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*e q-rung orthopair fuzzy number (q-ROFN) has been recently developed by Yager and has been widely applied in handling real-
life decision-making problems. To enhance its usefulness in dealing with complex practical issues, this paper first proposes the new
concept of q-rung orthopair trapezoidal fuzzy numbers (q-ROTrFNs) which is a new and useful extension of q-ROFNs. *en, we
investigate the operation of q-ROTrFNs and develop a new ranking method for q-ROTrFNs. We also propose a new q-rung
orthopair trapezoidal fuzzy Hamming distance measure. More important, we develop a useful q-rung orthopair trapezoidal fuzzy
modified TODIM group decision-makingmethod. In this method, a new q-rung orthopair trapezoidal fuzzy weighted aggregating
(q-ROTrFWA) operator is developed to integrate individual decision matrices into the collective decision matrix, and a q-rung
orthopair trapezoidal fuzzy distance measure-based compromise approach is proposed to determine the relative dominance
degree of alternatives. It is worth to mention that the modified TODIMmethod not only expands the freedom of decision makers
but also allows decision makers to choose the appropriate risk preference parameter. Finally, a case study on health management
of hypertensive patients is conducted to demonstrate the feasibility of the modified TODIM group decision-making method, and
the developed method is further verified by comparison analysis with the existing methods and sensitive analysis of
different parameters.

1. Introduction

Due to the complexity and uncertainty in real-life decision-
making processes, it is difficult for experts to timely and
accurately provide the estimated results in form of exact real
numbers. To this end, Zadeh [1] proposed fuzzy set theory
and advised experts to use membership functions instead of
exact real (nonfuzzy) numbers to describe the estimated
results in practical multiattribute decision-making (MADM)
problems. Atanassov [2] further proposed the concept of
intuitionistic fuzzy sets (IFSs) which include the degree of
membership, the degree of nonmembership degree, and the
hesitation degree. One important constraint is that the
membership degree (u) and nonmembership degree (v) in
IFS satisfy u + v≤ 1. In order to make IFSs suitable for more
complex decision-making environment, Yager [3] proposed
the concept of Pythagorean fuzzy set (PFS) in which the

square sum of the membership and nonmemberships is less
than one. Zhang and Xu [4] originally provided the
mathematical expression form of PFSs and built the basic
theoretical framework of PFSs. Subsequently, Zhang [5]
extended PFSs into interval-valued fuzzy environment and
developed interval-valued PFSs. Despite the usefulness of
Pythagorean fuzzy theory [6, 7], practical applications have
shown that PFSs still have some limitations.*erefore, Yager
[8] recently developed the concept of generalized orthopair
fuzzy set (is also called q-rung orthopair fuzzy set and is
known simply as q-ROFS) in which uq + vq ≤ 1 (q≥ 1). *e
proposed q-ROFSs well incorporate the advantages of IFSs
and PFSs and describe a wider range of information within
different values of the parameter q. *e q-ROFSs have been a
research hotspot in recent years, and many excellent re-
search results have been achieved, for example, the q-rung
orthopair fuzzy approximate reasoningmethod [9], integrals
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and differentials of q-rung orthopair fuzzy functions
[10–12], various q-rung orthopair fuzzy aggregation oper-
ators [13–16], q-rung orthopair fuzzy information measures
[17, 18], and different q-rung orthopair fuzzy decision-
making methods [19, 20] have been developed.

Furthermore, with the development of fuzzy sets, the
application of trapezoidal fuzzy numbers has been popu-
larized. *e trapezoidal fuzzy function is increased and
maintained for a period of time and then decreased. Its
maximum membership degree can be maintained for a
period of time so that it can fit more realistic scenes. If the
uncertainty of the alternative presents such a trend and it is
presented in the form of interval, the trapezoidal fuzzy
number is the most suitable for describing it. However, due
to the complexity of the real-life decision-making envi-
ronment, in some situations, the sum of the membership
degree and the nonmembership degree are sometimes
greater than 1, and the trapezoidal fuzzy number is not
enough to adapt to the realistic decision-making situations.
Motivated by the ideas of q-ROFS [8] and trapezoidal fuzzy
numbers, one important work of this paper is to introduce
the concept of q-rung orthopair trapezoidal fuzzy numbers
(q-ROTrFNs). We will investigate the operation of q-
ROTrFNs and propose a ranking method for comparing q-
ROTrFNs. We also propose a new q-rung orthopair trape-
zoidal fuzzy Hamming distance measure. As a useful ex-
tension of q-ROFS, the q-ROTrFNs have also wide
application fields, especially in decision-making fields. In
order to well handle complex practical MADM or group
MADM (MAGDM) problems under q-ROTrFNs environ-
ment, it is necessary to develop correspondingly effective
decision-making methods. TODIM (interactive and multi-
criteria decision-making) is a multicriteria method proposed
by Gomes and Lima [21] on the basis of prospect theory.*e
biggest advantage of this method is that it can take into
account the psychological behavior of decision makers and
can well solve decision-making problems with risk char-
acteristics. Gomes et al. [22] developed a Choquet integral-
based TODIM method to deal with attributes’ interactions.
To deal with complex practical MADM issues, many new
extensions of TODIM methods, for instance, the hybrid
TODIM method [23], the intuitionistic fuzzy TODIM
method [24], the hesitant fuzzy TODIM method [25], the
interval type-2 fuzzy TODIM method [26], the Pythagorean
fuzzy TODIM approach [27], the double hierarchy hesitant
fuzzy linguistic entropy-based TODIM approach [28], un-
balanced hesitant fuzzy linguistic TODIM approach [29],
linguistic distribution TODIM method [30], and hesitant
fuzzy linguistic TODIM method [31]have been developed.
Tian et al. [32] conducted a detail state-of the-art survey for
the development of TODIM with different types of fuzzy
sets. Although these studies are able to effectively deal with
MAGDM problems, it is indispensable to further extend the
TODIM method. On the one hand, the classical TODIM
method distinguished decision data by subtraction, which
cannot solve the MAGDM problem in the q-rung orthopair
trapezoidal fuzzy environment. On the other hand, the
modified TODIMmethod in this paper uses the compromise
distance to capture the difference between q-ROTrFNs based

on the compromise theory. Not only can the distance pa-
rameter combined with risk parameter of TODIM reflect the
attitude of decision makers facing risks but also the integrity
of the information will be ensured to a large extent so that
the result is more in line with the actual situation.

*erefore, we attempt to develop a modified TODIM
group decision-makingmethod based on q-ROTrFNs data.We
first develop a new q-rung orthopair trapezoidal fuzzy weighted
average aggregating (q-ROTrFWA) operator to integrate the
individual decision matrix into the collective decision matrix.
On the basis of the positive-ideal Hamming distance and the
negative-ideal Hamming distance, a new q-rung orthopair
trapezoidal fuzzy compromise distance measure is developed
for calculating the relative dominance degrees of alternatives.
*is paper is organized as follows. Section 2 briefly reviews the
basic concepts of q-ROFNs and Pythagorean trapezoidal fuzzy
numbers (PTrFNs). In Section 3, the concept of q-ROTrFNs is
defined, the operation of q-ROTrFNs, the q-ROTrFWA op-
erator, and the new the ranking method, and Hamming dis-
tance are developed for q-ROTrFNs. In Section 4, the modified
TODIM method is proposed, and the group decision-making
method based on q-ROTrFNs is also given. In Section 5, an
example is given to demonstrate the feasibility of the modified
TODIM group decision-making method, and Section 6
summarizes this article.

2. Preliminaries

*is section describes some basic knowledge involved in this
paper, including the definition and operation of q-ROFS and
the definition and operation of PTrFNs.

Definition 1 (see [8]). Let X be the universe of discourse;
A � x, uA(x), vA(x)| x ∈ X  is q-ROFS on the universe X,
the degree of membership uA: X⟶ [0, 1], and the degree
of nonmembership vA: X⟶ [0, 1], and they are satisfied
by the following equation.

