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)e truncated Cauchy power odd Fréchet-G family of distributions is presented in this article. )is family’s unique models are
launched. Statistical properties of the new family are proposed, such as density function expansion, moments, incomplete
moments, mean deviation, Bonferroni and Lorenz curves, and entropy. We investigate the maximum likelihood method for
predicting model parameters of the new family. Two real-world datasets are used to show the importance and flexibility of the new
family by using the truncated Cauchy power odd Fréchet exponential model as example of the family and compare it with some
known models, and this model proves the importance and the flexibility for the new family.

1. Introduction

Many authors have lately made considerable attempts to
create new families to expand well-known distributions
and give flexible classes to represent data in a wide range
of areas, including medical sciences, environmental sci-
ences, engineering, demography, actuarial science, and
economics. Many generic families have been developed
and are used to explain a wide range of real-world events.
Some examples of these families are beta-G [1], gamma-G
[2], upper truncated Weibull distribution [3], and trun-
cated Weibull-G more flexible and more reliable than
beta-G distribution [4], truncated inverted Kumar-
aswamy-G by Bantan et al. [5], type II truncated Fréchet-
G [6], type II power TL by Bantan et al. [7], odd gener-
alized N-H by Ahmad et al. [8], Topp–Leone (TL) odd
Fréchet-G by Al-Marzouki et al. [9], transmuted odd
Fréchet-G by Badr et al. [10], and truncated Burr X-G by
Bantan et al. [11], among others.

Haq and Elgarhy [12] proposed the odd Fréchet-G (OF,
− G) with cumulative function (cdf) as follows, for x> 0,

H(x; α, ξ) � e
− (G(x,ξ)/G(x,ξ))α

, α> 0, (1)

and probability density function (pdf) is

h (x; α, ξ) �
αg(x, ξ)G(x, ξ)

α− 1

G(x, ξ)
α+1 e

− (G(x,ξ)/G(x,ξ))α
. (2)

)e Cauchy (C) distribution plays an important role and
has applications in different fields such as econometrics,
engineering, spectroscopy, biological analysis, reliability,
queueing theory, and stochastic modeling of decreasing
hazard rate life devices. )ere are many authors who have
been displayed various generalization and extension forms
of Cauchy distribution in the statistical literature, for ex-
amples, Rider [13] presented generalized C distribution, A
truncated C distribution by Nadarajah et al. [14], the exis-
tence of the moments of the C distribution by Ohakwe and
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Osu [15], Jacob and Jayakumar[16] studied half-C distri-
bution, Kumaraswamy-half-C distribution by Hamedani
and Ghosh [17], Alshawarbeh and Famoye [18] presented
properties of beta-C distribution, and the power-C negative-
binomial distribution by Zubair et al. [19], among others.

Recently, Aldahlan et al. [20] proposed the truncated C
power-G (TCP-G) family. )e cdf of the TCP-G family is
given by

F(x; λ) �
4
π
arctan(H(x))

λ
, x ∈ R, (3)

where λ> 0. )e corresponding pdf is

f (x; λ) �
4λh(x)(H(x))

λ− 1

π 1 +(H(x))
2λ

 
. (4)

)e aim of this article is to provide a new, broader, and
more flexible family of distributions based on the odd
Fréchet-G and truncated C power-G (TCP-G) families. )e

new proposed family has many wide applications in physics,
medicine, engineering, and finance. We construct a new
family called TCP odd Fréchet-G (TCPOF − G) family of
distributions by inserting equation (1) into equation (3); the
cdf and pdf of the TCPOF − G are

F(x; λ, α, ξ) �
4
π
arctan e

− λ(G(x,ξ)/G(x,ξ))α
, x> 0, (5)

and

f(x; λ, α, ξ) �
4λαg(x, ξ)G(x, ξ)

α− 1

πG(x, ξ)
α+1 e

− λ(G(x,ξ)/G(x,ξ))α
,

× 1 + e
− 2λ (G(x,ξ)/G(x,ξ))α( )

α

 
− 1

.

(6)

Henceforward, a random variable X having pdf equation
(6) will be defined as X ∼ TCPOF (λ, α, ξ). )e survival and
hazard rate functions for the TCPOF − G family are

F(x; λ, α, ξ) � 1 −
4
π
arctan e

− λ(G(x,ξ)/G(x,ξ))α
,

τ(x; λ, α, ξ) �
4λαg(x, ξ)G(x, ξ)

α− 1
e

− λ(G(x,ξ)/G(x,ξ))α

πG(x, ξ)
α+1 1 + e

− 2λ(G(x,ξ)/G(x,ξ))α

  1 − (4/π)arctan e
− λ(G(x,ξ)/G(x,ξ))α

 
.

