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The truncated Cauchy power odd Fréchet-G family of distributions is presented in this article. This family’s unique models are
launched. Statistical properties of the new family are proposed, such as density function expansion, moments, incomplete
moments, mean deviation, Bonferroni and Lorenz curves, and entropy. We investigate the maximum likelihood method for
predicting model parameters of the new family. Two real-world datasets are used to show the importance and flexibility of the new
family by using the truncated Cauchy power odd Fréchet exponential model as example of the family and compare it with some

known models, and this model proves the importance and the flexibility for the new family.

1. Introduction

Many authors have lately made considerable attempts to
create new families to expand well-known distributions
and give flexible classes to represent data in a wide range
of areas, including medical sciences, environmental sci-
ences, engineering, demography, actuarial science, and
economics. Many generic families have been developed
and are used to explain a wide range of real-world events.
Some examples of these families are beta-G [1], gamma-G
[2], upper truncated Weibull distribution [3], and trun-
cated Weibull-G more flexible and more reliable than
beta-G distribution [4], truncated inverted Kumar-
aswamy-G by Bantan et al. [5], type II truncated Fréchet-
G [6], type II power TL by Bantan et al. [7], odd gener-
alized N-H by Ahmad et al. [8], Topp-Leone (TL) odd
Fréchet-G by Al-Marzouki et al. [9], transmuted odd
Fréchet-G by Badr et al. [10], and truncated Burr X-G by
Bantan et al. [11], among others.

Haq and Elgarhy [12] proposed the odd Fréchet-G (OF,
—G) with cumulative function (cdf) as follows, for x >0,

H(x;00£) = e CDIGED" 40 ()
and probability density function (pdf) is

h(ad == (gfiGg():f)a_le‘@x’f)’“x’f”". @

The Cauchy (C) distribution plays an important role and
has applications in different fields such as econometrics,
engineering, spectroscopy, biological analysis, reliability,
queueing theory, and stochastic modeling of decreasing
hazard rate life devices. There are many authors who have
been displayed various generalization and extension forms
of Cauchy distribution in the statistical literature, for ex-
amples, Rider [13] presented generalized C distribution, A
truncated C distribution by Nadarajah et al. [14], the exis-
tence of the moments of the C distribution by Ohakwe and


mailto:msharahili@ksu.edu.sa
https://orcid.org/0000-0003-3456-8393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4256945

Osu [15], Jacob and Jayakumar[16] studied half-C distri-
bution, Kumaraswamy-half-C distribution by Hamedani
and Ghosh [17], Alshawarbeh and Famoye [18] presented
properties of beta-C distribution, and the power-C negative-
binomial distribution by Zubair et al. [19], among others.

Recently, Aldahlan et al. [20] proposed the truncated C
power-G (TCP-G) family. The cdf of the TCP-G family is
given by

F(x;\) = %arctan (H(x))A, x €R, (3)

where A >0. The corresponding pdf is

4h(x) (H (x))"!
a1+ (H@)?]

f(xA) = (4)

The aim of this article is to provide a new, broader, and
more flexible family of distributions based on the odd
Fréchet-G and truncated C power-G (TCP-G) families. The

_ 4
F(x;M a,&) =1 ——arctan e
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T(x: A, 0, &) =
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new proposed family has many wide applications in physics,
medicine, engineering, and finance. We construct a new
family called TCP odd Fréchet-G (TCPOF — G) family of
distributions by inserting equation (1) into equation (3); the
cdf and pdf of the TCPOF - G are

-G (/G (x,8)"

4
F(x;MA, a,&) = —arctane , x>0, (5)
Vi

and

= -1
4hag (x, )G (x, &)" o MGG

f(x; A’ &, E) = 7G (X, f)a+l

(6)
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Henceforward, a random variable X having pdf equation
(6) will be defined as X ~ TCPOF (A, &, £). The survival and
hazard rate functions for the TCPOF — G family are

(7)

The quantile function (qf) of TCPOF-G family is given
by

Flu= =G ! .
(1) = Qs () [1 +{—(1/)L)log[tan(u71/4)]}”“]

(8)

