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Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a
static base station forward data more frequently than others, which results in the problem of energy holes and makes networks
fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained
networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel
strategy is proposed to reduce the latency of mobile data gathering in aWSN while the routing strategies and tour planning of MS
are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated.
A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection.
Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data.+e
proposed method is simulated in aMATLAB platform to show the overall performance of the developed system. Furthermore, the
physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our
laboratory. +e test results validate the feasibility and effectiveness of the method proposed.

1. Introduction

In recent years, the prosperous development in the Internet
of +ings has been validated where wireless sensor networks
(WSNs) become ubiquitous. WSNs are widely used in the
fields, such as intelligent transportation, agriculture, medical
treatment, aerospace exploration, and other emerging ap-
plications, whereas they can contain a large number of static
and mobile nodes in a self-organizing way [1–3]. Tradi-
tionally, a sink node in aWSN is fixed where the other sensor
nodes (SNs) transmit data to the sink through either single-
hop or multihop communication. +us, the SNs close to the
sink tend to carry more data transmission or forwarding
tasks which leads to unbalanced energy consumption and

results in poor data delivery in networks. +e issues of
energy holes and data collision may occur in such appli-
cations [4–7].

Mobile data gathering is regarded as a promising so-
lution to tackle the problems aforementioned. In applica-
tions, mobile sinks (MSs) as data collectors gather sensing
data in an efficient manner [8–15].+e issues associated with
the tour planning of MS have been actively discussed in the
existing literature that is crucially important to determine
the performance of networks. +e concern of energy con-
sumption due to long-distance transmission is discussed in
[16]. A maximum cache mechanism is proposed to enhance
the transmission capability by adopting MS. In [17], an
architecture of single-hop with single MS for mobile data
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gathering has been investigated. +e proposed scheme has
the benefit of energy-saving in line with the optimal tour
trajectory of MS. In the study, a heuristic optimization al-
gorithm is employed. A joint scheme for both charging and
tour planning in a MS-based WSN is proposed in [18].
Energy consumption of each sensor is leveraged which in
turn mitigates energy exhaustion. To strike the balance
between energy consumption and latency of data gathering,
an algorithm to find the optimal number and position of
cluster head nodes for data collection is proposed in [19].
+e simulation results verify the effectiveness of the scheme
in favor of adopting the optimal path length of MS. In order
to create a robust WSN, clustering techniques are also
important for energy-saving and delay reduction where SNs
are partitioned into subnetworks. Taking into account the
kinematic constraints of mobile nodes of similar vehicles, in
[20], a mobile data acquisition algorithm based on clustering
Dubins smooth curve is proposed. Aiming at the problem of
sensor node data aggregation and node energy imbalance, as
well as the space problem being often ignored, a heuristic
search algorithm (HLSA) is proposed in [21]. A dynamic
clustering algorithm to divide the SNs into clusters is
employed in [22]. By using the clustering mechanism, the
energy efficiency and packet reception rate are improved.
Our previous work has also shown the importance of sensor
clustering in WSNs [23, 24]. A WSN with respect to mobile
data gathering where the work has a special focus on
clustering mechanism before mobile data gathering is
committed by the MS is developed in [23]. A data gathering
scheme by using multiple mobile sink nodes is proposed in
[24]. +e average path length is dramatically shortened in
this way, thereby reducing energy expenditure.

As an extension of the recent work, this study includes
the main contributions as follows:

(1) We investigate the data gathering mechanism by
considering energy constraints in a WSN system
where the path length is minimized.

(2) +e network coverage is discussed and formulated to
an optimization problem. As a result, suitable node
numbers are defined to strike the balance of theWSN
scale and network coverage.

(3) A predicted trajectory is developed to assist the tour
planning of a MS. In this manner, the overall data
gathering is divided into several stages. +is mech-
anism gives a chance to theMS to be recharged at the
end of each stage to prevent energy exhaustion for a
MS with insufficient power while heavy data load
being required.

