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For the nonlinear discrete-time system, higher-order iterative learning control (HOILC) with optimal control gains based on
evolutionary algorithm (EA) is developed in this paper. Since the updating actions are constituted by the tracking information
from several previous iterations, the suitably designed HOILC schemes with appropriate control gains usually achieve fast
convergence speed. To optimize the control gains in HOILC approach, EA is introduced. *e encoding strategy, population
initialization, and fitness function in EA are designed according to the HOILC characteristics. With the global optimization of EA,
the optimal control gains of HOILC are selected adaptively so that the number of convergence iteration is reduced in ILC process.
It is shown in simulation that the sum absolute error, total square error, and maximum absolute error of tracking in the proposed
HOILC based on EA are convergent faster than those in conventional HOILC.

1. Introduction

In real applications such as robot manipulator systems [1–5]
and flexible systems [6–8], there are many unmanned au-
tonomous systems in complex environments. *e exact
mathematical model is hard to construct. For these systems,
iterative learning control (ILC) is proposed. It is an effective
intelligent control approach applied in dynamical systems
that perform repetitive tasks to track a specific trajectory in a
certain time interval. By using the control input and tracking
information of previous iterations, the control input signal
can be gradually updated from iteration to iteration such
that the tracking performance can be improved. Less pre-
vious knowledge about the controlled systems makes ILC
popular in theoretical fields [9–14] as well as applicable fields
[15–19].

First-order ILC, which generates the control input from
tracking information at last iteration, is widely applied to
dynamical systems for perfect tracking in a finite time in-
terval [20–26]. However, only the tracking information of
last iteration is utilized to update the current control input in
first-order ILC, and thus it is difficult to obtain a satisfactory

convergence speed. To achieve faster convergence speed,
higher-order ILC (HOILC) adopting the tracking infor-
mation of many previous iterations to generate the current
control input signal was proposed [27–31]. Since the
updating actions are constituted by the tracking information
from several previous iterations, the tracking performance of
suitably designed HOILC is better than that of first-order
ILC. Specifically, the appropriate control gains can accelerate
the convergence process of HOILC. *us, how to select
optimal control gains is a significant issue in HOILC designs.

Motivated by the above observation, in this paper, the
evolutionary algorithm (EA) originating from biological
evolutionism is adopted to choose the optimal control gains
in HOILC scheme adaptively. EA is a heuristic optimizing
algorithm which simulates the reproduction, selection,
crossover, and mutation in biological evolution process. It
has been widely introduced to deal with various optimal
issues [32–34]. In this paper, the encoding strategy, pop-
ulation initialization, and fitness function of EA are designed
according to the HOILC characteristics such that the gen-
erations in EA are reduced. *en, the designed EA is in-
volved in HOILC to optimize the control gains. After that,
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the optimal control gains and the control inputs are gen-
erated simultaneously. Comparing with traditional HOILC,
the number of convergence iteration is reduced in the
proposed EA scheme based HOILC (EA-HOILC). *e EA
with global optimization is introduced to optimize the
control gains of HOILC in this paper.

*e rest of paper is organized as follows. *e problem
formulation is given in Section 2. *e HOILC with its
convergence analysis is provided in Section 3. Section 4
presents the designed EA-HOILC scheme with optimal
control gains. In Section 5, an example is provided to il-
lustrate the effectiveness of the proposed EA-HOILC. Sec-
tion 6 concludes this paper.

2. Problem Formulation

Consider the following nonlinear discrete-time system
which performs repetitive operation:

xj(i + 1) � f xj(i), i􏼐 􏼑 + B(i)uj(i),

yj(i) � C(i)xj(i),

⎧⎨

⎩ (1)

where j ∈ 0, 1, 2, . . .{ } and i ∈ 0, 1, . . . , M{ } represent the
iteration index and the time point, respectively. xj(i) ∈ Rw,
uj(i) ∈ R, and yj(i) ∈ R denote the state, control input, and
output of system (1), respectively. B(i) ∈ Rw, C(i) ∈ R1×w,
and f(·, ·) ∈ Rw. y d(i) � C(i)xd(i) for i ∈ 0, 1, . . . , M{ } is
the reference output, where xd(i) is the corresponding
reference state. ej(i) � y d(i) − yj(i) is the ILC tracking
error at j th iteration for i ∈ 0, 1, . . . , M{ }. *e following
assumptions are required for the technical analysis. ‖ · ‖

represents the required norm in this paper.