The median is given by

1
M=Q,=Q(05) =G " .
2 =Q(03) [1 +{~(1/1)log[tan (0.5 n/4)]}““}

(9)
The structure of this paper is as follows. Section 2 has a

useful linear explanation of the TCPOF density as well as
several specific models. Section 3 looks at structural

7G (x, &)™ [1 + eiz)‘(G(x’E)/G(x’a)a] [1 — (4/m)arctan ¢ MGG

properties of the TCPOF-G. In Section 4, we discuss the
suggested family’s entropy. The maximum likelihood
method is used to estimate the model parameters in Section
5. Section 6 provides applications to real-world datasets to
illustrate the proposed family’s flexibility.

2. Linear Representation of TCPOF

If |z] <1 and b>0 is a real noninteger, then the following
power series hold:

(1+z)h=§(_b>zk. (10)
k=0 k

Applying equation (10) in equation (6), we get

freeor, (%54, ,8) =

By using the power series for the exponential function,
the last term in equation (11) gives

4/\0‘ (x>€)a(x)f)a71 . i — i+1) (G (x. x,6))%
gﬂc(x = Y (—1)ie GGG (11)

i=0

o H2HD GG _ i (1M (2i +1) G(x,§)"
j=0 J' G(x) f)“]
(12)
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The TCPOF — G density reduces to
5 e b d) _dag(x,$) i -1V 21 + 1) G(x, &) U] (13)
TCPOE, (X5 4, &, §) = ———— - T
= i G (x, "0
Using the general binomial expansion, we can write and
(@it wl(a(G+1)+k+1)
G(x, &)@+ _ _ k
(x,8) kZO HaG e +D (- C@
(14)
w(iel) k= = m Tla(j+1)+k m
(1= G )t 2§ (qyn L@UDAR 5 o (15)
m=0

Inserting equations (14) and (15) in equation (13), the
TCPOF - G density becomes

freeor, (%34, 0,8) = z Vo T a1y (), (16)
m=0

where h, (x) = vg(x;§)G(x;£)""" denotes the pdf of the
exponentiated generalized (Exp-G) distribution with power
parameter v, and

_4a i (=) Qi+ 1) T(a(j+1) +k+1)
Y= ) KmlGne ) DD+ D)

(17)
I'(a(j+1)+k)
mlT(a(j+1)+k—m)

2.1. Four Special Models of the TCPOF Family. In this part, we
presented three distinct models of the TCPOF family of
distributions. When the cdf G (x) and pdf g (x) have simple
analytic expressions, the pdf equation (8) will be most
tractable. Based on the baseline distributions, we propose
four submodels of this family: Weibull, exponential, Ray-
leigh, and Lomax. The cdf and pdf files for these baseline
models are provided in Table 1.

2.1.1. TCPOF Weibull (TCPOFW) Distribution. The cdf and
pdf of TCPOFW distribution are

(B 1B
G

4
F(x;M a4, f) = —arctan e x>0,
b1

1 —(Bx) [ —(Bx)F\* 1
app e P (e (B ) A (e )

fxshapp) = 71(1 ~ e—(ﬁx)“)‘”l

>

o (B e By ]!
[1+€ 2/\(2 /1-e ) ] )

(18)

m!T(a(j+1) +k—m)

2.1.2. TCPOF Exponential (TCPOFE) Distribution. The cdf
and pdf of the TCPOFE model (for x>0 ) are

-1 (e'ﬂ"/l—e'ﬂ")a
bl

4
F(x;A,a,8) = —arctan e x>0,
s

a—1

4)Laﬁe_ﬁx(e_ﬁx)
7[(1 - e_/jx)wrl

fxAapB) =
(19)

e—)t (e’ﬂ"/l—e’ﬂ")a

>

aq-1
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2.1.3. TCPOF Rayleigh (TCPOFR) Distribution. The cdf and
pdf of the TCPOFR model are

B0 1 )“
>

4 _
F(x;A,a,f3) = —arctan e '1( x>0,
b1

a—1
4/\0(/4[)’23(6_(’3")2 (e_(ﬁx)z)

a+l
71(1 _ B )

fxshap) =
(20)

o (E%ﬁX)z 1—e 857 )“

>

ay-1
[ 14>t (e*ﬁ")Z /l—e*ﬁ")z) ]

2.1.4. TCPOF Lomax (TCPOFL) Distribution. The cdf and
pdf of the TCPOFL model are
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TaBLE 1: Some new models of the new family.