(4) Besides the extensive simulation on MATLAB, the
trail tests are committed to verify the effectiveness of
the proposed scheme where an unmanned aerial
vehicle (UAV) serving as a MS is employed in a
WSN.

+e rest of this paper is organized as follows. Section
2 presents the systematic configuration with extensive

discussion on energy constraints associated with MS
traveling, activities, and the network architecture. Sec-
tion 3 develops the optimization formulation for max-
imising network coverage while minimizing energy
expenditure and path length for each cycle. Simulation
setup and trail tests are both presented in Section 4
following the outcome demonstration and analysis
corresponding to them.+e key conclusions are drawn in
Section 5.

2. Problem Formulation

+e sensor network consists of a base station, a certain
number of SNs, and a MS. After the sensors acquire data
from the sensing field, they wait to be polled by the MS to
deliver the information in each round.+eWSN is shown in
Figure 1.

It is assumed that there are N SNs in the network, N�

{1,......,n}, i≠ j, i, j ∈ N; V represents a virtual cluster, V�

{1, . . ., v}; and trajectory between the virtual cluster head
nodes is M� {V (i, j) i≠ j}. Let dij represent the Euclidean
distance between the two virtual cluster head and ley xm

ij

indicate whetherV (i, j) is included in the tour of theMS.We
have the following equation:

xij

1, if data gathering tour containsV( i, j ),

0, otherwise.
 (1)

A MS gathers data periodically. +e overall time in each
cycle contains two segments: traveling and sojourn time
[25]. Traveling time also includes two parts. One is in line
with traversing time from one cluster to another.+e second
part is relevant to returning to the base station. Moreover,
since the MS has the duty to poll the cluster head nodes, it
stays on the cluster head nodes until completing data
collection.

2.1. Traveling Time. In one cycle, the tour length can be
calculated by

D � 
V

i�1


V

j�1
xijdij. (2)

+e total moving time is then calculated by

tm �
D

v
, (3)

where v is the moving speed.

2.2. Sojourn Time. In a cycle, the MS reaches sensor node i;
the amount of data isCi; τi is staying time at each rendezvous
point; G represents the transmission rate. +erefore, there is
a relationship as follows:

τi �
Ci

G
. (4)
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According to equations (3) and (4), the period of a cycle
is obtained by

T � tm + 

v

i�1
τi. (5)

+e tour planning is formulated to an optimization
problem with the following equations:

Minimize tm + 
v

i�1
τi, (6)

subject to
V

i�1
xij � 1 , j ∈ V, j≠ 1, (7)



V

j�1
xij � 1, i ∈ V, i≠ 1, (8)



V

i�1
xip − 

V

j�1
xip � 0, p ∈ v, p≠ 1, (9)



V

j�2
x1j � 1, (10)


i�2

xi1 � 1, (11)

TMN ≤TD, (12)

Lsum ≤Lmax. (13)

Equations (7) and (8) ensure that each cluster head node
is accessed only once per round. Equation (9) guarantees
tour continuity. Equation (10) guarantees that the MS starts
from the base station. Equation (11) guarantees that the final
destination of MS is the base station. Equation (12) is the
time limit per round. Equation (13) is the limit of tour length
per round, which in turn determines the energy limit.

Since the MS consumes the most energy on traversing
through the sensing field, the energy cost is closely related to
the tour range. +is paper mainly takes energy expenditure
on traveling into account. +erefore, the objective function
in optimization is replaced by the target to minimize the tour
length as follows:

Minimize
V

i�1


V

j�1
xijdij. (14)

3. Tour Planning

3.1. Coverage Issue with an Adjacency Matrix. +e coverage
issue is essential for a WSN. On the one hand, visiting
fewer nodes will reduce the MS burden for data collec-
tion. On the other hand, a WSN needs enough nodes to
achieve the expected monitoring quality. +us, there is a
balance to strike between the node number and the
communication quality. In this paper, the network cov-
erage with nodes deployment in random order is con-
cerned. For simplicity purpose, the optimal density of the

MS

Virtual cluster head
node

Member node in the cluster

MS Mobile sink

Tour path
Data transmission

Base
station

Figure 1: A wireless sensor network.