Assumption 1. For all j, the initial state satisfies

xj(0) � xd(0). (2)

As the identical initial condition considered in As-
sumption 1 cannot be satisfied, the techniques proposed in
[29–31] can be introduced to deal with the vibration of initial
state.

Assumption 2. *e nonlinear function f(·, ·) in system (1) is
assumed to be differentiable to i and to be globally Lipschitz
in the first variable, that is, ∀x⌢, x

⌣ ∈ Rw,

‖f(x
⌢

, i) − f(x
⌣

, i)‖≤ cf‖x
⌢

− x
⌣

‖, (3)

where cf > 0 is the Lipschitz constant.

Assumption 3. *e number C(i + 1)B(i)≠ 0.

Remark 1. It is noted that Assumption 3 implies that the
relative degree of system (1) is one. For the nonlinear dis-
crete-time systems with higher relative degree, the ILC law
can be modified according to the order of system relative
degree as discussed in [31].

Suppose that the reference output y d(i) is realizable,
there exists a unique control input u d(i) ∈ R such that

xd(i + 1) � f xd(i), i( 􏼁 + B(i)ud(i),

yd(i) � C(i)xd(i).
􏼨 (4)

*e objective of this paper is to develop an EA-HOILC
method, which generates the control input from the tracking
information of several previous iterations. *e control gains
are optimized by EA to reduce the number of convergence
iteration. For HOILC convergence analysis, the following
lemma is adopted.

Lemma 1 (see [31]). Let gj􏽮 􏽯 be a real sequence defined as

gj ≤ω1gj−1 + ω2gj−2 + · · · + ωNgj−N + dj, (5)

for j≥N + 1, where dj is a specific real sequence. If
ω1,ω2, . . . ,ωN are nonnegative numbers satisfying

ω � 􏽘
N

v�1
ωv < 1, (6)

then lim
j⟶+∞

dj � 0 implies that lim
j⟶+∞

gj � 0.

3. HOILC Design and Convergence Analysis

In this section, for nonlinear discrete-time system (1) under
Assumptions 1–3, the following HOILC law is designed for
i ∈ 0, 1, . . . , M{ } and j≥N − 1:

uj+1(i) � 􏽘
N

v�1
Wvuj−v+1(i) + 􏽘

N

v�1
Lvej−v+1(i + 1), (7)

where N≥ 1 is the order of HOILC law (7), and Wv ∈ R and
Lv ∈ R (|Lv|≤ sL) for v � 1, 2, . . . , N are the control gains.

Remark 2. In the existing HOILC schemes [30, 31], the
initial control inputs u0(i), u1(i), . . . , uN−1(i) are normally
set as zero vectors. In this paper, since the control inputs can
be obtained by EA along with the optimal control gains, we
can set the initial control inputs u0(i), u1(i), . . . , uN−1(i)

same as the generated control inputs. It means that the initial
control inputs are optimized by EA, which can also accel-
erate the convergence speed.

Theorem 1. For nonlinear discrete-time system (1) under
Assumptions 1–3, the HOILC law (7) is applied. If the control
gains Wv and Lv (|Lv|≤ sL) for v � 1, 2, . . . , N are selected to
make

􏽘

N

v�1
Wv � 1, (8)

Wv − LvC(i + 1)B(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ cv, (9)

􏽘

N

v�1
cv < 1, (10)

then lim
j⟶+∞

ej(i) � 0 for i ∈ 0, 1, . . . , M + 1{ }.
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Proof. Let δuj(i) � u d(i) − uj(i) and δxj(i) � xd(i) − xj

(i). Subtracting both sides of (7) with u d(i) and considering
(1), (4), and (8), we obtain