0≤ uA(x)( 
q

+ vA(x)( 
q ≤ 1, (1)

where q≥ 1, and the degree of hesitation πA(x) can be
expressed as

πA(x) �

��������������������

1 − uA(x)( 
q

+ vA(x)( 
qq



, (q≥ 1). (2)

Definition 2 (see [8]). Let a � (ua, va) and β � (uβ, vβ) be
two q-ROFNs; c> 0 is a random number; then, the following
equations hold:

a⊕β � u
q
a + u

q

β − u
q
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q
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Definition 3 (see [33]). Let a � (a, b, c, d; ua, va) be a PTrFN,
and its membership function and nonmembership function,
respectively, satisfy equations (4) and (5):

ua(x) �

(x − a)ua
b − a

, if (a≤ x< b),

ua, if (b≤x≤ c),

(x − d)ua
d − c

, if (c<x≤d),

0, if (x< a, x>d),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

va(x) �

b − x + va(x − a) 

b − a
, if (a≤x< b),

va, if (b≤x≤ c),

x − c + va(d − x) 

d − c
, if (c<x≤ d),

1, if (x< a, x> d),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where ua is the maximum degree of membership of a and va
is the minimum degree of nonmembership of a, which
satisfy 0≤ ua ≤ 1, 0≤ va ≤ 1, and 0≤ (ua)2 + (va)2 ≤ 1.

Definition 4 (see [33]). Let a � (aa, ba, ca, da; ua, va) and b �

(ab
, bb

, cb
, db

; ub
, vb

) be two PTrFNs; c> 0 is random
number; then, the following equations hold:

a⊕b � aa + ab
, ba + bb

, ca + cb
, da + db

;
������������
u
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2
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, vavb

 , (6)

a⊗ b � aaab
, babb

, cacb
, dadb

; uaub
,
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 , (7)

ca � caa, cba, cca, cda;
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 , (8)
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3. q-Rung Orthopair Trapezoidal
Fuzzy Numbers

*is section first puts forward the definition of q-ROTrFN
and investigates the operation low of q-ROTrFNs. *en, a
new ranking method of q-ROTrFNs, a q-ROTrFWA oper-
ator, and q-rung orthopair trapezoidal fuzzy Hamming
distance measure are developed, respectively.

Definition 5. Let a � (a, a1, a2, a; ua(max), va(min)) be a q-
ROTrFN; its membership function ua is shown as

ua(x) �

x − a( ua(max)

a1 − a
, if a ≤x< a1( ,

ua(max) if a1 ≤ x≤ a2( ,

(a − x)ua(max)

a − a2
, if a2 < x≤ a( ,

0, if x< a, x> a( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

And, the nonmembership function vais shown as

Complexity 3



va(x) �

a1 − x + va(min) x − a(  

a1 − a
, if a ≤x< a1( ,

va(min), if a1 ≤ x≤ a2( ,

x − a2 + va(min)(a − x) 

a − a2
, if a2 < x≤ a( ,

1, if x< a, x> a( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where 0≤ ua(max) ≤ 1, 0≤ va(min) ≤ 1, and 0≤ (ua(max))
q+

(va(min))
q ≤ 1, q≥ 1.

As shown in Figures 1 and 2, the q-ROTrFN a is different
from the PTrFN and the intuitionistic trapezoidal fuzzy
number (ITrFN), and obviously, the q-ROTrFNs are more
flexible because of 0≤ (ua(max))

q + (va(min))
q ≤ 1.

πa(x) is the degree of indeterminacy of the q-ROTrFN a

and is shown as

πa(x) �
���������������
1 − u

q

a
(x) − v

q

a
(x)q


. (12)

It is easy to see that trapezoidal fuzzy numbers, ITrFN
and PTrFN, are the special cases of the developed q-ROTrFN.
*at is to say, the q-ROTrFN degenerates to an ITrFN when
q� 1, namely, 0≤ ua(max) + va(min) ≤ 1, and the q-ROTrFN
degenerates into the PTrFN when q� 2, namely,
0≤ (ua(max))

2 + (va(min))
2 ≤ 1.

Definition 6. Let c be a random number and c> 0 and a �

(a, a1, a2, a; ua(max), va(min)) and b � (b, b1, b2, b; ub(max)
,

vb(min)
) be two q-ROTrFNs; then, the following equations

(13)–(16) hold:

a⊕b � a + b, a1 + b1, a2 + b2, a + b;

��������������������������
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q
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, va(min)vb(min)
 , (13)

a⊗ b � a b, a1b1, a2b2, ab; ua(max)ub(max)
,
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 , (14)

ca � c a, ca1, ca2, ca;
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q
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q



, v
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 , (15)
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c
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c
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c
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,
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1 − 1 − v
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c
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 . (16)

Theorem 1. Given two q-ROTrFNs a � (a, a1, a2, a; ua(max),

va(min)) and b � (b, b1, b2, b; ub(max)
, vb(min)

), and c> 0, λ> 0;
then, we have

(1) a⊕b � b⊕a
(2) a⊗ b � b⊗ a

(3) c(a⊕b) � ca⊕cb

(4) ca⊕λa � (c + λ)a

1

0 Xα1 α2

uᾶ (max)

u
ᾶ 
(X)

V
ᾶ 
(X)

vᾶ (min)

αα

Figure 1: q-ROTrFN a � (a, a1, a2, a; ua(max), va(min)).

1

0 1

ᾶ (min)v

ᾶ (min)u

q – ROTrFNs (uᾶ (max)
q + qvᾶ (min))

PTrFNs (ua +
2
ˆ va )

2
ˆ

ITrFNs (ua+ va)

Figure 2: Information space with different values of q.
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Proof

(1) a⊕b � a + b, a1 + b1, a2 + b2, a + b;

��������������������������

u
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q
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− u

q

a(max)
u

q
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q



, va(min)vb(min)
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+ u

q

a(max)
− u

q

b(max)
u

q

a(max)

q
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va(min) 

� b⊕a.

(17)

(2) *e same as (1) can be proved, a⊗ b � b⊗ a.

(3) c(a⊕b) � c

a + b, a1 + b1, a2 + b2, a + b;
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⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� c a + b( , c a1 + b1( , c a2 + b2( , c(a + b);
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  1 − u

q
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q



, va(min)vb(min)
 

c

 

� c a + b( , c a1 + b1( , c a2 + b2( , c(a + b);

��������������������������

1 − 1 − u
q

a(max)
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1 − u
q

b(max)
 

c
q



, va(min)vb(min)
 

c

 

� c a + b( , c a1 + b1( , c a2 + b2( , c(a + b);

q

1 − 1 − u
q

a(max)
 

c

+ 1 − 1 − u
q

b(max)
 

c

−

1 − 1 − u
q

b(max)
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− 1 − u
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a(max)
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q

a(max)
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1 − u
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b(max)
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, va(min)vb(min)
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� c a + b( , c a1 + b1( , c a2 + b2( , c(a + b);

����������������������������������

1 − 1 − u
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c
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c

−
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, va(min)vb(min)
 

c⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ca⊕cb.

(18)

(4) ca � c a, ca1, ca2, ca;
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1 − 1 − u
q

a(max)
 

c
q



, v
c

a(min)
 

λa � λ a, λa1, λa2, λa;

���������������

1 − 1 − u
q

a(max)
 

λ
q



, v
λ
a(min)

⎛⎝ ⎞⎠

ca⊕λa � (c + λ) a, (c + λ)a1, (c + λ)a2, (c + λ)a;

����������������������������������

1 − 1 − u
q

a(max)
 

c

+ 1 − 1 − u
q
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λ
−

1 − 1 − u
q

a(max)
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  1 − 1 − u
q
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λ
 

q







, v
c

a(min)
v
λ
a(min)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (c + λ) a, (c + λ)a1, (c + λ)a2, (c + λ)a;

��������������������������

1 − 1 − u
q

a(max)
 

c

1 − u
q
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λ
q



, v
c

a(min)
v
λ
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⎛⎝ ⎞⎠

� (c + λ) a, (c + λ)a1, (c + λ)a2, (c + λ)a;

����������������

1 − 1 − u
q

a(max)
 

c+λ
q



, v
c+λ
a(min)

⎛⎝ ⎞⎠

� (c + λ)a.

(19)
□
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Example 1. Let a � (2, 3, 5, 7; 0.7, 0.5) and
b � (1, 4, 6, 8; 0.8, 0.3) be two q-ROTrFNs; c � 2, λ � 3, and
q� 3; then, we have

a⊕b � 2 + 1, 3 + 4, 5 + 6, 7 + 8;

�������������������

0.73 + 0.83 − 0.73 × 0.83
3



, 0.5 × 0.3 

� (3, 7, 11, 15; 0.8791, 0.15)

c(a⊕b) � 2 × 3, 2 × 7, 2 × 11, 2 × 15; 31 − 1 − 0.73 + 0.83 − 0.73 × 0.83  
2
, 0.5 × 0.3



2

 

� (6, 14, 22, 30; 0.9645, 0.0225)

ca⊕λa � ((2 + 3) × 2, (2 + 3) × 3, (2 + 3) × 5, (2 + 3) × 7);

�����������������������������

1 − 1 − 0.73 
2

+ 1 − 1 − 0.73 
3
−

1 − 1 − 0.73 
2

  × 1 − 1 − 0.73 
3

 

3





, 0.52 × 0.53
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (10, 15, 25, 35; 0.9574, 0.03125).