Complexity 3



deployment is determined by the communication radius,
which is the basis for calculating the number of de-
ployment nodes.

+is paper uses an adjacency matrix graph to define the
connectivity of deployed nodes [22–26]. We consider the
network as a graphG� (V E) whereV refers to the SNs and E
represents the edge between the two SNs which can com-
municate with each other.

In some conditions, we can convert G into a square
matrix A � (aij)m×m with M-order (m � |V|) if
aij � |ek|, ek � <vi, vj> ∈ E. +erefore, the adjacency matrix
G can be represented by matrix A.

Furthermore, we define Ak � (a
(k)
ij )m×m,

( a
(k)
ij ) � 

m
k�1 ak−1

ih ahj. If aih • ahj ≠ 0, aih ≠ 0, and ahj ≠ 0,
there are k routes from the node vi via vh to vj. For instance,
a

(2)
ij demonstrates there are two paths that can start from vi

via an intermediate node vh to the node vj. +erefore, if


m−1
k�1 a

(k)
ij � 0, there is no path communication between the

node vi and the node vj.
+erefore, we use a new matrix S � (Sij)m×m � 

m−1
k�1 Ak.

If all the elements inmatrix S are nonzero elements, thenG is
a fully connected graph. Otherwise, if there is only an ele-
ment in matrix S, then G is a disconnected graph.

3.2. Cluster Forming. We uniformly deploy the nodes in the
regionwhere they are grouped into clusters. In this way, the SNs
can have balanced energy consumption since they can share the
workload in clusters s [27]. Moreover, it ensures that each
cluster head has almost the same energy expenditure in each
cluster. +ere are many useful and advanced algorithms to
realize the deployment, for example, neighbor clustering and
fuzzy clustering. In order to implement real-world tests, we
want a simpler and efficient algorithm as our solution.
+erefore, the K-means algorithm is adopted. We use K-means
based dynamic clustering algorithm to partition the nodes into
the monitoring area [24].

+e K-means algorithm aims to minimize the total
distance Jj between the SNs and the center of the cluster.
+e distance can be presented by

Jj � 

Nj

i�1
‖Xi − Zj‖

2
, Xi ∈ Sj, (15)

where Sj is cluster j; Zj is the center of the cluster j; and Nj

is the sample number in the cluster j. Since the selection of
the cluster center should make Jj extremely small [1], then
zJj/zZj � 0. +us, equation (14) can be rewritten by

z

zZj



N

i�1
‖Xi − Zj‖

2
� 0. (16)

+erefore,

Zj �
1

Nj



Nj

i�1
Xi. (17)

+e algorithm is committed in the following way:

Step 1: initializing the clusters with randomly picked
nodes. A cluster head is selected to be as the center. All
centers are recorded by Z1(1), Z2(1), ........, Zk(1).
Step 2: allocating the rest of the SNs in cluster k around
the centers according to equation (17) where Euclidean
distance is applied.
Step 3: recalculating Zj(k + 1), j� 1, 2, ..., k for each
cluster.
Step 4: judging if Zj(k + 1) � Zj(k), the clustering
ends. Otherwise, return to Step 2 and regroup the
sample iteratively.

Afterwards, the calculation completes while the results
are recorded. Now, the nodes are partitioned to k clusters
where k virtual cluster centers are generated at the same
time. Via k-means algorithm, the overall distance from the
SNs to the cluster centers reaches the least. Since the in-
tercluster communication uses single-hop transmission,
the communication costs the least energy consumption
through this arrangement. +e nodes are then manually
placed to the locations of these virtual cluster centers where
the cluster head nodes play the roles of the center. After a
head node being defined, a broadcast message is sent to the
members in the cluster to confirm the location of the cluster
head node. Now, the location of these virtual cluster centers
will be a rendezvous point for the MS. +e MS starts to
gather data by the members in the cluster after the MS
reaches the location.

