λT(t)can be obtained as follows:

λT
(t) �

zJ
∗

zx
. (19)

According to equations (17) and (18), we can get the
Hamilton–Jacobi equation as follows:

−
zJ
∗

zx
� min

u
H � min

u
r +

1
2

u
2
1 + u

2
3  + λT

(f(x) + G(x)u) .

(20)

As mentioned in the previous section, in this paper the
control inputs u1, u3are unrestrained. At the same time,
according to (15), we can obtain u2 � 0(t0 < t< t1).

%en, according to equations (13) and (18), the optimal
control input can be derived as follows at t0 < t< t1:

zH

zu
�

zL

zu
+

zf
T

zu
 

zJ
∗

zx
� 0, t0 < t< t1( , (21)

where (zL/zu), (zJ∗/zx), and zfT/zu are as follows:

zL

zu
�

zL

zu1

zL

zu3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

u1 +
zr

zu1

u3 +
zr

zu3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

zJ
∗

zx
�

zJ∗

zx1

zJ∗

zx2

zJ∗

zx3

zJ∗

zx4

zJ∗

zx5

zJ∗

zx6
 

T

, (23)

z(f + Gu)
T

zu
�

g(x)11 g(x)21 g(x)31 g(x)41 g(x)51 g(x)61

g(x)13 g(x)23 g(x)33 g(x)43 g(x)53 g(x)63

⎡⎣ ⎤⎦.

(24)

Combining with equations (21)–(24), the optimal con-
trols u1, u3 can be obtained as follows:

u
∗
1

u
∗
3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

g(x)11
zJ
∗

zx1
+ r

−g(x)33
zJ
∗

zx3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

According to equations (17) and (25), then we can obtain

zJ
∗

zt
� − L x, u

∗
1 , u
∗
2 , t( 

+
zJ∗

zx
 

T

f(x) + G(x)u
∗

( 
⎫⎬

⎭, t0 < t< t1( .

(26)

As zJ∗/zt � 0, therefore, zJ∗/zx(t0 < t< t1) can be
derived:

r +
1
2

u
∗
1( 

2
+ u
∗
3( 

2
 

+
zJ∗

zx
 

T

f(x) + G(x)u
∗

(  � 0, t0 < t< t1( .

(27)

According to (25), it is clear that J∗ is not including
x2, x4, x5, x6. %en,

zJ
∗

zx2
�

zJ
∗

zx4
�

zJ
∗

zx5
�

zJ
∗

zx6
� 0. (28)

According to equations (26) and (27), we can obtain
zJ∗/zx1 and zJ∗/zx3:

r +
u
∗
1( 

2

2
+

zJ
∗

zx1
f1(x) + g11(x)u

∗
1(  � 0

u
∗
3( 

2

2
+

zJ
∗

zx3
f3(x) + g33(x)u

∗
3(  � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t0 < t< t1( .

(29)

%en,

zJ
∗

zx1

zJ
∗

zx3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

r

αg11(x) + f1(x)

−f3(x) + cg33(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

where α> 0, c denotes the scale factor and r represents the
partial derivatives of u1.

Substituting equations (24) into (28), we can derive the
optimal control inputs u∗1 , u∗3 at t0 < t< t1:
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u
∗
1

u
∗
3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

g(x)11
r

αg11(x) + f1(x)
  + r

−g(x)33 −f3(x) + cg33(x)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, t0 < t< t1( .

(31)

(2) Engine Reignition Phase. In this section, we will derive the
optimal control laws u∗1 , u∗2 in engine reignition phase. %e
following chat of algorithm is shown in Figure 7. As
mentioned in previous section, to achieve engine reignition,
the missile will cast away the parachute and the primary
engine in a moment. To get the desired terminal velocity, the
missile will soon ignite the secondary engine.

Figure 7 shows the approximate flow of the algorithm in
engine reignition phase to derive the optimal control inputs
u∗1 , u∗2 . Now, we will give the procedure of the algorithm in
detail. □

Theorem 2. Equation (32) is the optimal control law for
different actuators during engine reignition phase of agile
turn:

u
∗
1 � g(x)11

r

αg11(x) + f1(x)
  + r, t1 < t< tf 

u
∗
2 � F, t1 < t< tf 

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,

(32)

where tf denotes the terminal time. t1 denotes the initial time,
which is also the end time of larger angle manoeuvre phase. At
the same time, t1 is the time of the secondary engine ignition.