(20)

Definition 7. Let a � (a, a1, a2, a; ua(max), va(min)) be a q-
ROTrFN, q≥ 1; then, the score function of a is shown as

S(a) �
a +a1 + a2 + a

4
  × u

q

a(max)
− v

q

a(min)
 . (21)

Definition 8. Let a � (a, a1, a2, a; ua(max), va(min)) be a q-
ROTrFN, q≥ 1; then, the exact function of a is shown as

H(a) �
a +a1 + a2 + a

4
  × u

q

a(max)
+ v

q

a(min)
 . (22)

Obviously, H(a) reflects the degree of accuracy of a, and
a has become more accurate as H(a) increases. *en, the
comparison method of q-ROTrFNs according to Definitions
7 and 8 can be determined.

Definition 9. Let a � (a, a1, a2, a; ua(max), va(min)) and b �

(b, b1, b2, b; ub(max)
, vb(min)

) be two q-ROTrFNs; q≥ 1, S(a),
S(b), H(a), and H(b) are the score function and exact
function of a and b, respectively; then, the ranking method
for q-ROTrFNs is introduced as follows:

(1) If S(a)> S(b), then a> b

(2) If S(a)< S(b), then a< b

(3) When S(a) � S(b), if H(a)>H(b), then a> b

If H(a)<H(b), then a< b

If H(a) � H(b), then a � b

Example 2. Given two q-ROTrFNs a � (1, 5, 6, 7; 0.8, 0.5)

and b � (4, 7, 8, 9; 0.3, 0.9) and q� 2, then we use the de-
veloped ranking method to compare the magnitudes of these
two q-ROTrFNs as below:

S(a) �
1 + 5 + 6 + 7

4
  ×(0.64 − 0.25) � 1.8525,

S(b) �
4 + 7 + 8 + 9

4
  ×(0.09 − 0.81) � − 5.04.

(23)

Obviously, S(b)< S(a), so it can be found that a> b.
However, if a � (4, 5, 5, 6; 0.4, 0.3) and

b � (5, 7, 7, 9; 0.3, 0.2), q� 2, it can be obtained that
S(a) � S(b) � 0.35. *en, the relationship between a and b

has to be determined by an exact function:

H(a) �
4 + 5 + 5 + 6

4
  ×(0.16 + 0.09) � 1.25,

H(b) �
5 + 7 + 7 + 9

4
  ×(0.09 + 0.04) � 0.91.

(24)

Obviously, H(b)<H(a), which means a> b.
On the contrary, if a � (1, 5, 6, 7; 0.8, 0.5) and

b � (4, 7, 8, 9; 0.3, 0.9), q� 3, we have

S(a) �
1 + 5 + 6 + 7

4
  ×(0.512 − 0.125) � 1.83825,

S(b) �
4 + 7 + 8 + 9

4
  ×(0.027 − 0.729) � − 4.914.

(25)

It is easy to find a> b. Similarly, if a � (4, 5, 5, 6; 0.4, 0.3)

and b � (5, 7, 7, 9; 0.3, 0.2), q� 3, it can be obtained that
S(a) � 0.185> S(b) � 0.133. *erefore, a> b.

Next, we propose a new q-ROTrFWA operator and
investigate its properties.

Definition 10. Let a � (a1, a2, . . . , an)T be a set of q-
ROTrFNs and ω � (ω1,ω2, . . . ,ωn)T be the weight vector of
ai (i � 1, 2, . . . , n),ωi ∈ [0, 1] and 

n
i�1 ωi � 1; then, the

definition of q-ROTrFWA is shown as
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q − ROTrFWA a1, a2, . . . , an(  � 
n

i�1
ωiai � ω1a1⊕ω2a2⊕ · · ·⊕ωnan. (26)

Theorem 2. �e aggregating result obtained by
q − ROTrFWA(a1, a2, . . . , an) is still a q-ROTrFN, which is
shown as

q − ROTrFWA a1, a2, . . . , an(  � 
n

i�1
ωia

a,
n

i�1
i ωia

a1
i , 

n

i�1
ωia

a2
i , 

n

i�1
ωia

a
i ;

����������������������

1 − 
n

i�1
1 − u

q

ai(max)
 

ωi
⎛⎝ ⎞⎠

q




, 
n

i�1
v
ωi

ai(min)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (27)

Proof. *eorem 2 can be proved by mathematical induction
as follows:

(1) Obviously, when n� 1, the equation holds.

(2) Assume that the result obtained is true when n�m,
and the result is as follows:

q − ROTrFWA a1, a2, . . . , am(  � 
m

i�1
ωia

a,
m

i�1
i ωia

a1
i , 

m

i�1
ωia

a2
i , 

m

i�1
ωia

a
i ;

����������������������

1 − 
m

i�1
1 − u

q

ai(max)
 

ωi
⎛⎝ ⎞⎠

q




, 
m

i�1
v
ωi

ai(min)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (28)

When n�m+ 1,

ωm+1am+1 � ωm+1a

a, ωm+1a
a1
m+1,ωm+1a

a2
m+1,ωm+1a

a
m+1;

���������������������

1 − 1 − u
q

am+1(max)
 

ωm+1
 

q



, v
ωm+1
m+1(min)).

m+1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(29)

According to equation (8), the result is as follows:

q − ROTrFWA a1, a2, . . . , am( ⊕ωm+1am+1

� 

m

i�1
ωia

a+ ωm+1a

i

m + 1
a,

m

i�1

ωia

i a1 + ωm+1a
a1
m+1, 

m

i�1
ωia

a2
i + ωm+1a

a2
m+1, 

m

i�1
ωiai

a
+ ωm+1am+1

a
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

1 − 
m

i�1
1 − uai

(max)
q

 
ωi

⎛⎝ ⎞⎠ + 1 − 1 − uam+1
(max)

q
 

ωm+1

 −

1 − 
m

i�1
1 − uai

(max)
q

 
ωi

⎛⎝ ⎞⎠ × 1 − 1 − uam+1
(max)

q
 

ωm+1

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 
m

i�1
vai(min)( 

ωi⎛⎝ ⎞⎠ × v
ωm+1
m+1(min)








⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 
m+1

i�1
ωia

a,
m+1

i�1

ωia

i i
a1 , 

m+1

i�1
ωia

a2
i , 

m+1

i�1
ωia

a
i ;

��������������������������

1 − 

m+1

i�1
1 − uam+1

(max)
q

 
ωi

⎛⎝ ⎞⎠
q




, 

m+1

i�1
vai

(min) 
ωi⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� q − ROTrFWA a1, a2, . . . , am+1( . (30)
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It can be seen from the proof that, for any integer n, the
collective result obtained by the q-ROTrFWA operator is still
a q-ROTrFN. □

Example 3. Given four q-ROTrFNs a � (0.2, 0.3, 0.5, 0.6;

0.6, 0.3), b � (0.3, 0.5, 0.6, 0.7; 0.3, 0.8), c � (0.2, 0.4, 0.5,

0.6; 0.8, 0.5), and d � (0.1, 0.5, 0.7, 0.8; 0.7, 0.5), and q � 2
and the corresponding weights of four q-ROTrFNs
ωa � 0.15, ωb

� 0.35, ωc � 0.2, and ωd
� 0.3, then the result

obtained by the q-ROTrFWA is shown as follows:

q − ROTrFWA(a, b, c, d)

� ωaa⊕ωb
b⊕ωcc⊕ωd

d

� (0.15 ×(0.2, 0.3, 0.5, 0.6; 0.6, 0.3))⊕(0.35 ×(0.3, 0.5, 0.6, 0.7; 0.3, 0.8))

⊕(0.2 ×(0.2, 0.4, 0.5, 0.6; 0.8, 0.5))⊕(0.3 ×(0.1, 0.5, 0.7, 0.8; 0.7, 0.5))

� (0.03, 0.05, 0.08, 0.09; 0.25, 0.83)⊕(0.11, 0.18, 0.21, 0.25; 0.18, 0.92)

⊕(0.02, 0.1, 0.14, 0.16; 0.35, 0.87)⊕(0.03, 0.15, 0.21, 0.24; 0.43, 0.81)

� (0.19, 0.48, 0.64, 0.74; 0.59, 0.54).