(7)

)e quantile function (qf) of TCPOF-G family is given
by

F
− 1

(u) � QG(u) � G
− 1 1

1 + − (1/λ)log[tan(u π/4)] 
1/α

⎡⎣ ⎤⎦.

(8)

)e median is given by

M � Q2 � Q(0.5) � G
− 1 1

1 + − (1/λ)log[tan(0.5 π/4)] 
1/α

⎡⎣ ⎤⎦.

(9)

)e structure of this paper is as follows. Section 2 has a
useful linear explanation of the TCPOF density as well as
several specific models. Section 3 looks at structural

properties of the TCPOF-G. In Section 4, we discuss the
suggested family’s entropy. )e maximum likelihood
method is used to estimate the model parameters in Section
5. Section 6 provides applications to real-world datasets to
illustrate the proposed family’s flexibility.

2. Linear Representation of TCPOF

If |z|< 1 and b> 0 is a real noninteger, then the following
power series hold:

(1 + z)
− b

� 
∞

k�0

− b

k
 z

k
. (10)

Applying equation (10) in equation (6), we get

fTCPOFr
(x; λ, α, ξ) �

4λαg(x, ξ)G(x, ξ)
α− 1

πG(x, ξ)
α+1 

∞

i�0
(− 1)

i
e

− λ(2i+1)(G(x,ξ)/G(x,ξ))α
. (11)

By using the power series for the exponential function,
the last term in equation (11) gives

e
− λ(2i+1)(G(x,ξ)/G(x,ξ))α

� 
∞

j�0

(− 1)
jλj

(2i + 1)
j

j!

G(x, ξ)
αj

G(x, ξ)
αj

.

(12)
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)e TCPOF − G density reduces to

fTCPOFr
(x; λ, α, ξ) �

4αg(x, ξ)

π


∞

i,j�0

(− 1)
i+jλj+1

(2i + 1)
j

j!

G(x, ξ)
α(j+1)− 1

G(x, ξ)
α(j+1)+1 . (13)

Using the general binomial expansion, we can write

G(x, ξ)
− (α(j+1)+1)

� 
∞

k�0

Γ(α(j + 1) + k + 1)

k!Γ(α(j + 1) + 1)
(1 − G(x, ξ))

k
,

(14)

and

(1 − G(x, ξ))
α(j+1)+k− 1

� 
∞

m�0
(− 1)

m Γ(α(j + 1) + k)

m!Γ(α(j + 1) + k − m)
G(x, ξ)

m
. (15)

Inserting equations (14) and (15) in equation (13), the
TCPOF − G density becomes

fTCPOFr
(x; λ, α, ξ) � 

∞

m�0
ψm π(m+1)(x), (16)

where hυ(x) � υg(x; ξ)G(x; ξ)υ− 1 denotes the pdf of the
exponentiated generalized (Exp-G) distribution with power
parameter ], and

ψm �
4α
π



∞

i,j,k�0

(− 1)
i+j+mλj+1

(2i + 1)
j

j! k! m!(m + 1)

Γ(α(j + 1) + k + 1)

Γ(α(j + 1) + 1)

×
Γ(α(j + 1) + k)

m!Γ(α(j + 1) + k − m)
.

(17)

2.1.FourSpecialModels of theTCPOFFamily. In this part, we
presented three distinct models of the TCPOF family of
distributions. When the cdf G(x) and pdf g(x) have simple
analytic expressions, the pdf equation (8) will be most
tractable. Based on the baseline distributions, we propose
four submodels of this family: Weibull, exponential, Ray-
leigh, and Lomax. )e cdf and pdf files for these baseline
models are provided in Table 1.

2.1.1. TCPOF Weibull (TCPOFW) Distribution. )e cdf and
pdf of TCPOFW distribution are

F(x; λ, α, μ, β) �
4
π
arctan e

− λ e−(βx)μ /1− e−(βx)μ( )
α

, x> 0,

f(x; λ, α, μ, β) �
4λαμβμx

μ− 1
e

− (βx)μ
e

− (βx)μ

 
α− 1

π 1 − e
− (βx)μ

 
α+1 e

− λ e−(βx)μ /1− e−(βx)μ( )
α

,

1 + e
− 2λ e−(βx)μ /1− e−(βx)μ( )

α

 
− 1

.