Remark 2. Before giving the process of derivation, the paper
will declare that, to achieve engine reignition, the missile has
casted away the primary engine and the deceleration
parachute. %erefore, the missile is just affected by thrust
generated by the secondary engine and control force gen-
erated by air rudder. So, we can ignore the thrust generated
by the primary engine and the deceleration force. %en, we
can get the following equation:

u3 � 0, t1 < t< tf . (33)

Proof. During this phase, x(t1) denotes the initial state, and
we can get the initial state x(t1) from larger angle ma-
noeuvre phase. x(tf) denotes the terminal state. In this
phase, we usually desire that the terminal velocity should be
satisfied a certain value. So, this problem can also be
regarded as a two-point boundary value problem, whose
terminal time tf is free and the terminal state is constrained.

As mentioned in previous section, the terminal velocity
must be satisfied at a certain value to attack the target.
%erefore, the terminal state is usually constrained. %e
terminal velocity constraint can be defined as follows:

x1tf
− Vdesir > 0, (34)

where Vdesir denotes the desired terminal velocity.
%erefore, considering terminal velocity and the turning

radius constraint, the optimal cost function during this
phase can be defined as follows:

J
∗

� − min
u t1 ,tf ∈Ω

Φ x1tf
, tf  + 

tf

t1

rdt +
1
2


tf

t1

u
2
1 + u

2
2 dt .

(35)

For J∗, the corresponding Hamiltonian is given by

H � r +
1
2

u
2
1 + u

2
2  + λT

(f(x) + G(x)u), t1 < t< tf ,

(36)

where λT(t) can be obtained as follows:

λT
(t) �

zJ
∗

zx
. (37)

According to equations (36) and (37), we can get the
Hamilton–Jacobi equation as follows:

−
zJ
∗

zx
� min

u
H � min

u
r +

1
2

u
2
1 + u

2
2  + λT

(f(x) + G(x)u) .

(38)

In this paper, we consider that the control input u1 is
unrestrained and u2 is an impulse force. %ere is no

Start

Establish performance index function J *

Considering the constraints

Establish the Hamiltonian equation

Hamilton-Jacobi equation

Establish the Canonical Equation In optimal 
condition

Derive the optimal control input u*1, u*2

End

Figure 7: %e approximate flow of algorithm.
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correlation between u1 and u2. %erefore, according to
equations (13) and (36), u1 can be derived as follows at
t1 < t< tf:

zH

zu1
�

zL

zu1
+

zf
T

zu1
 

zJ
∗

zx
� 0, t1 < t< tf , (39)

where (zL/zu1), (zJ∗/zx), and zfT/zu1 are as follows:

zL

zu1
� u1 +

zr

zu1
, (40)

zJ
∗

zx
�

zJ∗

zx1

zJ∗

zx2

zJ∗

zx3

zJ∗

zx4

zJ∗

zx5

zJ∗

zx6
 

T

, (41)

z(f + Gu)
T

zu1
�

g(x)11 g(x)21 g(x)31 g(x)41 g(x)51 g(x)61

g(x)13 g(x)23 g(x)33 g(x)43 g(x)53 g(x)63
 . (42)

Combining with equations (39)–(42), the optimal con-
trol u∗1 can be obtained as follows:

u
∗
1 � g(x)11

zJ
∗

zx1
+ r. (43)

According to equations (35), (38), and (43), then we can
obtain

zJ
∗

zt
� − L x, u

∗
1 , u2, t( 

+
zJ∗

zx
 

T

f(x) + G(x)u
∗

( 
⎫⎬

⎭, t1 < t< tf .

(44)

As zJ∗/zt � 0, therefore, zJ∗/zx(t0 < t< t1) can be
derived:

r +
1
2

u
∗
1( 

2
+ u
∗
2( 

2
 

+
zJ∗

zx
 

T

f(x) + G(x)u
∗

(  � 0, t0 < t< t1( .

(45)

According to equation (45), it is clear that J∗ is not
including x2, x4, x5, x6. %en,

zJ
∗

zx2
�

zJ
∗

zx4
�

zJ
∗

zx5
�

zJ
∗

zx6
� 0. (46)

According to equations (45) and (46), we can obtain
zJ∗/zx1 as follows:

r +
u
∗
1( 

2

2
+

zJ
∗

zx1
f1(x) + g11(x)u

∗
1(  � 0 t1 < t< tf .