(31)

Definition 11. Let a � (a, a1, a2, a; ua(max), va(min)) and b �

(b, b1, b2, b; ub(max)
, vb(min)

) be two q-ROTrFNs; the Ham-

ming distance d(a, b) between a and b is show as

d(a, b) �
1
8

����������������
1 + u

q

a(max)
− v

q

a(min)
q


a −

����������������
1 + u

q

b(max)
− v

q

b(min)

q


b




+

����������������
1 + u

q

a(max)
− v

q

a(min)
q


a1 −

����������������

1 + u
q

b(max)
− v

q

b(min)

q



b1




+

����������������
1 + u

q

a(max)
− v

q

a(min)
q


a2 −

����������������

1 + u
q

b(max)
− v

q

b(min)

q



b2




+

����������������
1 + u

q

a(max)
− v

q

a(min)
q


a −

����������������
1 + u

q

b(max)
− v

q

b(min)

q


b





⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

Example 4. Given two q-ROTrFNs a � (0.4, 0.7, 0.8, 1;

0.6, 0.5) and b � (0.5, 0.7, 1, 2; 0.6, 0.7) and q� 3, we get
the Hamming distance between them as follows:

d(a, b) �
1
8

������������
1 + 0.63 − 0.533


× 0.4 −

������������
1 + 0.63 − 0.733


× 0.5



+

������������
1 + 0.63 − 0.533


× 0.7 −

������������
1 + 0.63 − 0.733


× 0.7



+

������������
1 + 0.63 − 0.533


× 0.8 −

������������
1 + 0.63 − 0.733


× 1



+

������������
1 + 0.63 − 0.533


× 1 −

������������
1 + 0.63 − 0.733


× 2





⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0.141. (33)

As a classical distance measure, the developed Hamming
distance provides a way to quantify the difference between q-
ROTrFNs, which indicates the closeness of two q-ROTrFNs

and takes into account the multifactor differences of q-
ROTrFNs.

8 Complexity



4. A Modified TODIM Group Decision-Making
Method for q-ROTrFNs

In this section, we develop a new q-rung orthopair trape-
zoidal fuzzy modified TODIM group decision-making
method for solving MAGDM problems with q-ROTrFNs.
We here consider a commonMAGDMproblem with a set of
feasible alternatives A � A1, A2, . . . , Am ; each alternative is
evaluated based on n attributes C � C1, C2, . . . , Cn , where
the weight of attribute Cj can be expressed as ωj, and fulfills
0≤ωj ≤ 1 and 

n
j�1 ωj � 1. Let P � P1, P2, . . . , Pt  be the set

of experts; the weight of the expert Pk can be expressed as λk

and the weights of different experts satisfy


t
k�1 λk � 1, λk ≥ 0(k � 1, 2, . . . , t). For each expert, the de-

cision matrix can be obtained according to different alter-
natives and attributes. For the kth expert, the decisionmatrix
is expressed as A(k) � (a

(k)
ij )m×n, k � 1, 2, . . . , t. *e element

a
(k)
ij in the decision matrix means that the evaluated data of

the alternative Ai on the attribute Cj is provided by the
expert Pk, and each a

(k)
ij is a q-ROTrFN. On the basis of the

developed q-ROTrFWA operator, we can integrate the in-
dividual decision matrices A(k) � (a

(k)
ij )m×n (k � 1, 2, . . . , t)

into the collective decision matrix R � (rij)m×n as follows:

rij � q − ROTrFWA a
(1)
ij , a

(2)
ij , . . . , a

(t)
ij , i � 1, 2, . . . , m, j � 1, 2, . . . , n. (34)

After obtaining the collective decision matrix
R � (rij)m×n, we next measure the relative dominance of
each alternative over the others by constructing the prospect
value function [25]. Firstly, the attribute with the highest
weight can be regarded as the reference attribute according
to the TODIM method [21, 25] and then the relative weight
ωcr of the attribute Cc to the reference attribute Cr can be
obtained as

ωcr �
ωc

ωr

, (35)

where ωr � max ωc| c � 1, 2, . . . , n  is the reference weight.
To calculate the relative dominance degree of each al-

ternative, this section first proposes a new q-rung orthopair
trapezoidal fuzzy distance measure-based compromise

approach. *e compromise method can take fully into ac-
count the importance of positive-ideal alternative and
negative-ideal alternative in decision-making and well avoid
the defect of Hamming distance that sometimes cannot
reflect the distinction of q-ROTrFNs.

Definition 12. If A � (aij)m×n � ((a, a1, a2, a; ua(max),

va(min))ij)m×n is a q-ROTrFNs matrix given by the expert,
then the positive-ideal set A+ and the negative-ideal set A−

of the alternatives are shown as

A
+

� a
+
1 , a

+
2 , . . . , a

+
m( , (36)

where

a
+
i � max

1≤j≤n
aij , max

1≤j≤n
a1ij

 , max
1≤j≤n

a2ij
 , max

1≤j≤n
aij ; max

1≤j≤n
uaij(max) , min

1≤j≤n
vaij(min)   ,

A
−

� a
−
1 , a

−
2 , . . . , a

−
m( ,

(37)

where

a
−
i � min

1≤j≤n
aij , min

1≤j≤n
a1ij

 , min
1≤j≤n

a2ij
 , min

1≤j≤n
aij ; min

1≤j≤n
uaij(max) , max

1≤j≤n
vaij(min)   . (38)

Definition 13. *e distance D+ between each element aij in
the q-ROTrFNs matrix and the positive-ideal alternative
A+ � (a+

1 , a+
2 , . . . , a+

m), and the distance D− between each

element aij and the negative-ideal alternative
A− � (a−

1 , a−
2 , . . . , a−

m) are defined as equations (39) and (40),
respectively:
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D
+

aij  � ωjd aij, a
+
i 

�
1
8
ωj

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



aij −

������������������

1 + u
q

a
+

i (max)
− v

q

a
+

i (min)

q



a
+
i






+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



a1ij
−

������������������

1 + u
q

a
+

i (max)
− v

q

a
+

i (min)

q



a
+
1i





+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



a2ij
−

������������������

1 + u
q

a
+

i (max)
− v

q

a
+

i (min)

q



a
+
2i





+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



aij −

������������������

1 + u
q

a
+

i (max)
− v

q

a
+

i (min)

q



a
+
i




,

(39)

D
−

aij  � ωjd aij, a
−
i 

�
1
8
ωj

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



aij −
������������������
1 + u

q

a
−

i (max)
− v

q

a
−

i (min)

q


a

−
i






+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



a1ij
−

������������������
1 + u

q

a−

i (max)
− v

q

a−

i (min)
q


a

−
1i





+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



a2ij
−

������������������
1 + u

q

a
−

i (max)
− v

q

a
−

i (min)
q


a

−
2i





+

������������������

1 + u
q

aij(max)
− v

q

aij(min)

q



aij −
������������������
1 + u

q

a
−

i (max)
− v

q

a
−

i (min)

q


a

−
i




,

(40)

where ωj is the relative weight of the attribute, 0≤ωj ≤ 1 and


m
j�1 ωj � 1. Obviously, D+ and D− are the further expan-

sion of q-ROTrFNs based on Hamming distance, which can
fully consider the impacts of benefit and cost on decision-
making. However, how to deal with MADM via D+ and D−

is still the focus of the follow-up research.
In order to find a compromise, a method to express the

relative importance of D+ and D− by the parameters α and
(1 − α) is as follows, where 0≤ α≤ 1. Based on the proposed
distance measure function, the distance-based compromise
with q-ROTrFNs is defined as follows.

Definition 14. Let
A � (aij)m×n � ((a, a1, a2, a; ua(max), va(min))ij)m×n be a q-
rung orthopair trapezoidal fuzzy evaluation matrix; the
compromise value of the element aij is shown as

D aij  � αD
−

aij  − (1 − α)D
+

aij . (41)

It is easy to find that 0≤D(aij)≤ 1. By setting an ap-
propriate distance parameter α, the compromise value of ai

can be obtained according to its positive-ideal distance D+

and negative-ideal distance D− . On this basis, a distance
measure-based compromise approach is proposed to dis-
tinguish q-ROTrFNs.

Definition 15. Let a � (a, a1, a2, a; ua(max), va(min)) and b �

(b, b1, b2, b; ub(max)
, vb(min)

) be two q-ROTrFNs; then, the
distance measure-based compromise value Cd(a, b) be-
tween a and b is shown as

Cd(a, b) � |D(a) − D(b)|, (42)

Compared with the Hamming distance proposed in
Definition 11, the compromise distance is more accurate and
comprehensive when applied to decision-making methods.
Based on the Hamming distance, the compromise distance
can fully consider the importance of the two aspects of the

10 Complexity



ideal alternatives in the decision-making and is more feasible
in actual decision-making. Next, we use Example 5 to show
the advantage of the compromise distance.