(18)

2.1.2. TCPOF Exponential (TCPOFE) Distribution. )e cdf
and pdf of the TCPOFE model (for x> 0 ) are

F(x; λ, α, β) �
4
π
arctan e

− λ e− βx/1− e− βx( )
α

, x> 0,

f(x; λ, α, β) �
4λαβe

− βx
e

− βx
 

α− 1

π 1 − e
− βx

 
α+1

e
− λ e− βx/1− e− βx( )

α

,

1 + e
− 2λ e− βx/1− e− βx( )

α

 
− 1

.

(19)

2.1.3. TCPOF Rayleigh (TCPOFR) Distribution. )e cdf and
pdf of the TCPOFR model are

F(x; λ, α, β) �
4
π
arctan e

− λ e−(βx)2 /1− e−(βx)2( 
α

, x> 0,

f(x; λ, α, β) �
4λαμβ2xe

− (βx)2
e

− (βx)2

 
α− 1

π 1 − e
− (βx)2

 
α+1

e
− λ e−(βx)2 /1− e−(βx)2( 

α

,

1 + e
2− λ e−(βx)2 /1− e−(βx)2( 

α

 
− 1

.

(20)

2.1.4. TCPOF Lomax (TCPOFL) Distribution. )e cdf and
pdf of the TCPOFL model are
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F(x; λ, α, a, b) �
4
π
arctan e

− λ (1+(x/b))− a/1− (1+(x/b))− a( )
α

, x> 0,

f(x; λ, α, a, b) �
4λα(a/b)(1 +(x/b))

− a− 1
(1 +(x/b))

− a
( 

α− 1

π 1 − (1 +(x/b))
− a

( 
α+1

e
− λ (1+(x/b))− a/1− (1+(x/b))− a

( )
α

× 1 + e
− 2λ (1+(x/b))− a/1− (1+(x/b))− a

( )
α

 
− 1

.

(21)

Plots of the TCPOFW, TCPOFE, TCPOFR, and
TCPOFL densities are represented in Figure 1.

3. Structural Properties

Our study focused on ordinary moments, incomplete mo-
ments (IMs), moment generating functions (MGFs), mean
deviations (MD), Lorenz and Bonferroni curves (LBCs), and
residual life (RL) functions.

3.1. Ordinary Moments and Incomplete Moments Functions.
A first formula for the rth ordinary moment of X, say μr

′, is

μr
′ � E X

r
(  � 

∞

m�0
ψm E Y

r
(m+1) . (22)

A second formula depending on the quantile function
can be written as E(Xr) � (m + 1) 

∞
− ∞ g(x)G(x)mdx �

(m + 1) 
1
0 QG(u; ξ)r uddu. )e sth IMs of X defined by ]s(t)

for any real s> 0 can be expressed from equation (16) as

]s(t) � 
t

− ∞
x

s
f (x)dx � 

∞

m�0
ψm 

t

− ∞
x

s π(m+1)(x)dx.

(23)

Equation (23) denotes the sth IMs of π(m+1). )e MDs
about the mean μ � E(X) and the MDs about the median M

are defined by

δ1(x) � E X − μ1′


 � 2μ1′F μ1′(  − 2]1 μ1′( ,

δ2(x) � E|X − M| � μ1′ − 2]1(M),
(24)

respectively, where μ1′ � E(X), M � median (X) � Q(1/2),
F(μ1′) is evaluated from equation (5), and ]1(t) is the first IM
given by equation (23) with s � 1, where

]1(t) � 
t

− ∞
xf(x)dx

� 
∞

m�0
ψm 

t

− ∞
x π(m+1)(x)dx.

(25)

We can determine δ1(x) and δ2(x) by two techniques,
the first can be obtained from equation (16) as
]1(t) � 

∞
m�0 ψm Y(m+1)(t) where Y(m+1)(t) � 

t

− ∞ x π(m+1)

(x)dx is the first IM of the Exp-G distribution. )e second
technique is given by ]1(t) � 

∞
m�0 ψm δ(m+1)(t) where

δ(m+1)(t) � (m + 1) 
G(t)

0
u

(m+1)
QG(u)au. (26)

For a positive random variable X, the LBCs, for a given
probability p, are given by L(p) � (1/μ1′)]1(q) and
B(p) � (1/pμ1′)]1(q), respectively, where μ1′ � E(X), and
q � Q (p) is the quantile function of X at p.