δuj+1(i) � 􏽘
N

v�1
Wvδuj−v+1(i) − 􏽘

N

v�1
Lvej−v+1(i + 1),

� 􏽘
N

v�1
Wvδuj−v+1(i) − 􏽘

N

v�1
LvC(i + 1)δxj−v+1(i + 1),

� 􏽘
N

v�1
Wvδuj−v+1(i) − 􏽘

N

v�1
LvC(i + 1) f xd(i), i( 􏼁 − f xj−v+1(i), i􏼐 􏼑 + B(i)δuj−v+1(i)􏽨 􏽩,

� 􏽘
N

v�1
Wv − LvC(i + 1)B(i)􏼂 􏼃δuj−v+1(i) − 􏽘

N

v�1
LvC(i + 1) f xd(i), i( 􏼁 − f xj−v+1(i), i􏼐 􏼑􏽨 􏽩.

(11)

*en, noting convergence condition (9) and Assumption
2, we can further deduce that

δuj+1(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

v�1
cv δuj−v+1(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘

N

v�1
sLsCcf δxj−v+1(i)

�����

�����,

(12)

where ‖C(i)‖≤ sC and |Lv|≤ sL for v � 1, 2, . . . , N.
On the other hand, it follows from (1) and (4) that

δxj(i) � f xd(i − 1), i − 1( 􏼁

− f xj(i − 1), i − 1􏼐 􏼑 + B(i − 1)δuj(i − 1).
(13)

Taking norm on both sides of (13) and considering
Assumptions 1-2, it yields

δxj(i)
�����

�����≤ cf δxj(i − 1)
�����

����� + sB δuj(i − 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ c
2
f δxj(i − 2)

�����

����� + cfsB δuj(i − 2)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + sB δuj(i − 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ · · · · · ·

≤ c
i
f δxj(0)

�����

����� + 􏽘

i−1

k�0
c

i−k−1
f sB δuj(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘
i−1

k�0
c

i−k−1
f sB δuj(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(14)

where ‖B(i)‖≤ sB. Substituting (14) into (12),

δuj+1(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

v�1
cv δuj−v+1(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
N

v�1
􏽘

i−1

k�0
sLsCsBc

i−k
f δuj−v+1(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(15)

As i � 0, considering (2) of Assumption 1, it is derived
from (12) that

δuj+1(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

v�1
cv δuj−v+1(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (16)

Applying Lemma 1 to (16) with convergence condition
(10), we have

lim
j⟶+∞

δuj(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (17)

As i � 1, from (16), there is

δuj+1(1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

v�1
cv δuj−v+1(1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
N

v�1
sLsCsBcf δuj−v+1(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(18)

Applying Lemma 1 to (18) with convergence condition
(10) and considering (17), we obtain

lim
j⟶+∞

δuj(1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (19)

Assume that for i � 1, 2, · · · , n − 1, there is

lim
j⟶+∞

δuj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (20)

As i � n, it follows from (15) that

δuj+1(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

v�1
cv δuj−v+1(n)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘
N

v�1
􏽘

n−1

k�0
sLsCsBc

n−k
f δuj−v+1(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(21)

Applying Lemma 1 to (21) with convergence condition
(10) and considering (17) and (20), we can derive

lim
j⟶+∞

δuj(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (22)

Finally, based on the mathematical induction, the fol-
lowing result can be deduced:

lim
j⟶+∞

δuj(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0, i ∈ 0, 1, . . . , M{ }. (23)

Noting (2) in Assumption 1, then it can be obtained from
(15) and (24) that
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lim
j⟶+∞

δxj(i)
�����

����� � 0, i ∈ 0, 1, . . . , M + 1{ }. (24)

Furthermore, for i ∈ 0, 1, . . . , M + 1{ }, it follows from (1)
and (4) that

lim
j⟶+∞

ej(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ lim
j⟶+∞

sC δxj(i)
�����

����� � 0. (25)

*en, we have lim
j⟶+∞

ej(i) � 0 for i ∈ 0, 1, . . . , M + 1{ }.