Example 5. Consider a q-rung orthopair trapezoidal fuzzy
matrix R as

R �

(0.52, 0.40, 0.40, 0.34; 0.71, 0.46), (0.45, 0.42, 0.55, 0.47; 0.57, 0.53),

(0.38, 0.33, 0.43, 0.44; 0.71, 0.46), (0.44, 0.4, 0.42, 0.40; 0.48, 0.66)

(0.49, 0.34, 0.39, 0.43; 0.70, 0.46), (0.35, 0.34, 0.40, 0.37; 0.41, 0.68),

(0.40, 0.53, 0.64, 0.50; 0.51, 0.58), (0.38, 0.44, 0.3, 0.29; 0.57, 0.57)

(0.42, 0.38, 0.41, 0.44; 0.62, 0.51), (0.39, 0.41, 0.36, 0.48; 0.49, 0.58),

(0.41, 0.45, 0.28, 0.32; 0.29, 0.67), (0.55, 0.74, 0.74, 0.43; 0.50, 0.70)

(0.57, 0.67, 0.46, 0.22; 0.67, 0.58), (0.52, 0.34, 0.30, 0.38; 0.37, 0.75),

(0.37, 0.42, 0.5, 0.46; 0.61, 0.6, ), (0.37, 0.47, 0.45, 0.52; 0.52, 0.65)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (43)

According to equations (36) and (38), the positive-ideal
set A+ and the negative-ideal set A− of the alternatives can be
obtained as

A
+

� a
+
1 , a

+
2 , a

+
3 , a

+
4(  �

(0.52, 0.42, 0.55, 0.47; 0.71, 0.46), (0.49, 0.53, 0.64, 0.50; 0.70, 0.46),

(0.55, 0.74, 0.74, 0.48; 0.62, 0.51), (0.57, 0.67, 0.50, 0.52; 0.67, 0.58)
 ,

A
−

� a
−
1 , a

−
2 , a

−
3 , a

−
4(  �

(0.38, 0.33, 0.40, 0.34; 0.48, 0.66), (0.35, 0.34, 0.30, 0.29; 0.41, 0.68),

(0.39, 0.38, 0.28, 0.32; 0.29, 0.70), (0.37, 0.34, 0.30, 0.22; 0.37, 0.71)
 .

(44)

Let α � 0.5 and q� 2; the Hamming distance and the
compromise distance for R are shown in the Figure 3.

Obviously, the Hamming distance is greater than the
compromise distance according to Figure 3. *e reason for
the situation is that the compromise distance takes into
account the difference between the positive- and negative-
ideal distances of alternatives compared to the Hamming
distance. In the light of this characteristic of the compromise
distance, it will be more comprehensive when dealing with
the deviation between q-ROTrFNs, and it can also be seen
from the figure that the compromise distance is more stable.
*erefore, this paper will further apply the compromise
distance to modify the TODIM method for group decision-
making.

By using the above developed compromise distance, we
can calculate the relative dominance degree of the alternative
Ai over the alternative Aj concerning the attribute Cc using
the following expression:

Φc Ai, Aj  �

����������������ωcr


n
c�1 ωcr

Cd ric, rjc 



, if ric > rjc ,

0, if ric � rjc ,

−
1
θ

����������������


n
c�1 ωcr

ωcr

Cd ric, rjc 



, if ric < rjc ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)
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where ric represents a q-ROTrFN in the matrix and
Cd(ric, rjc) reflects the compromise distance between two q-
ROTrFNs. θ (θ> 0) is the attenuation factor, and the smaller
the value of the parameter θ, the higher loss avoidance of the
expert.

Obviously, there exist three cases in equation (45). (1) If
ric > rjc, then Φc(Ai, Aj) represents a gain. (2) If ric � rjc,
then Φc(Ai, Aj) represents a nil. (3) If ric < rjc, then
Φc(Ai, Aj) represents a loss.

By aggregating ϕc(Ai, Aj) with each attribute Cc, the
dominance of the alternative Ai over the alternative Aj can
be obtained as follows:

ϑ Ai, Aj  � 
n

c�1
ϕc Ai, Aj , i, j � 1, 2, . . . , m. (46)

Finally, we calculate the overall dominance degree of the
alternative Ai according to the following expression:

ξ Ai(  �


m
k�1 ϑ Ai, Ak(  − mini 

m
k�1 ϑ Ai, Ak(  

maxi 
m
k�1 ϑ Ai, Ak(   − mini 

m
k�1 ϑ Ai, Ak(  

, i � 1, 2, . . . , m. (47)

Obviously, 0≤ ξ(Ai)≤ 1, and the greater ξ(Ai) is, the
better the alternative Ai will be. *erefore, the ranking
order of all alternatives Ai (i � 1, 2, . . . , m) can be deter-
mined according to the increasing order of the dominance

degree of the alternative Ai (i � 1, 2, . . . , m). *e algorithm
of the q-rung orthopair trapezoidal fuzzy modified
TODIM group decision-making method is introduced in
Algorithm 1.

Hamming distance

�e distance measure–based compromise approach

0.10

0.08

0.06

0.04

�
e c

al
cu

lat
ed

 re
su

lts

0.02

0.00

0 10 20 30 40 50 60

Figure 3: Difference between Hamming distance and compromise distance.

Input: q-ROTrFNs matrices
Output: ranking result according to the value of ξi

Process
Step 1: to eliminate the influence of different physical dimensions on decision-making, transform the evaluation matrix into a
standard matrix A(k), k � 1, 2, . . . , t.
Step 2: decisionmaker chooses the value of θ according to the risk preference and gets the value of q by the observation method or the
traversal method. *e value of q needs to hold 0≤ (ua

(k)

ij (max)
)q + (va

(k)

ij (min)
)q ≤ 1 in matrix A(k), k � 1, 2, . . . , t.

Step 3: aggregate A(k) by equation (34), a(t)
ij represents q-ROTrFNs in the decisionmatrix given by the tth expert, and get the collective

matrix R � (rij)m×n.
Step 4: get the relative weight of each attribute Cc using equation (35).
Step 5: obtain the positive-ideal alternative A+ � (a+

1 , a+
2 , . . . , a+

m) and the negative-ideal alternative A− � (a−
1 , a−

2 , . . . , a−
m) of A �

A1, A2, . . . , Am  according to equations (36) and (38) and using equations (39) and (40) to get the distance between them and each
element in R � (rij)m×n.
Step 6: the compromise distances of elements in rij are obtained via equations (41) and (42).
Step 7: get the dominance of alternative Ai relative to alternative Aj by equations (45) and (46).
Step 8: calculate the overall dominance ξi by equation (47).
Step 9: according to the value of ξi, the ranking result of the alternatives is the same as rank of ξi, and the alternative with the largest ξi

is the optimal.

ALGORITHM 1: Algorithm of the modified TODIM method.
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*e process of the group decision-making method is
shown in Figure 4.

5. Case Study on Health Management of
Hypertensive Patients

In this section, a case study on health management of hy-
pertensive patients is conducted to demonstrate the feasi-
bility of the modified TODIM group decision-making
method, and the comparison analysis with the existing
methods and sensitive analysis of different parameters are
investigated in detail.

5.1. Decision Results Obtained by the Developed Modified
TODIM Method. At present, there are about 245 million
hypertensive patients in China, and related diseases caused
by hypertension have brought a heavy burden to residents
and society. In order to improve the health of residents, the
health management of hypertensive patients has been highly
valued by the public and the government. In order to
simplify the management process, a community hospital
plans to develop hypertension health management software
to facilitate the treatment and management of patients by
community doctors, which means that doctors need to
evaluate the risk level based on the residents’ inspection. *e
main observation data include blood pressure measurement,
cardiovascular damage, related diseases (mainly related to
cardiovascular and cerebrovascular diseases), and related
risk factors (age, smoking, drinking and sleeping, eating
more sodium and less potassium, greasy, obesity, work and
life pressure, etc.), and the weights of them are
ω � (0.4, 0.3, 0.2, 0.1). In order to better provide prompts to
doctors, the risk level of residents is indicated by different
colors: red indicates high risk, orange indicates moderate
risk, blue indicates mild danger, and green indicates normal,
which are expressed as A � A1, A2, A3, A4 .