Model G(x;9) 9(x;9) G(x;8)/G (x;8)

Weibull 1—e B !t B e (B 1 _ o (B

lz] <1 1- e’/sz o~ Px , e’["’z‘/l —ex ,

Rayleigh 1—e ¥ B2xe B9 e B/ — (B

Lomax 1-(1+ (x/b))™* alb(1 + (x/b)) ! (1+ (x/b))"%/1 - (1+ (x/b))™

4 _
F(x;A, a,a,b) = —arctan e A
b1

((1+(x/b)) ™ 11~(1+(x/b)) )"

x>0,

~ Aha(alb) (1+ (x/b) (L + (/b))

f(x;Aa,a, b) =

(1 - (1+(x/b))™ )"

(21)

e A((1+(x/b)) ™ 11~(1+(x/b)) )"

X1+

Plots of the TCPOFW, TCPOFE, TCPOFR,
TCPOFL densities are represented in Figure 1.

and

3. Structural Properties

Our study focused on ordinary moments, incomplete mo-
ments (IMs), moment generating functions (MGFs), mean
deviations (MD), Lorenz and Bonferroni curves (LBCs), and
residual life (RL) functions.

3.1. Ordinary Moments and Incomplete Moments Functions.
A first formula for the ry;, ordinary moment of X, say y,, is

w=EX)=>y, E(Y (ayy)- (22)
m=0

A second formula depending on the quantile function
can be Vs{ritten as E(X")=(m+1) _[iooog(x)G(x)’”dx =
(m+1) Io Qs (u; &) uldu. The sy, IMs of X defined by v, ()
for any real s>0 can be expressed from equation (16) as

v (1) = J ©f (dx =Y v, J X T ey ().
—00 m=0 —00
(23)

Equation (23) denotes the sy, IMs of 7(,,,;). The MDs
about the mean y = E(X) and the MDs about the median M
are defined by

8, (%) = E|X — py| = 2u1F () — 27, (1),

, (24)
0, (x) = E|X - M| = yy - 2v, (M),

respectively, where y; = E(X), M = median (X) = Q(1/2),
F (u,) is evaluated from equation (5), and v, (t) is the first IM
given by equation (23) with s = 1, where

o PR N1 4xlb)) ™)* ] -1

. (25)
=Yy, J_ X7 o ().

m=0

We can determine 6, (x) and 6, (x) by two techniques,
the first can be obtained from equation (16) as

V() = oo Vi Y ey () Where Y, (£) = ft,oo X T (m+1)
(x)dx is the first IM of the Exp-G distribution. The second
technique is given by v, (£) = X" ¥,, 0 ,1) (£) where

= o (m+1) (26)
8 i) (B) = (m + 1) , Y Qg (w)au.

For a positive random variable X, the LBCs, for a given
probability p, are given by L(p)= (1/u;)v,(q) and
B(p) = (1/pu;)v, (q), respectively, where y; = E(X), and
q = Q (p) is the quantile function of X at p.

3.2. Moment Generating Function. The MGF of X is

My () = E(e™) = D" ,,M (01 (), (27)
m=0

where M ;) (t) denotes the MGF of 7,,,,,).
A second alternative formula can be derived from
equation (16) as follows: My (t) =Y v, y(t,m+1),

where y(t,m+1) = (m+1) J(l) whetQa(dy,.