(47)

%en,

zJ
∗

zx1
�

r

χg11(x) + f1(x)
, (48)

where χ > 0, c denotes the scale factor and r represents the
partial derivatives of u1.

Substituting equations (48) into (47), we can derive the
optimal control input u∗1 at t1 < t< tf:

u
∗
1 � g(x)11

r

χg11(x) + f1(x)
  + r, t1 < t< tf . (49)

As mentioned in previous section, u2 is an impulse force.
%erefore, once the secondary engine is ignited, the engine
should work and the thrust is equal to the max thrust of the
engine. So, u∗2 can be obtained as follows:

u
∗
2 � Fsec, t1 < t< tf . (50)

4.2.2. Determining the Time of Secondary Engine Ignition.
In this section, we will determine the optimal timing point of
secondary engine ignition t1 in engine reignition phase. %e
following chat of algorithm is shown in Figure 8.

Figure 8 shows the approximate flow of the algorithm in
determining the optimal timing point of secondary engine
ignition t1. Now, we will give the procedure of the algorithm
in detail.

Theorem 3. 3e intermediate instant t1 is the optimal time
of the secondary engine ignition when the optimal control law
u∗1 � 0.

Proof. To prove the optimal time of the secondary engine
ignition, the paper should demonstrate that the optimal
control law u∗1 is monotonically decreasing and it has the
zero point. According to equation (27), the first derivative of
u∗1 is as follows:

ζ � g(x)11

_r αg11(x) + f1(x)  − r α _g11(x) + f_1(x) 

αg11(x) + f1(x) 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ + _r.

(51)
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Asmentioned in previous section, the turning radius r � x1/
_x2 and r represents the partial derivatives of u1. So, we can
obtain the following equation.

r � −
g11(x)

_x2( 
2 > 0

_r �
2g11(x) _f2

f2( 
3 < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(52)

According to above section, where f1(x) denotes the
partial derivatives of u1, therefore,

f1(x) � −
1
2
1
m

cxρSx1
2

−
1
m

 < 0. (53)

According to equation (6) and α> 0, therefore,
−α
m

+ −
1
2
1
m

cxρSx1
2

−
1
m

 < 0. (54)

Using equation (53), its first derivative can be written as
follows:

f_1(x) � −
1
2
1
m

cxρSx1 _x1 < 0. (55)

%erefore, combining equations (52)–(55), we can ob-
tain the following equation to ensure ζ < 0.

αg11(x) + f1(x) < 0

rf_1(x)< 0

⎧⎪⎨

⎪⎩
(56)

%erefore, according to equations (30)–(33), the optimal
control u∗1 has the corresponding zero point.

5. Numerical Simulation

To demonstrate the effectiveness of the control law designed
in previous section, several numerical examples will be

introduced in this section. Firstly, we use the shoulder-fired
missile as an example. %e parameters of the missile are
listed in Table 1.

Case 1. In this simulation, it will just consider the turning
radius. %e initial parameters are presented as follows: the
initial velocity is V0 � 200m/s. %e initial trajectory incli-
nation angle is θ0 � 50°. %e initial position in longitudinal
plane is presented x0 � 0m, y

0
� 5m. And the target po-

sition is xtar � 500m, ytar � 5m. %e integral step size is
0.001 s. In addition, using PSO (Particle Swarm Optimiza-
tion) method as a contrast to illustrate the new process of
angle turn is better. %e simulation results are shown in
Figures 9–12.

Figure 9 shows the ballistic curve by using optimal
control method and PSO (Particle Swarm Optimization)
method. As shown in Figure 9, it is obvious that, compared
with PSO (Particle Swarm Optimization), the ballistic curve
is smoother using optimal control method. Besides these, it
is more important that the turning space is more less. %e
smaller the turning space that the missile requires, the wider
the range of different applications used. %is can also be
demonstrated that the missile has a greater manoeuvrability.