Considering that these four indicators are abnormal to
the normal process, the process is ascending, adjusting, and
gradually recovering. *e fuzzy decision model is used to
construct the system for processing. In order to facilitate the
flexible evaluation of experts, the q-ROTrFNs are used for
evaluation. Now, a 65-year-old resident has a systolic blood
pressure of 140mmHg and a diastolic blood pressure of
99mmHg. He suffers from hyperglycemia, and parents
suffer from high blood pressure. Besides, he smokes and
drinks frequently, and his taste tends to be heavy. Four
experts are invited to evaluate the risk level of this resident,
and the weights of experts are λ � (0.3, 0.3, 0.2, 0.2). *e
evaluation data are obtained in Tables 1–4.

Now, we employ the developed modified q-rung
orthopair trapezoidal fuzzy TODIM group decision-making
method to help the doctor identify the risk level of hyper-
tensive patients. In this case, we consider q� 2, θ � 1, and
α � 0.5; then, we aggregate the evaluation matrix A(k) (k �

1, 2, 3, 4) given by these four experts to obtain the collective
matrix R � (rij)m×n by equation (34), as shown in Table 5.

According to the definition of compromise distance, we
can calculate the compromise distance between two risk
levels under each attribute as below:

Cd r11r21(  � 8.69 × 10− 3
,

Cd r11r31(  � 3.14 × 10− 2
,

Cd r11r41(  � 1.67 × 10− 2
,

Cd r21r31(  � 4.01 × 10− 2
,

Cd r21r41(  � 2.54 × 10− 2
,

Cd r31r41(  � 1.47 × 10− 2
,

Cd r12r22(  � 4.87 × 10− 2
,

Cd r12r32(  � 1.41 × 10− 2
,

Cd r12r42(  � 3.11 × 10− 2
,

Cd r22r32(  � 3.46 × 10− 2
,

Cd r22r42(  � 1.76 × 10− 2
,

Cd r32r42(  � 1.70 × 10− 2
,

Cd r13r23(  � 1.42 × 10− 2
,

Cd r13r33(  � 8.97 × 10− 3
,

Cd r13r43(  � 2.01 × 10− 2
,

Cd r23v33(  � 5.21 × 10− 3
,

Cd r23r43(  � 5.97 × 10− 3
,

Cd r33r43(  � 1.12 × 10− 2
,

Cd r14r24(  � 7.95 × 10− 3
,

Cd r14r34(  � 2.75 × 10− 3
,

Cd r14r44(  � 3.90 × 10− 4
,

Cd r24r34(  � 5.19 × 10− 3
,

Cd r24r44(  � 8.34 × 10− 3
,

Cd r34r44(  � 3.14 × 10− 3
.

(48)

*en, the relative weight of the attribute
Cc (c � 1, 2, 3, 4) can be determined by equation (35), and
the result is as follows:

ωcr � (1, 0.75, 0.5, 0.25). (49)

Next, the relative dominance matrix of the risk level Ai

relative to the risk level Aj can be determined by equations
(45) and (46), respectively, and the results are shown as
below:

ϑ �

0 − 0.19 0.28 0.40

− 0.60 0 0.27 0.36

− 1.10 − 0.89 0 0.33

− 1.58 − 1.42 − 1.35 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (50)
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Figure 4: *e process of the group method with q-ROTrFNs.

Table 1: Evaluation value matrix by expert1 (A1).

C1 C2 C3 C4

A1 (0.3, 0.5, 0.6, 0.8; 0.9, 0.3) (0.1, 0.2, 0.3, 0.4; 0.6, 0.3) (0.5, 0.6, 0.8, 0.9; 0.8, 0.1) (0.4, 0.5, 0.6, 0.7; 0.7, 0.4)
A2 (0.6, 0.7, 0.8, 0.9; 0.8, 0.5) (0.5, 0.6, 0.7, 0.8; 0.7, 0.3) (0.4, 0.5, 0.7, 0.8; 0.9, 0.4) (0.1, 0.3, 0.5, 0.6; 0.8, 0.3)
A3 (0.1, 0.2, 0.4, 0.5; 0.7, 0.4) (0.2, 0.3, 0.5, 0.6; 0.5, 0.4) (0.5, 0.6, 0.7, 0.8; 0.6, 0.2) (0.3, 0.4, 0.5, 0.7; 0.6, 0.5)
A4 (0.3, 0.4, 0.5, 0.6; 0.2, 0.7) (0.1, 0.2, 0.4, 0.5; 0.4, 0.5) (0.2, 0.3, 0.5, 0.7; 0.5, 0.5) (0.1, 0.3, 0.4, 0.5; 0.4, 0.7)

Table 2: Evaluation value matrix by expert2 (A2).

C1 C2 C3 C4

A1 (0.2, 0.3, 0.5, 0.7; 0.8, 0.3) (0.1, 0.2, 0.3, 0.4; 0.6, 0.2) (0.5, 0.6, 0.8, 0.9; 0.9, 0.1) (0.2, 0.3, 0.5, 0.7; 0.7, 0.4)
A2 (0.4, 0.5, 0.6, 0.9; 0.6, 0.2) (0.5, 0.6, 0.7, 0.8; 0.7, 0.4) (0.4, 0.5, 0.6, 0.8; 0.8, 0.3) (0.1, 0.2, 0.4, 0.5; 0.6, 0.3)
A3 (0.1, 0.3, 0.5, 0.7; 0.5, 0.4) (0.2, 0.3, 0.4, 0.6; 0.4, 0.8) (0.3, 0.6, 0.7, 0.8; 0.7, 0.2) (0.3, 0.4, 0.5, 0.8; 0.6, 0.2)
A4 (0.2, 0.3, 0.5, 0.6; 0.4, 0.7) (0.2, 0.4, 0.5, 0.6; 0.5, 0.7) (0.2, 0.3, 0.5, 0.7; 0.5, 0.5) (0.4, 0.6, 0.7, 0.9; 0.3, 0.2)

Table 3: Evaluation value matrix by expert3 (A3).

C1 C2 C3 C4

A1 (0.3, 0.4, 0.6, 0.7; 0.8, 0.4) (0.1, 0.2, 0.3, 0.5; 0.6, 0.2) (0.4, 0.6, 0.8, 0.9; 0.8, 0.1) (0.3, 0.5, 0.6, 0.8; 0.7, 0.4)
A2 (0.2, 0.3, 0.4, 0.5; 0.7, 0.1) (0.4, 0.5, 0.7, 0.8; 0.5, 0.3) (0.4, 0.5, 0.6, 0.7; 0.6, 0.1) (0.2, 0.3, 0.5, 0.7; 0.6, 0.3)
A3 (0.2, 0.3, 0.5, 0.6; 0.5, 0.3) (0.3, 0.4, 0.5, 0.6; 0.4, 0.2) (0.5, 0.7, 0.8, 0.9; 0.5, 0.2) (0.3, 0.4, 0.5, 0.7; 0.6, 0.2)
A4 (0.3, 0.4, 0.5, 0.6; 0.2, 0.6) (0.1, 0.2, 0.4, 0.5; 0.5, 0.4) (0.3, 0.4, 0.5, 0.7; 0.4, 0.5) (0.1, 0.2, 0.4, 0.5; 0.4, 0.2)

Table 4: Evaluation value matrix by expert4 (A4).

C1 C2 C3 C4

A1 (0.6, 0.7, 0.8, 0.9; 0.8, 0.5) (0.4, 0.6, 0.8, 0.9; 0.6, 0.3) (0.2, 0.5, 0.8, 0.9; 0.8, 0.3) (0.5, 0.6, 0.8, 0.9; 0.9, 0.2)
A2 (0.3, 0.4, 0.5, 0.7; 0.7, 0.2) (0.2, 0.4, 0.5, 0.6; 0.5, 0.5) (0.3, 0.4, 0.5, 0.7; 0.7, 0.4) (0.2, 0.4, 0.5, 0.6; 0.9, 0.2)
A3 (0.4, 0.5, 0.7, 0.8; 0.5, 0.4) (0.2, 0.4, 0.5, 0.6; 0.4, 0.5) (0.1, 0.5, 0.7, 0.8; 0.4, 0.5) (0.2, 0.3, 0.4, 0.6; 0.6, 0.4)
A4 (0.2, 0.4, 0.5, 0.7; 0.1, 0.7) (0.1, 0.3, 0.4, 0.5; 0.3, 0.3) (0.2, 0.3, 0.4, 0.7; 0.4, 0.6) (0.1, 0.2, 0.3, 0.5; 0.3, 0.8)
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Finally, the overall dominance ξi (i � 1, 2, 3, 4) can be
determined by equation (47), which is shown as below:

ξ1 � 1.16,

ξ2 � 0.66,

ξ3 � − 0.39,

ξ4 � − 1.75.