*e proof is completed. □

4. EA-HOILC Scheme with Optimal
Control Gains

*eorem 1 provides the asymptotic convergence of the
proposed HOILC. It is well known that the control gains can
affect the convergence performance significantly. In this
section, the control gains of the HOILC developed in Section
3 are optimized by EA to reduce the number of convergence
iteration.

EA is an intelligent optimization algorithm which
simulates the process of biological evolution to gain the
optimal solution. *e main idea of EA-HOILC is presented
as follows.

4.1. Encoding Strategy. In this paper, the control gains of
HOILC are real numbers, so it is appropriate to choose the
real encoding strategy. *e control gains to be optimized in
HOILC law (7) are Wv and Lv (v � 1, 2, . . . , N). Since the
convergence condition (8) holds, it is easily obtained that
WN � 1 − 􏽐

N−1
v�1 Wv. As a result, we can assume the variable

vector in EA to be λ ∈ R1×(2N−1), and the encoding strategy is
represented as

λ � W1 W2 · · · WN−1 L1 L2 · · · LN􏼂 􏼃. (26)

4.2. Population Initialization and Individual Evaluation.
Based on the convergence conditions (8)–(10), the value
range of control gains Wv and Lv for v � 1, 2, . . . , N could be
determined. *us, the initial population can be produced
according to the convergent conditions. Let P be the pop-
ulation size, without loss of generality, assume that P is even.
*e variable vector of h th individual in the population is
represented as λh � W1,h W2,h · · · WN−1,h L1,h􏼂 L2,h· · ·

LN,h] ∈ R1×(2N−1) which are initialized to λinih ∈ R1×(2N−1) for
h � 1, 2, . . . , P. On the other hand, for variable λh, let the
system output for h th individual at i th time point be
Yh(i, λh). To evaluate the individual superiority, the fol-
lowing fitness function fith(λh) ∈ R of h th individual is
established:

fith λh( 􏼁 � M − Eh λh( 􏼁, (27)

where M is a constant large enough and Eh(λh) is the sum of
absolute value of tracking error represented as

Eh λh( 􏼁 � 􏽘
M

i�0
y d(i) − Yh i, λh( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (28)

From the fitness function (27) and the initial variable λinih ,
the initial fitness value of h th individual fitinih is obtained.
*en, we have the following initial fitness vector fitini ∈ RP of
population:

fitini � fitini1 fitini2 · · · fitiniP
􏽨 􏽩

T
. (29)

Hence, the initial population popini ∈ RP×2N is con-
structed as

popini � λini fitini􏽨 􏽩, (30)

where the initial variable of population is

λini � λini1 λini2 · · · λiniP
􏽨 􏽩

T
. (31)

From (31), the α th (1≤ α≤ 2N − 1) variable of the β th
(1≤ β≤P) individual is represented as the β th row of α th
column.*e last column of popini shown in (30) is the fitness
value of the corresponding initial variable in population.

4.3. Selection Strategy. *e individuals are selected into next
generation by roulette strategy and elitism strategy. *e
individual with bigger fitness value is selected at higher
probability by the roulette strategy. However, one short-
coming of the roulette strategy is that the best individual in
old population might be missed. So, we adopt elitism
strategy to ensure that the best individual of last generation
can be retained. Due to these two strategies, the number of
convergence generation of EA can be reduced.

4.4. Crossover Operator. *e crossover probability 0<pc < 1
depends whether an individual needs to cross. For h′ th
individual, where h′ � 1, 3, 5, . . . , P − 1, a random number is
produced between 0 and 1, which is represented as rh′ . If
rh′ >pc, the crossover operation occurs. Otherwise, the
crossover operation does not occur. Due to the real encoding
strategy, arithmetical crossover operator is adopted. Assume
the variable vectors of h′ th and h′ + 1 th parent individuals
to be par λh′ and par λh′+1, respectively, which are selected
to cross. After crossover, they generate two new individuals,
of which the variable vectors are represented as chi λh′ and
chi λh′+1. For h′ � 1, 3, 5, . . . , P − 1, the crossover operation
is expressed as

chi λh′ � ηh′ · par λh′ + 1 − ηh′( 􏼁 · par λh′+1,

chi λh′+1 � 1 − ηh′( 􏼁 · par λh′ + ηh′ · par λh′+1,
􏼨 (32)

where ηh′ ∈ (0, 1) is the crossover weighting for the h′ th and
h′ + 1 th parent individuals.