3.2. Moment Generating Function. )e MGF of X is

MX(t) � E e
tX

  � 
∞

m�0
ψmM(m+1)(t), (27)

where M(m+1)(t) denotes the MGF of π(m+1).
A second alternative formula can be derived from

equation (16) as follows: MX(t) � 
∞
m�0 ψm c(t, m + 1),

where c(t, m + 1) � (m + 1) 
1
0 umetQG(u)du.

3.3. Moments of RL and Reversed RL. )e rth order moment
of the RL is given by

Table 1: Some new models of the new family.

Model G(x; ξ) g(x; ξ) G(x; ξ)/G(x; ξ)
Weibull 1 − e− (βx)μ μβμxμ− 1e− (βx)μ e− (βx)μ /1 − e− (βx)μ

|z|< 1 1 − e− βx βe− βx e− βx/1 − e− βx

Rayleigh 1 − e− (βx)2 β2xe− (βx)2 e− (βx)2 /1 − e− (βx)2

Lomax 1 − (1 + (x/b))− a a/b(1 + (x/b))− a− 1 (1 + (x/b))− a/1 − (1 + (x/b))− a
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ψr(t) � E (X − t)
r
|X> t(  �

1
F(t)


∞

t
(x − t)

r
f (x)dx , r≥ 1

�
1

F(t)


∞

m�0
ψ∗m 
∞

t
x

rπ(m+1)(x)dx,

(28)

where ψ∗m � 
∞
m�0 

r
m�0 ψm

r

m
 (− t)r− m. )e mean RL

(MRL) of TCPOF, − G family can be obtained by setting r �

1 in equation (28), defined as

ψ1(t) � E Xt(  � E(X|X> t). (29)

)e rth order moment of the reversed RL (or inactivity
time) can be obtained by the next equation

0.0

0.5

1.5

2.0

1.0

0.0 0.5 1.51.0
x

pd
f

0.0 0.5 1.5 2.01.0
x

0.0

0.5

1.5

1.0

pd
f

0.0 0.5 1.5 2.0 2.51.0
x

0.0

0.5

1.5

2.0

2.5

1.0

pd
f

0.0 0.5 1.51.0
x

0.0

0.5

1.5

2.0

1.0pd
f

α = 0.3  = 0.3  = 0.3  = 0.5
α = 0.9  = 0.4  = 0.4  = 0.5
α = 1.5  = 0.5  = 0.5  = 0.5
α = 2.0  = 0.6  = 0.6  = 0.5
α = 3.0  = 0.7  = 0.7  = 0.5

α = 0.3  = 0.3  = 0.5
α = 0.9  = 0.4  = 0.5
α = 1.5  = 0.5  = 0.5
α = 2.0  = 0.6  = 0.5
α = 3.0  = 0.7  = 0.5

α = 0.9  = 0.1  = 0.5
α = 1.5  = 0.2  = 0.5
α = 2.0  = 0.3  = 0.5
α = 2.5  = 0.4  = 0.5
α = 3.0  = 0.5  = 0.5

α = 0.3  = 0.3 a = 0.3 b = 0.5
α = 0.9  = 0.4 a = 0.4 b = 0.5
α = 1.5  = 0.5 a = 0.5 b = 0.5
α = 2.0  = 0.6 a = 0.6 b = 0.5
α = 3.0  = 0.7 a = 0.7 b = 0.5

Figure 1: TCPOFW, TCPOFE, TCPOFR, and TCPOFL densities for different values of parameters.
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mr(t) � E (t − X)
r
|X≤ t(  �

1
F(t)


t

0
(t − x)

r
f(x)dx, r≥ 1

�
1

F(t)


∞

m�0
ψ∗m 

t

0
x

r π(m+1)(x)dx.

(30)

4. Entropy

)e Rényi entropy is defined by ( θ> 0, θ ≠ 1

IR(θ) �
1

1 − θ
log 

∞

− ∞
f

θ
(x)dx . (31)

Using the general binomial expansion, applying the same
method of the linear representation equation (16) and after
some simplifications, we get

IR(θ) �
1

1 − θ
log 

∞

− ∞
f

θ
(x)dx , (32)

where

Δm �
4λα
π

 

θ



∞

i,j,k�0

(− 1)
i+j+m λj

(2i + θ)
j

i!j!k!m!

×
Γ(θ + i)Γ(α(θ + j) + k + θ)Γ(α(θ + j) + k − θ + 1)

Γ(α(θ + j) + θ)Γ(α(θ + j) + k − θ − m + 1)
.