(51)

According to the overall dominances, ξ1 > ξ2 > ξ3 > ξ4,
the four risk levels are ranked as A1 >A2 >A3 >A4, so blood
pressure risk of the patient is high risk, and this hypertensive
patient needs to control the blood pressure as soon as
possible.

5.2. Sensitivity Analysis of Parameters. *is section conducts
the sensitive analysis for the ranking orders of risk levels by
modifying the values of different parameters. Considering
the actual decision-making situation, the values of the pa-
rameter q are, respectively, as 2, 3, and 4 by using the
traversal method. According to the prospect theory, the
values of the parameter θ in the experiments are, respec-
tively, as 1, 1.5, and 2.25. In addition, the influence of the
change of the distance parameter α on the ranking results is
also not negligible. According to the different values of q, α,
and θ, the comprehensive results are shown in Tables 6–8,
respectively. *e corresponding figures are shown in
Figures 5–7.

It can be seen from the above figures that the ranking
result does not change with different values of q, α, and θ,
which are always A1 >A2 >A3 >A4. In addition, as the risk
parameter θ increases, the advantages of the risk level A1 are
not changed in this case. It is worth mentioning that, in this
case, the change of θ does not change the overall dominance
of A1. From the curve in the figures, it can be seen that the
change of q has little effect on the value of the overall
dominance of risk levels. Besides, it is proved in practical
that the increase of q and α will not change the ranking,
although they affect the value of overall dominance. Fur-
thermore, it can be known that the ranking results do not be
changed when the values of θ are 1, 1.5, and 2.25, respec-
tively. From the above analysis, the overall dominance of
each risk level will not be changed although they are different
trends with the change of q, α, and θ; the final results will not
be affected in the group decision-making method proposed
in this paper. *e feasibility and effectiveness of this method
are verified.

5.3. Comparison Analysis. To well conduct a comparison
analysis with the method proposed in [33], in this case, we
set the value of q as 2 and the q-ROTrFNs in the above
example are transformed into the PTrFNs. *en, the
PTFWA operator developed in [33] is introduced as follows:

z
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k
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i2, . . . , z

k
in  � 

n

j�1
ωja z

k

ij 
, 

n

j�1
ωja1

z
k

ij( 
, 

n

j�1
ωja2

z
k

ij( 
, 

n

j�1
ωja z

k

ij 
,⎛⎝

������

1 − 
n

j�1




1 − u
2
a(max)

z
k

ij( 

⎛⎝ ⎞⎠

ωj

, 
n

j�1
v
2
a(min)

z
k

ij( 

⎛⎝ ⎞⎠

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(52)

Table 5: Aggregating matrix R � (rij)m×n.

C1 C2 C3 C4

A1 (0.33, 0.46, 0.61, 0.77; 0.84, 0.35) (0.16, 0.28, 0.40, 0.52; 0.60, 0.24) (0.42, 0.58, 0.80, 0.90; 0.84, 0.12) (0.34, 0.46, 0.61, 0.76; 0.76, 0.35)
A2 (0.40, 0.50, 0.60, 0.78; 0.71, 0.23) (0.42, 0.54, 0.66, 0.76; 0.64, 0.36) (0.38, 0.48, 0.61, 0.76; 0.80, 0.28) (0.14, 0.29, 0.47, 0.59; 0.76, 0.28)
A3 (0.18, 0.31, 0.51, 0.64; 0.58, 0.38) (0.22, 0.34, 0.47, 0.60; 0.43, 0.45) (0.36, 0.60, 0.72, 0.82; 0.59, 0.24) (0.28, 0.38, 0.48, 0.71; 0.60, 0.30)
A4 (0.25, 0.37, 0.50, 0.62; 0.27, 0.68) (0.13, 0.28, 0.43, 0.53; 0.44, 0.48) (0.22, 0.32, 0.48, 0.70; 0.46, 0.52) (0.19, 0.35, 0.47, 0.62; 0.35, 0.38)

Table 6: *e overall dominance values of risk levels with different values of α and θ in case of q� 2.

ξi α � 0.1 α � 0.2 α � 0.3 α � 0.4 α � 0.5 α � 0.6 α � 0.7 α � 0.8 α � 0.9

θ � 1
[1.35, 0.58,

− 0.35,
− 1.79]

[1.30, 0.59,
− 0.35,
− 1.78]

[1.26, 0.60,
− 0.33,
− 1.76]

[1.21, 0.63,
− 0.36,
− 1.76]

[1.16, 0.66,
− 0.39,
− 1.75]

[1.11, 0.69,
− 0.41,
− 1.74]

[1.03, 0.75,
− 0.44,
− 1.74]

[1.03, 0.72,
− 0.47,
− 1.74]

[1.02, 0.70,
− 0.50,
− 1.74]

θ � 1.5
[1.66, 0.78,

− 0.21,
− 1.79]

[1.60, 0.79,
− 0.21,
− 1.78]

[1.54, 0.80,
− 0.19,
− 1.76]

[1.48, 0.84,
− 0.22,
− 1.76]

[1.42, 0.87,
− 0.24,
− 1.75]

[1.35, 0.91,
− 0.26,
− 1.74]

[1.25, 0.98,
− 0.29,
− 1.74]

[1.27, 0.94,
− 0.31,
− 1.74]

[1.26, 0.92,
− 0.34,
− 1.74]

θ � 2.25
[1.89, 1.01,

− 0.05,
− 1.79]

[1.84, 1.02,
− 0.04,
− 1.78]

[1.79, 1.04,
− 0.03,
− 1.76]

[1.74, 1.07,
− 0.06,
− 1.76]

[1.67, 1.10,
− 0.07,
− 1.75]

[1.58, 1.15,
− 0.09,
− 1.74]

[1.46, 1.22,
− 0.11,
− 1.74]

[1.49, 1.18,
− 0.13,
− 1.74]

[1.50, 1.15,
− 0.15,
− 1.74]
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Table 7: *e overall dominance values of risk levels with different values of α and θ in case of q� 3.

ξi α � 0.1 α � 0.2 α � 0.3 α � 0.4 α � 0.5 α � 0.6 α � 0.7 α � 0.8 α � 0.9

θ � 1
[1.22, 0.58,

− 0.45,
− 1.82]

[1.19, 0.60,
− 0.46, − 1.8]

[1.15, 0.62,
− 0.47,
− 1.79]

[1.11, 0.64,
− 0.48,
− 1.79]

[1.06, 0.67,
− 0.50,
− 1.78]

[1.01, 0.70,
− 0.50,
− 1.78]

[0.95, 0.76,
− 0.48,
− 1.78]

[0.95, 0.71,
− 0.43,
− 1.78]

[0.99, 0.69,
− 0.48,
− 1.78]

θ � 1.5
[1.55, 0.79,

− 0.29,
− 1.82]

[1.49, 0.81,
− 0.30, − 1.8]

[1.44, 0.83,
− 0.31,
− 1.79]

[1.38, 0.86,
− 0.32,
− 1.79]

[1.32, 0.89,
− 0.34,
− 1.78]

[1.25, 0.93,
− 0.34,
− 1.78]

[1.17, 0.99,
− 0.32,
− 1.78]

[1.18, 0.93,
− 0.29,
− 1.78]

[1.24, 0.91,
− 0.33,
− 1.78]

θ � 2.25
[1.83, 1.04,

− 0.12,
− 1.82]

[1.78, 1.06,
− 0.12, − 1.8]

[1.73, 1.08,
− 0.13,
− 1.79]

[1.66, 1.11,
− 0.14,
− 1.79]

[1.58, 1.14,
− 0.15,
− 1.78]

[1.49, 1.18,
− 0.16,
− 1.78]

[1.38, 1.24,
− 0.14,
− 1.78]

[1.42, 1.18,
− 0.12,
− 1.78]

[1.50, 1.15,
− 0.16,
− 1.78]

Table 8: *e overall dominance values of risk levels with different values of α and θ in case of q� 4.