3.3. Energy Consumption Prediction. Due to the limited
energy capacity of the MS, it is difficult for a single MS to
complete all the data gathering without interruption in one
cycle. +erefore, the whole tour planning is divided into
several segments where the division method is defined by the
prediction result based on the ant colony system (ACS)
optimization. +e algorithm follows the steps below:

Step 1: to determine the accessible order of each
cluster where the access nodes are defined by
1, 2, . . . , v{ }. +ese orders are determined by the ant
colony algorithm [8–27]. +e calculation is based on
equations (18)–(20).
Step 2: judgement. If the length of the whole tour is
within the maximum range of MS, the MS completes
the data gathering at once. Otherwise, the tour is cut
into multiple segments and executed in turn.
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Assuming j represents the next hop point from the
current i point, the possibilities of visiting point j are
s that can be presented by the following equations
[27]:

j �
argmax τij(t)  ηij(t) 

β
 , q< q0,

S,

⎧⎪⎪⎨

⎪⎪⎩
(18)

S �

τij( t )  ηij( t ) 
β

k∈allowedk
τij( t )  ηij( t ) 

β, j ∈ allowed k

0, else

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

where τij(t) represents pheromone variables; ηij(t)

is the heuristic desirability; β> 0 represents the
relative strength of heuristic factors; q0 ∈ (0, 1) is the
initial parameters; and q ∈ (0, 1) is a random
number. Local update strategy is to make the selected
edges have a better influence on the later ants, as
shown in the following formula:

τij(t + 1) � (1 − ζ)τij(t) + ζ · τ0, (20)

where ζ is the pheromone decay parameter within (0,
1) and τ0 is a constant. +e global update strategy is
to find the shortest path for traversing the rest of the
points and return to the base station within the MS
energy capability that belongs to the edges on the
optimal path, as shown in the following equation:

τij(t + 1) � (1 − ρ)τij(t) + ρ · Δτij(t), (21)

Δτij �

1
Lk

, ( i, j ) on the optimal path,

0, else,

⎧⎪⎪⎨

⎪⎪⎩

(22)

where Δτij is the added pheromone on the trail from
point i to j; ρ represents the evaporation coefficient,
ρ ∈ (0, 1); and Lk is the optimal path length.
Step 3: the total energy carried by the MS is E. At the
beginning of the cycle, the MS arrives at the first
sensor node for data collection. Afterwards, the MS
measures its own remaining energy for the next
stage. If the remaining energy is enough to be
consumed in the next stage, the MS travels to the
next node for data gathering. Otherwise, it returns
directly to the base station for recharging.+e energy
consumption in the next stage is expected to be
sufficient for visiting the remaining nodes, data
collecting, and returning to the base station.

(1) Energy consumption for visiting:
It refers to the energy consumed over the traveling
from node i to node j:

eij � em • dij. (23)

(2) Energy consumption for collecting data from node j:

erej � rerx • tj − t0 . (24)

tj is the time to arrive at node j, and t0 is the starting
time of the cycle.

(3) Energy consumption for returning to the base
station:

ejs � em • djs. (25)

+e total energy consumption for the next stage is
predicted at node i expressed by the following
equation:

Ni � eij + erej + ejs. (26)

Assuming the remaining energy when the MS rea-
ches the node i is equal to q, the remaining energy of
the MS after the completion of the data gathering is
Ri. So,

Ri � Q − erei − echi, (27)

If Ri >Ni when MS travels to node j for data col-
lection, MS goes on its journey to the next node.
Otherwise, the MS returns to the base station for
recharging.
Step 4: tour replanning.
After the MS completes the recharge, the tour plan-
ning to the remaining nodes in the next subcycle will
be recalculated. +e new trajectory and visiting order
are calculated. Afterwards, the data gathering con-
tinues according to the updating results from Step 2.
Step 5: repeat the above process until all the cluster
fields are traversed. +e remaining nodes not polled
are abandoned. In order to simplify the algorithm,
the maximum tour length is used to represent the
energy limit of the MS.