Figures 10 and 11 give the variation of turning radius. It
can be seen clearly that the turning radius of the missile is
smaller than PSO (Particle Swarm Optimization) through-
out all the procedure. It also can be seen that despite the
turning radius showing the fluctuating phenomenon, the
peak value is also smaller than PSO (Particle Swarm Op-
timization). %e reason why this phenomenon appears is
that it records the whole process of turning stage.

Figure 12 gives the variation of trajectory inclination
angle. Compared with PSO (Particle Swarm Optimization)
method, the trajectory inclination angle curve is smoother
throughout the whole process. It is also obvious that the
trajectory inclination angle falls more slowly in deceleration
phase. After this, the change of trajectory inclination angle is
relatively stable during terminal phase.

Figure 13 shows the changes of themissile velocity. From
Figure 13, the velocity varies very slowly in whether the
decreasing process or the ascending process. In addition, it is
obvious that throughout the process the value of the min-
imum velocity is about three times bigger than PSO (Particle
Swarm Optimization). At last, comparing with these two
methods, we can also see that the terminal velocity is similar
to PSO (Particle Swarm Optimization) method.

Table 2 gives the time consumption of the simulation in
the same computer. It is obvious that when using optimal
control method the time consumption is much less than PSO
(Particle Swarm Optimization) method.

Table 3 gives the comparison of different aspects to make
more explicit explanation and description by using different
methods. It is obvious that throughout the process the
turning radius is smaller and theminimum velocity is bigger,
so that the turning time is shorter.

Case 2. In this simulation, it will consider the minimum
turning radius, the optimal timing point of engine reig-
nition, the terminal velocity, and the optimal control input.

Start

Demonstrate u*1 is monotonically decreasing

Computing the first derivative of u*1

Determine the timing point of u*1 = 0

End

Determine the timing point of secondary engine
ignition t1

Figure 8: %e approximate flow of determining t1.
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%e initial parameters are also presented as follows: the
initial velocity is V0 � 200m/s. %e initial trajectory incli-
nation angle is θ0 � 70°. %e initial position in longitudinal
plane is presented as x0 � 0m, y

0
� 5m.%e target position

is xtar � 500m, ytar � 5m. %e integral step size is also
0.001 s. %e simulation results are shown in Figures 14–21.

Figure 14 gives the variation of ballistic curve. With the
same initial conditions, it is obvious that the maximum
distance in x and y direction is larger compared with Fig-
ure 10. %at is because the reignition thrust force is added in
the process when the deceleration force decreased to zero.
For this reason, the turning space also becomes larger.

Figure 15 shows the change of inclination angle. It is
obvious that the variations of inclination angle are more
sluggish especially between 0 s and 10 s.

Figure 16 gives the velocity variations of the missile. It is
pretty obvious that with the effectiveness of the engine
reignition the minimum velocity in Figure 16 is greater than
that in Figure 13. At the same time, it is obvious that the

Table 1: Parameters of the missile.

Parameter Value
Mass (kg) 15
Reference area (m2) 0.0114
Reference length (m) 1.027
Diameter (m) 0.105
Primary engine (N) 50
Moment of inertia (kg·m2) 1.15
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Figure 9: Ballistic curve of the missile.
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Figure 10: %e variation of the turning radius curve using optimal
control.
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Figure 11: %e variation of the turning radius curve using PSO
(Particle Swarm Optimization).
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Figure 12: Trajectory inclination angle curve.
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Figure 13: %e velocity curve of missile.

Table 2: %e consumption of simulation time.

Method Time
Optimal control theory 8.056302 s
PSO (Particle Swarm Optimization) 1086.364 s

Table 3: %e comparison of different aspects.

Aspects Optimal control theory PSO (Particle Swarm Optimization)
Turning radius 118.52m 640.31m
Minimum velocity 87.71m/s 28.56m/s
Terminal velocity 174.67m/s 176.25m/s
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Figure 14: Ballistic curve.
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Figure 15: Trajectory inclination angle curve.
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Figure 16: %e velocity curve of missile.
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Figure 17: %e force in axial-x of missile.
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Figure 18: %e variation of the turning radius curve.
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Figure 20: %e pursuit attacking curve.
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Figure 19: %e variation of pitch angle.
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missile also has a greater terminal velocity compared with
Figure 13. Figure 17 shows the variation of the force in axial-
x direction of the missile and the optimal timing point of
engine reignition is at 9.552 s.