(33)

)us, Rényi entropy of TCPOF, − G family is given by

IR(θ) �
1

1 − θ
log 

∞

m�0
Δm 
∞

− ∞
g(x)

θ
G(x)

mdx
⎧⎨

⎩

⎫⎬

⎭. (34)

Also, θ− entropy can be obtained as

ωθ(X) �
1

1 − θ
log 1 − 

∞

m�0
Δm 
∞

− ∞
g(x)

θ
G(x)

mdx
⎧⎨

⎩

⎫⎬

⎭.

(35)

5. Maximum Likelihood Estimation

Let x1, . . . , xn be a random sample of size n from the
TCPOF − G given by equation (11). LetΩ � (λ, α, ξ)T be q ×

1 vector of parameters. )e log-likelihood function is

Ln � n log
4λ
π

  + n log(α) + 
n

i�1
logg xi; ξ( 

+(α − 1) 
n

i�1
logG xi; ξ( 

− (α + 1) 
n

i�1
log G xi; ξ( (  − λ

n

i�1
d
α
i

− 
n

i�1
log 1 + e

− 2λd α
i .

(36)

di � G(xi; ξ)/G(xi; ξ). )e score vector components,
say, U(Ω) � zLn/zΩ � (zLn/zλ, zLn/zα, zLn/zξ) are given
by

Uλ �
zLn

zλ
�

n

λ
− 

n

i�1
d
α
i + 

n

i�1

2d
α
i e

− 2λd α
i

1 + e
− 2λd α

i

,

Uα �
zLn

zα
�

n

α
+ 

n

i�1
logG xi; ξ(  − 

n

i�1
log G xi; ξ( ( 

− λ
n

i�1
d
α
i log di + 

n

i�1

2λd
α
i e

− 2λd α
i log di

1 + e
− 2λdα

i

,

Uξ �
zLn

zξk

� 
n

i�1

g′ xi; ξ( 

g xi; ξ( 
+(α − 1) 

n

i�1

G′ xi; ξ( 

G xi; ξ( 
− (α + 1) 

n

i�1

G′ xi; ξ( 

G xi; ξ( 

− λα

n

i�1
d
α− 1
i

zdi

zξk

  + 

n

i�1

2λαd
α− 1
i e

− 2λd α
i

1 + e
− 2λd α

i

zdi

zξk

 ,

(37)
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where g′(xi; ξ) � zg(xi; δ)/zξk, G′(xi; ξ) � zG(xi; ξ)/zξk,

and G′(xi; ξ) � zG(xi; ξ)/zξk. )e maximum likelihood
estimation (MLE) of parameters is obtained by setting
zLn/zλ � zLn/zα � zLn/zξk � 0 and solving these equations
simultaneously to get theMLE( Ω).

6. Applications

In this section, we used two datasets taken from Bjerkedal
[21] and Gross and Clark [22]. )e TCPOFE model as
example of the new family is compared with some other
known competitive models to demonstrate its importance in
data modeling. )e MLE method is used to estimate the
parameters of the competitive models. Some information
criterions (IC) are as follows: the Akaike IC (Z1), Bayesian
IC (Z2), consistent Akaike IC (Z3), Hannan–Quinn IC (Z4),
Cramér–Von Mises (Z5), Anderson–Darling (Z6), Kolmo-
gorov–Smirnov (Z7) statistics with its p value (Z8) model
selection criteria, and goodness of fit tests are used to
identify the best model.

Table 2: Estimates for dataset I.

Distributions MLEs and SEs

TCPOFE (λ, α, β) 0.151, 6.011, 8.084
(0.168), (1.024), (0.6141)

MOE (a, b) 8.780, 1.380
(3.560), (0.194)

BrXE (a, β) 0.475, 0.2055
(0.060), (0.012)

KE (a, b, β) 3.3041, 1.1002, 1.0371
(1.1061), (0.7642), (0.6141)

GMOE (a, b, β) 0.1789, 47.6350, 4.4652
(0.0702), (44.9011), (1.3270)

BE (a, b, β) 0.8073, 3.4612, 1.3311
(0.6961), (1.0032), (0.8551)

KMOE (α, a, b, β) 0.3731, 3.4782, 3.3063, 0.2990
(0.1358), (0.862), (0.781), (1.113)

MOKE (α, a, b, β) 0.0081, 2.7162, 1.9861, 0.0992
(0.0021), (1.3158), (0.7839), (0.0481)

ME (β) 0.9252
(0.0768)

E (β) 0.540
(0.063)

Table 4: Some IC for dataset I.