4. Results and Analysis

4.1. Simulation Environment. To verify the effectiveness of
the algorithm, the simulation is carried out on a MATLAB
platform. +e key simulation parameters are summarized in
Table 1.

4.2. Outcomes and Analysis. First, the problem of node
coverage is simulated. Assuming the node number is 90 and
the communication radius is 15m, the coverage area is
shown in Figure 2. After a large number of experiments
being committed, the relationship between node number,
communication radius, and coverage are obtained. +e
results are shown in Figure 3. +e relationship between
node density and coverage is shown in Figure 4. By syn-
thetically analyzing these outcomes, we define the
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communication radius and the node density as 15 and
0.007, respectively.

According to the coverage plan, 70 nodes are randomly
placed in the sensor field as shown in Figure 5. After ap-
plying the dynamic clustering algorithm, 10 virtual cluster
head nodes are generated as shown in Figure 6.

Afterwards, the ant colony optimization is used to plan
the shortest path over the ten cluster head nodes, and the
node path is shown in Figure 7. However, the shortest length
on the tour is 348.63 according to the measurement from
Figure 8. It exceeds the energy limit of the MS. +e access
order can be obtained as shown in Figure 9. Nevertheless, the

Table 1: Parameters of the simulation.

Parameter name Parameter values
Number of sensor nodes 70
Number of virtual cluster head nodes 10
Number of MS 1
Heuristic factor (α) 1
Expectation heuristic factor (β) 5
Information intensity (Q) 500
Pheromone volatile factor (η) 0.5
Number of ant colonies (m) 18
Required coverage (%) 0.95
Maximum endurance mileage (m) 200
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Figure 2: Coverage area in the field.
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Figure 6: Node clustering and the cluster heads.
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Figure 5: Node distribution.
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node starts the data gathering for the first subcycle from the
base station (node 0).

+eMS starts the tour. However, when it reaches node 3,
it is found that the remaining energy is not enough to
support it to complete the next stage of data collection tasks;
that is, it reaches node 4 for data collection tasks and returns
to the base station. +us, it returns to the base station for
energy replenishment to continue the second subcycle. After
the MS is fully charged, the tour planning for traversing the
remaining nodes is recalculated as shown in Figure 10. +e
shortest path is shown in Figure 11. At this time, traversing
the remaining nodes costs more energy than the MS ca-
pacity.+ere will be a third subcycle for theMS.+e updated

access order in the second subcycle can be found in
Figure 12.

Again, the MS arrives at the head node of the first virtual
cluster in the second subcycle. After node 3 being poll, the
MS needs more energy to reach node 4. +erefore, it returns
to the base station for preparing the third subcycle.

After being fully charged, the remaining tour is reor-
ganized. +e third subcycle is then defined as shown in
Figure 13. +e searching map for the optimal trajectory is
shown in Figure 14. +e shortest length over the field cannot
be completed by the MS in one cycle. +erefore, the fourth
subcycle is needed.+e calculation for the third subcycle with
the optimal is executed and the result is shown in Figure 15.
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Figure 7: +e planned trajectory of a MS at the beginning.
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Figure 8: Predicted path distance based on prediction.
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+e plan for the traversing, the predicted path length,
and the node access order of the fourth subcycle are shown
in Figures 16–18

In the fourth subcycle, it is slightly different from the
previous subcycles. After polling node 2, the MS cannot
reach node 3. It returns to the base station to be recharged.
However, the energy cannot support it traveling to node 3.
+erefore, node 3 is abandoned. +e tour planning, tra-
jectory, and the visiting order for the fourth subcycle are
demonstrated in Figures 19 and 20.

+e simulation results have shown the initial energy of the
MS cannot support completing data collection.+erefore, the

initial energy is then increased to 300. By repeating the
process above, the tour planning in the final two periods can
be obtained as shown in Figure 21. +e path lengths of each
subcycle are shown in Figure 22. With the updated initial
energy, the MS can complete the data gathering by traversing
all cluster head nodes over the sensing field. +erefore, the
optimal energy capacity of the MS is determined by 300m.