3.3. Moments of RL and Reversed RL. The ' order moment
of the RL is given by
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Figure 1: TCPOFW, TCPOFE, TCPOFR, and TCPOFL densities for different values of parameters.
, 1o
v,(t) =E((X-8)'|X>t) ==— (x=1)f (x)dx ,r>1
F(t) )¢
(28)
LS i [ 3 (00
== l//m J X T[(erl) xX)dax,
F(t) 4= t
where 1//:" = Z$=O Z:nz() Y, ( :’;l )(_t)r—m. The mean RL v, (t) = E(Xt) = E(X|X >1). (29)
(MRL) of TCPOF, -G family can be obtained by setting r = The r'h order moment of the reversed RL (or inactivity

1 in equation (28), defined as time) can be obtained by the next equation
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Also, O—entropy can be obtained as

m, (£) = E((t - X)'|X <t) = Ftt)J (t-x) f(x)dx, r>1 ;
wy(X) = 1ielog{l— Y A, J 9(x)°?G(x)"dx }

1 0 m=0
- mz J X ey (2)dx. 35
(30)
5. Maximum Likelihood Estimation
4. Entropy
Let x,,...,x, be a random sample of size n from the
The Rényi entropy is defined by ( 0>0,0+1 TCPOF - G given by equation (11). Let O = (A, a, &)” be g x
1 00 1 vector of parameters. The log-likelihood function is
I(6) = — elog“ £ (x| (31)

41 C
L =n log(—) +nlog(a) + Zlogg (x;;8)
Using the general binomial expansion, applying the same T i=1
method of the linear representation equation (16) and after

some simplifications, we get

+(a-1) ilog@(x,-; 3

1 e i=1
O =ghg [ w2 36
where —(a+ 1);10g(G(xi; £)) —)L;di‘"
A _(M_oc)e § (=)™ V(21 + 6) )
" L, ikl =Y logf1 4B,
i=1
[O+dla(®+j)+k+OT(a®+))+k-6+ 1). d; = G(x;;6)/G(x;;€). The score vector components,
F(a(@+ )+ (x(0+j)+k-0-m+1) say, U(Q) = aL /0Q = (0L,/0A, 0L, /0a, OL,/0E) are given
(33) by

Thus, Rényi entropy of TCPOF, —G family is given by

1,(6) = log{ZA j 9(x) G(x)mdx} (34)

n n 2d(xe—2)tdt“
_ n _ « i
Ui=gi =xm 24+ LT, e

i1 il+te

=243 logGi(s8) - Y o (0 )

L " 20d%e P log d, (37)
-Azld,.“l Zl—mg
g (x589 &G
E afk Zg(xn ((X 1;6 I)ZG( wf)

o n Z/X(Xda 1 —2/\d 8d1
A Zd (afk)“LZ AT

i=1
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TaBLE 2: Estimates for dataset I.

Distributions

MLEs and SEs

TCPOFE (A, a, B)

0.151, 6.011, 8.084
(0.168), (1.024), (0.6141)

wored (3560, (0199
el (0060, (001
genh (11061, (07643}, (06141
R p (00702), (443011, (13270
BE (a, b, ) 0.8073, 3.4612, 1.3311

(0.6961), (1.0032), (0.8551)

KMOE («, a, b, )

0.3731, 3.4782, 3.3063, 0.2990
(0.1358), (0.862), (0.781), (1.113)

MOKE («, a, b, )

0.0081, 2.7162, 1.9861, 0.0992
(0.0021), (1.3158), (0.7839), (0.0481)

0.9252
ME (B) (0.0768)
0.540
E® (0.063)
TaBLE 3: Estimates for dataset II. TaBLE 5: Some IC for dataset II.
Distributions MLEs and SEs Distributions Z1 Z2 Z3 Z4 Z7 Z8

1.475, 21.125, 1.295
(5.068), (0.990), (3.816)
54.470, 2.320

TCPOFE (, a, B)

MOE (@ 0 (35.580), (0.370)
i s
wenp (123612), 03261}, (11630)
OMOE (@b /) (0.(2)556119)?)(2:421%;,363).6797121)
BE (a, b, B) 81.6333, 0.5421, 3.5142

(120.4104), (0.3272), (1.4101)
8.8679, 34.8258, 0.2989, 4.8988
(9.1459), (22.3119), (0.2387), (3.1757)
0.1333, 33.2322, 0.5711, 1.6691
(0.3320), (57.8371), (0.7211), (1.8141)

KMOE («, a, b, )

MOKE («, a, b, )

0.9502
ME (B) (0.1501)

0.526
E® (0.117)

TaBLE 4: Some IC for dataset I.