Distributions Z1 Z2 Z3 Z4 Z7 Z8
TCPOFE 191.815 191.387 192.168 194.534 0.085 (0.674)
MOE 210.36 214.92 210.53 212.16 0.10 (0.430)
BrXE 235.30 239.90 235.50 237.10 0.22 (0.002)
KE 209.42 216.24 209.77 212.12 0.09 (0.500)
GMOE 210.54 217.38 210.89 213.24 0.09 (0.510)
BE 207.38 214.22 207.73 210.08 0.11 (0.340)
KMOE 207.82 216.94 208.42 211.42 0.09 (0.530)
MOKE 209.44 218.56 210.04 213.04 0.10 (0.440)
ME 210.40 212.68 210.45 211.30 0.14 (0.130)
E 234.63 236.91 234.68 235.54 0.27 (0.060)

Table 3: Estimates for dataset II.

Distributions MLEs and SEs

TCPOFE (λ, α, β) 1.475, 21.125, 1.295
(5.068), (0.990), (3.816)

MOE (a, b) 54.470, 2.320
(35.580), (0.370)

BrXE (a, β) 1.1635, 0.3207
(0.330), (0.030)

KE (a, b, β) 83.7558, 0.5679, 3.3329
(42.3612), (0.3261), (1.1880)

GMOE (a, b, β) 0.5192, 89.4623, 3.1691
(0.2561), (66.2782), (0.7721)

BE (a, b, β) 81.6333, 0.5421, 3.5142
(120.4104), (0.3272), (1.4101)

KMOE (α, a, b, β) 8.8679, 34.8258, 0.2989, 4.8988
(9.1459), (22.3119), (0.2387), (3.1757)

MOKE (α, a, b, β) 0.1333, 33.2322, 0.5711, 1.6691
(0.3320), (57.8371), (0.7211), (1.8141)

ME (β) 0.9502
(0.1501)

E (β) 0.526
(0.117)

Table 5: Some IC for dataset II.

Distributions Z1 Z2 Z3 Z4 Z7 Z8
TCPOFE 37.485 35.388 38.985 38.068 0.108 (0.975)
MOE 43.51 45.51 44.22 43.90 0.18 (0.55)
BrXE 48.10 50.10 48.80 48.50 0.25 (0.17)
KE 41.78 44.75 43.28, 42.32 0.14 (0.86)
GMOE 42.75 45.74 44.25 43.34 0.15 (0.78)
BE 43.48 46.45 44.98 44.02 0.16 (0.80)
KMOE 42.80 46.84 45.55 43.60 0.15 (0.86)
MOKE 41.58 45.54 44.25 42.30 0.14 (0.87)
ME 54.32 55.31 54.54 54.50 0.32 (0.07)
E 67.67 68.67 67.89 67.87 0.44 (0.004)
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)e goodness of fits of the TCPOFE model is compared
with those of other competitive models, namely, Marshal-
l–Olkin (MO) E (MOE), Burr X-E (BrXE), Kumaraswamy E
(KwE), generalized MO exponential (GMOE), beta expo-
nential (BE), Kumaraswamy MO E (KMOE), MO Kumar-
aswamy E (MOKE), moment exponential (ME), and
exponential (E) models.

)e MLEs and standard errors (SEs) are calculated for
both datasets. )e numerical results are listed in Tables 2 and
3. From the numerical values provided in Tables 4 and 5 and
the information shown in Figures 2 and 3, the TCPOFE
model performs considerably better than the other considered
extensions of the E model. Hence, the TCPOFE model is a
good alternative over these models for both datasets.
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Figure 2: Fitted cdf, pdf, and pp plots for dataset I.
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Figure 3: Fitted cdf, pdf, and pp plots for dataset II.
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7. Conclusion

In this article, we have shown how the use of the “truncated
Cauchy power” scheme applied to the odd Fréchet family
can lead to new flexible statistical models for the analysis of
right-skewed data. Precisely, we have proceeded as follows.
First, we have defined the TCPOF-G family of distributions,
discussed the motivations behind it, and studied its main
properties of interest. Four particular examples of the new
family are proposed. Rényi entropy of the TCPOF is cal-
culated. We used the maximum likelihood technique to
estimate the parameters. Examples from real-world data
demonstrate empirically the significance and promise of the
proposed family. In the future, we are planning to use the
new family to generate a new model and study its statistical
properties and prove the flexibility of it by using more real
datasets.
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