+e simulation is carried out with the optimal tour
planning with the shortest length where energy constraints
and efficient data gathering are considered as a priority.
+rough the simulation, we also find the process of data
gathering is closely related to the initial energy of the MS.
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Figure 9: Planned access order for the first round prediction.
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Figure 10: Planned trajectory at the beginning of the second subcycle.
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+erefore, a comparative evaluation for the relationship
between the tour planning and battery capacity of the MS
is carried out. +e key indicators are summarized in
Table 2.

It is noted that the larger initial energy can lead to a
smaller number of subcycles. Moreover, the shorter length
means the shorter latency over data gathering.

In practice, the energy capacity of a MS is limited.
+erefore, consideration is needed to strike the balance
between the delay and the initial energy.

4.3. Trail Tests in a Small WSN. Trail tests are carried out in
the laboratory to verify the reliability of data transition based
on a small scale WSN while only the first subcycle is tested.
+ree SNs are placed as the terminal nodes to collect data.
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Figure 12: Planned access order in the second subcycle.
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Figure 13: Planned trajectory at the beginning of the third
subcycle.
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+eMS is responsible for polling the SNs and completes data
gathering. +e device in the experiment includes a UAV
carrying the MS and three DHT11 temperature-humidity
sensors as the SNs. +e images of these devices are shown in
Figure 23. Test results are summarized in Table 3.

Furthermore, three rounds of experiments are com-
mitted. +e results are summarized in Table 4. +e results
show that the experimental system can effectively collect
temperature and humidity data, and the data transmission
is reliable.
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Figure 15: Planned access order at the beginning of the third subcycle.
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Figure 14: Predicted path length at the beginning of the third subcycle.
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Figure 17: Predicted path length at the beginning of the fourth subcycle.
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Figure 20: Continued.
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Figure 19: +e whole tour planning over the four subcycles.
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Figure 21: +e first two subtours with a limitation of a maximum continuation length of 300 meters.
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Figure 20: Tour length for each subcycle.
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Figure 22: +e path length of the first two subtours with a limitation of a maximum continuation length of 300 meters.

Figure 23: Device for sensing and data gathering.

Table 3: Test results of communication quality.

Distance (m) Number of packets sent Number of packets lost Packet loss rate
10 1000 0 0
15 1000 0 0
20 1000 1 0.001
25 1000 23 0.022
30 1000 101 0.121
35 1000 382 0.394
40 1000 1000 1

Table 2: Tour planning with different battery capacities.

Round Maximum range (m) Number of cycles Data gathering rate (%) Total length of the route (m)
1 200 4 90 736
2 300 2 100 490
3 400 1 100 350

Table 4: +e experimental values of the system.

Number of experimental rounds Node 1 Node 2 Node 3
1 21/59 19/69 22/56
2 24/50 24/55 24/51
3 22/53 21/59 24/51
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5. Conclusion

+is paper presents a prediction-based tour planning for
data gathering in WSNs. +e scheme primarily aims to
mitigate the challenge when a single MS cannot complete
data gathering or traverse all cluster head nodes at once.
First, the issue of the network coverage is discussed in favor
of a decent arrangement with the optimal number of sensor
nodes across the field. Afterwards, a dynamic clustering
algorithm is proposed to generate sensor clusters where the
cluster head nodes are defined as the MS sojourns. +e
methodology of the predictive trajectory is developed for
finding the optimal tour before a MS traverses the sensing
field. In the study, the single tour of data gathering is divided
into several subcycles to prevent energy exhaustion. Both the
MATLAB simulation and physical tests are committed to
demonstrating the whole procedure for data gathering under
the proposed scheme. +e results have proved the effec-
tiveness and reliability of the methodology. +e study
outcomes provide a useful solution for tour planning in
energy-constrained WSNs.
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