Distributions  Z1 Z2 Z3 74 Z7 Z8
TCPOFE 191.815 191.387 192.168 194.534 0.085 (0.674)
MOE 210.36 214.92 210.53 21216 0.10 (0.430)
BrXE 23530 239.90 23550 237.10 0.22 (0.002)
KE 209.42 216.24 209.77 21212 0.09 (0.500)
GMOE 210.54 217.38 210.89 213.24 0.09 (0.510)
BE 207.38 214.22 207.73 210.08 0.11 (0.340)
KMOE 207.82 216.94 208.42 211.42 0.09 (0.530)
MOKE 209.44 218.56 210.04 213.04 0.10 (0.440)
ME 210.40 212.68 210.45 211.30 0.4 (0.130)
E 234.63 23691 234.68 235.54 0.27 (0.060)

TCPOFE 37.485 35.388 38.985 38.068 0.108 (0.975)
MOE 43.51 45,51 4422 4390 018 (0.55)
BrXE 48.10 50.10 4880 4850 0.25 (0.17)
KE 41.78 4475 43.28, 4232 014 (0.86)
GMOE 4275 4574 4425 4334 0.15 (0.78)
BE 43.48 46.45 4498 44.02 0.16 (0.80)
KMOE 42.80 46.84 4555 43.60 0.5 (0.86)
MOKE 41.58 4554 4425 4230 014 (0.87)
ME 5432  55.31 54.54 5450 0.32 (0.07)
E 67.67 68.67 67.89 67.87 0.44 (0.004)
where g’ (x;;§) = 39 (x;; 8)/0E, G' (x;; £) = 3G (x;; 10K,

and G (x;;€) = 0G (x;; £)/0&,. The maximum likelihood
estimation (MLE) of parameters is obtained by setting
OL,/0A = OL,/0a = 0L,/0&; = 0 and solving these equations
simultaneously to get theMLE (Q).

6. Applications

In this section, we used two datasets taken from Bjerkedal
[21] and Gross and Clark [22]. The TCPOFE model as
example of the new family is compared with some other
known competitive models to demonstrate its importance in
data modeling. The MLE method is used to estimate the
parameters of the competitive models. Some information
criterions (IC) are as follows: the Akaike IC (Z1), Bayesian
IC (Z2), consistent Akaike IC (Z3), Hannan-Quinn IC (Z4),
Cramér-Von Mises (Z5), Anderson-Darling (Z6), Kolmo-
gorov-Smirnov (Z7) statistics with its p value (Z8) model
selection criteria, and goodness of fit tests are used to
identify the best model.
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The goodness of fits of the TCPOFE model is compared
with those of other competitive models, namely, Marshal-
1-Olkin (MO) E (MOE), Burr X-E (BrXE), Kumaraswamy E
(KwE), generalized MO exponential (GMOE), beta expo-
nential (BE), Kumaraswamy MO E (KMOE), MO Kumar-
aswamy E (MOKE), moment exponential (ME), and
exponential (E) models.

The MLEs and standard errors (SEs) are calculated for
both datasets. The numerical results are listed in Tables 2 and
3. From the numerical values provided in Tables 4 and 5 and
the information shown in Figures 2 and 3, the TCPOFE
model performs considerably better than the other considered
extensions of the E model. Hence, the TCPOFE model is a
good alternative over these models for both datasets.
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7. Conclusion

In this article, we have shown how the use of the “truncated
Cauchy power” scheme applied to the odd Fréchet family
can lead to new flexible statistical models for the analysis of
right-skewed data. Precisely, we have proceeded as follows.
First, we have defined the TCPOF-G family of distributions,
discussed the motivations behind it, and studied its main
properties of interest. Four particular examples of the new
family are proposed. Rényi entropy of the TCPOF is cal-
culated. We used the maximum likelihood technique to
estimate the parameters. Examples from real-world data
demonstrate empirically the significance and promise of the
proposed family. In the future, we are planning to use the
new family to generate a new model and study its statistical
properties and prove the flexibility of it by using more real
datasets.

Data Availability

Please contact the relevant author if you would like to ac-
quire the numerical dataset used to conduct the research
described in the paper.
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