Figure 18 describes the variation of the turning radius
from deceleration phase to terminal guidance. Comparing
with Figure 10, Figure 19 shows the variation of the pitch
angle. Obviously, the jitter of the angle is very small, which
demonstrates that the process of turning is relatively stable.

As shown in Table 4, it is obvious that with engine ignition
the minimum velocity and the terminal velocity are all bigger
than those without engine ignition and PSO (Particle Swarm
Optimization) method. We will also find that the turning
radius with engine ignition is bigger than that without engine
ignition. %e reason why the radius is increasing is that the
engine reignition thrust is added in the process of agile turn,
which increases the effectiveness of the axial thrust. But the
turning radius value is also smaller than PSO method.

Case 3. Based on the constraint conditions of Case 2, we will
consider the terminal manoeuvring target in this simulation.
%e initial parameters are also presented as follows: the
initial velocity of the missile is V0 � 200m/s. %e initial
trajectory inclination angle is θ0 � 70°.%e initial position in
longitudinal plane is x0 � 0m, y

0
� 5m. %e target initial

position is xtar � 800m, ytar � 5mand the manoeuvre pa-
rameters are shown in Table 5. %e integral step size is also
0.001 s. %e simulation results are shown in Figures 20–23.

Figure 20 gives the pursuit attacking curve. It is obvious
that missile can also attack the target, although the target has
manoeuvrability. Compared with Figure 9, we will find that
the maximum distance in x and y direction is larger. %at is
because the reignition thrust force and the initial position
are all larger than Case 1. For this reason, the turning space
also becomes larger.

Figure 21 shows the change of inclination angle. It is
obvious that the variations of inclination angle are more

Table 4: %e comparison of different aspects.

Aspects Without engine ignition With engine ignition PSO
Turning radius 118.52m 324.9m 640.31m
Minimum velocity 87.71m/s 99.87m/s 28.56m/s
Terminal velocity 174.67m/s 196.25m/s 176.25m/s
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Figure 22: %e velocity curve of missile.

Table 5: %e terminal manoeuvring target parameters.

Aspects Value
%e start of manoeuvre time 15.665 s
%e end of manoeuvre time 20.041 s
Terminal time 5.624 s
Manoeuvre way Horizontal manoeuvre
Manoeuvre velocity 132m/s
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sluggish especially between 0 s and 10 s compared with the
method of PSO (Particle Swarm Optimization).

Figure 22 gives the velocity variations of the missile. It is
pretty obvious that with the effectiveness of the engine
reignition the minimum velocity in Figure 22 is greater than
PSO (Particle Swarm Optimization) method in Figure 13. At
the same time, it is obvious that the missile also has a greater
terminal velocity compared with Figure 13. Figure 23 shows
the variation of the force in axial-x direction of themissile and
the optimal timing point of engine reignition is at 4.938 s.

As shown in Table 6, despite attacking the terminal
manoeuvring target, the performance is also better than PSO
(Particle Swarm Optimization) method. Moreover, it is
obvious that with engine ignition the minimum velocity and
the terminal velocity are all bigger than PSOmethod and the
turning radius value is also smaller than PSO method.

6. Conclusions

A new process of agile turn with deceleration phase, larger
angle manoeuvre phase, and the secondary engine ignition
phase is proposed in this paper. Firstly, the paper describes the
new process of agile turn. %en, it gives several main con-
straints’ description. According to all these constraints and
assumptions, the dynamic model including two-stage engine
and deceleration parachute is established. After that, the paper
gives the research problems. By using optimal control theory,
the paper derives the optimal control laws for each actuator in
different phase. In terms of determining the optimal timing
point of the secondary engine ignition, the paper uses dy-
namic optimal control theory to derive it and gives the
corresponding process of proof. At last, the paper takes PSO

(Particle Swarm Optimization) method as a contrast to
demonstrate the effectiveness. According to several numerical
simulations, it is obvious that the new process of agile turn is
better than traditional process especially in having a smaller
turning radius and a high terminal velocity.

7. Future Recommendations

%ough the new process of agile turn is better than tradi-
tional process especially in having a smaller turning radius, a
high terminal velocity decreases the time in turning phase.
%ere exist many problems such as how to solve the problem
of rigid-flexible coupling and how to eliminate the influence
of the separation between the missile and parachute. We will
continue researching all these problems in the future.
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