ξi α � 0.1 α � 0.2 α � 0.3 α � 0.4 α � 0.5 α � 0.6 α � 0.7 α � 0.8 α � 0.9

θ � 1
[1.16, 0.57,

− 0.50,
− 1.82]

[1.13, 0.59,
− 0.50,
− 1.82]

[1.09, 0.62,
− 0.48,
− 1.82]

[1.05, 0.64,
− 0.47,
− 1.82]

[1.00, 0.67,
− 0.45,
− 1.82]

[0.95, 0.71,
− 0.43,
− 1.82]

[0.90, 0.74,
− 0.39,
− 1.82]

[0.94, 0.71,
− 0.41,
− 1.83]

[0.96, 0.69,
− 0.43,
− 1.83]

θ � 1.5
[1.48, 0.79,

− 0.34,
− 1.82]

[1.43, 0.81,
− 0.33,
− 1.82]

[1.38, 0.84,
− 0.33,
− 1.82]

[1.32, 0.86,
− 0.32,
− 1.82]

[1.26, 0.90,
− 0.30,
− 1.82]

[1.19, 0.95,
− 0.29,
− 1.82]

[1.13, 0.97,
− 0.25,
− 1.82]

[1.19, 0.93,
− 0.28,
− 1.83]

[1.23, 0.91,
− 0.30,
− 1.83]

θ � 2.25
[1.79, 1.05,

− 0.15,
− 1.82]

[1.75, 1.07,
− 0.15,
− 1.82]

[1.68, 1.09,
− 0.14,
− 1.82]

[1.61, 1.12,
− 0.14,
− 1.82]

[1.53, 1.16,
− 0.13,
− 1.82]

[1.43, 1.21,
− 0.12,
− 1.82]

[1.36, 1.23,
− 0.09,
− 1.82]

[1.45, 1.19,
− 0.12,
− 1.83]

[1.52, 1.17,
− 0.14,
− 1.83]
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Figure 5: *e pictorial expressions of the dominance values with different values of α and θ in case of q� 2.
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Figure 6: *e pictorial expressions of the dominance values with different values of α and θ in case of q� 3.
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Figure 7: *e pictorial expressions of the dominance values with different values of α and θ in case of q� 4.
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By equation (52), we can get the individual overall
preference Pythagorean trapezoidal fuzzy values as follows:

z
(1)
1 � (0.29, 0.43, 0.55, 0.69; 0.81, 0.25),

z
(2)
1 � (0.48, 0.59, 0.72, 0.82; 0.81, 0.39),

z
(3)
1 � (0.23, 0.33, 0.50, 0.61; 0.62, 0.36),

z
(4)
1 � (0.20, 0.31, 0.46, 0.58; 0.37, 0.59),

z
(1)
2 � (0.23, 0.33, 0.50, 0.65; 0.78, 0.22),

z
(2)
2 � (0.40, 0.50, 0.61, 0.81; 0.68, 0.28),

z
(3)
2 � (0.19, 0.37, 0.51, 0.70; 0.54, 0.40),

z
(4)
2 � (0.22, 0.36, 0.52, 0.65; 0.45, 0.58),

z
(1)
3 � (0.26, 0.39, 0.55, 0.69; 0.75, 0.25),

z
(2)
3 � (0.30, 0.40, 0.54, 0.65; 0.62, 0.16),

z
(3)
3 � (0.30, 0.42, 0.56, 0.67; 0.49, 0.24),

z
(4)
3 � (0.22, 0.32, 0.46, 0.58; 0.38, 0.46),

z
(1)
4 � (0.45, 0.62, 0.80, 0.90; 0.77, 0.35),

z
(2)
4 � (0.26, 0.40, 0.50, 0.66; 0.69, 0.30),

z
(3)
4 � (0.26, 0.45, 0.61, 0.72; 0.47, 0.45),

z
(4)
4 � (0.16, 0.33, 0.43, 0.62; 0.27, 0.53).

(53)

Next, the following PTFHA operator developed in [33] is
used to obtain the collective overall preference Pythagorean
trapezoidal fuzzy values:

zi � PTFHA z
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(54)

*e following results are obtained:

z1 � (0.29, 0.42, 0.58, 0.72; 0.77, 0.25),

z2 � (0.35, 0.46, 0.58, 0.73; 0.69, 0.25),

z3 � (0.24, 0.40, 0.54, 0.68; 0.53, 0.34),

z4 � (0.21, 0.33, 0.48, 0.61; 0.39, 0.53).

(55)

And, the Pythagorean trapezoidal fuzzy distance be-
tween each risk level and the positive-ideal solution z+ �

(1, 1, 1, 1; 1, 0) is as below:
d z

1
, z

+
  � 0.27,

d z
2
, z

+
  � 0.28,

d z
3
, z

+
  � 0.35,

d z
4
, z

+
  � 0.42.

(56)

It is easy to see that
d z

1
, z

+
 < d z

2
, z

+
 < d z

3
, z

+
 < d z

4
, z

+
 . (57)

According to the idea of the developed method in [33],
the closer distance to the positive-ideal solution z+ is, the
better the solution is. *us, the ranking order of risk levels is
A1 >A2 >A3 >A4.

Furthermore, the comparison analysis results obtained
by the developed modified TODIMmethod and the method
proposed in [33] are shown in Table 9 and Figure 8. It can be
easily found that the best alternative according to the
method proposed in this paper and the method developed in
[33] is the same, i.e., A1. From the calculation results of our
developed method, it can be found that A1 has obvious
advantages over other risk levels, which means that the
method proposed in this paper can highlight the optimal
solution among all risk levels in group decision-making.

Table 9: *e comparison analysis results with different methods.

Methods Calculation results Ranking orders of risk levels
*e modified TODIM proposed in this
paper *e overall dominances [1.16, 0.66, − 0.39, − 1.75] A1 >A2 >A3 >A4

Method proposed in [33] based on PTFHA Distances between collective value and PIS [0.27, 0.28, 0.35,
0.42] A1 >A2 >A3 >A4
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Figure 8: *e comparison analysis results with different methods.
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Comparing with the method introduced in [33], the biggest
advantage of the developed method is that it can take into
account the psychological behavior of decision makers and
can well solve decision-making problems with risk char-
acteristics. Meanwhile, the compromise distance proposed
in this paper takes both positive-ideal solution and negative-
ideal solution into consideration, which is more objective
and reasonable comparing with the method introduced in
[33] that only considers the influence of the positive-ideal
solution z+ � (1, 1, 1, 1; 1, 0).

6. Conclusion

In this paper, we have introduced the concept of q-ROTrFNs
and developed the basic operation of q-ROTrFNs. On the
basis of the developed score function and exact function of
q-ROTrFNs, we have proposed a new ranking method for q-
ROTrFNs. To integrate the individual decision matrices into
the collective decision matrix, we have proposed a new q-
ROTrFWA operator and investigated its properties. Next, a
new distance measure-based compromise approach has
been proposed to determine the relative dominance degree
of alternatives. *en, we have developed a new q-rung
orthopair trapezoidal fuzzy modified TODIM group deci-
sion-making method. *e psychological state of decision
makers in actual decision-making process can be taken full
into account in the modified TODIM method. *is method
can handle decision-making problems with risk character-
istics well and make the decision-making results more
reasonable and authentic. Finally, the modified TODIM
method is verified and analyzed by the illustrating example,
and the obtained optimal solution is consistent with the
results obtained by [33]. At the same time, it has been
verified that the different values of q, α, and θ do not affect
the ranking results. *is analysis also proves the rationality
and effectiveness of the group method proposed in this
paper.

However, there are still some limitations in the study.
First, the proposed GDM method is restricted to the q-rung
orthopair trapezoidal fuzzy environment and relies on the
experience and knowledge of the decision maker to obtain
ranking of alternatives. When the group of decision makers
is too large or the external environment influences strongly,
the GDMmethod may not be able to adapt to the changes in
the subjective attitude of the decision makers in time, which
leads to deviations in results. Second, consistency and
consensus are paid more and more attention in MAGDM
[34]. However, the consensus among decision makers has
not been studied in depth in this study; individual judgment
is the main basis for obtaining results. As a result, it makes
sense to further build the consensus model and integrate it
into the proposed method. It is interesting to build the
consistency and consensus model for MAGDM problems
with q-ROTrFNs considering decision makers’ risk expec-
tation in the future, such as research on consistency and
consensus model of q-rung orthopair trapezoidal fuzzy
preference relations based on prospect theory. Meanwhile,
with the development of big data and artificial intelligence, it
needs to fully consider the psychological behavior of the

decision maker in order to obtain accurate decision-making
results in the actual decision-making process. *e fusion of
the developed decision-making method in this paper, ma-
chine learning, and big data are among our research di-
rections in the future, and the developed group decision-
making method in a heterogeneous environment is also the
focus of our future research.
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