4.5. Mutation Operator. In this paper, we adopt the sto-
chastic mutation strategy. Let 0<pm < 1 be the mutation
probability. For h th individual, a number is produced
randomly between 0 and 1 represented as rh, h � 1, 2, . . . , P.
If rh >pm, the mutation operation occurs. Otherwise, the
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mutation operation does not occur. Let par λh be the var-
iable vector of h th individual which is selected to mutate.
After mutation, a new variable vector chi λh is produced.
*e mutation operator is defined as

chi λh � par λh + mh, h � 1, 2, . . . , P, (33)

where mh ∈ R1×(2N−1) is the mutation weighting for h th
individual.

4.6. Terminative Conditions. *e terminative conditions can
be determined by the fitness value or by the tracking error. In
simulation, the number of generation in EA is set to be 100.
Finally, we can obtain the optimal control gains Wbest

v

(v � 1, 2, . . . , N − 1) and Lbest
v (v � 1, 2, . . . , N) from the best

individual produced by EA. According to the convergence
condition (8), the last control gain Wbest

N is derived by
Wbest

N � 1 − 􏽐
N−1
v�1 Wbest

v .

4.7. Overview of the Proposed EA-HOILC. *e flowchart of
the proposed EA-HOILC is depicted in Figure 1. First of all,
according to the control gains characteristics and conver-
gence conditions (9) and (10), the initial variable λinih

(h � 1, 2, . . . , P) is obtained. *en, we apply the traditional
HOILC at i ∈ 0, 1, . . . , M{ } with initial control gains in each
λinih , where convergence condition (8) is considered. By using
the tracking error Eh(λinih ) with λinih as shown in (29) pro-
duced by HOILC, the corresponding fitness fitinih

(h � 1, 2, . . . , P) is derived from (27). Combining λinih and
fitinih for h � 1, 2, . . . , P, the initial population popini as
shown in (31) with (30) and (32) is produced. Secondly,
selection, crossover, and mutation are performed by the
selection strategy, crossover operator, and mutation oper-
ator, respectively. After that, a new input up(i),
i ∈ 0, 1, · · · , M{ }, is obtained along with the optimal control
gains. Set the initial control inputs of the EA-HOILC
u0(i) � u1(i) � · · · � uN−1(i) � up(i), i � 0, 1, . . . , M. *en,
the HOILC with optimal control gains process begins.

5. Simulation

To verify the effectiveness of the proposed EA-HOILC, a
two-link robotic fish is employed.*e system dynamic of the
two-link robotic fish is described as follows [22]:

Mf
_Vj(t) � −ξV

2
j(t) + Fj(t), (34)

where Mf � 0.4 kg is the mass of robotic fish, ξ � 165.7056
kg/m is the water resistance coefficient, Vj(t) denotes the
velocity, and Fj(t) is the forward thrust produced by the tail
motion. Let the velocity Vj(i · TS) and the forward thrust

Fj(i · TS) be the system state xj(i) and the control input
uj(i), respectively, where TS � 0.1 is the sampling time. We
can discretize system (34) by using _Vj(i · TS) ≈
(Vj((i + 1) · TS) − Vj(i · TS))/TS. *us, the discrete-time
system is

xj(i + 1) � xj(i) + Afx
2
j(i) + Bfuj(i),

yj(i) � xj(i),

⎧⎨

⎩ (35)

where Af � −ξ · TS/Mf and Bf � TS/Mf.
*e reference output trajectory is represented as

y d(i) � 0.016[1 + sin(2πi/M − π/2)], i ∈ 0, 1, . . . , M + 1{ },

(36)

with M � 99. For the proposed HOILC algorithm, set the
order N � 2.*e control gains W1, L1, and L2 are selected by
EA. Another control gain W2 � 1 − W1 is obtained from
convergence condition (8). *e crossover probability
pc � 0.7, and the mutation probability pm � 0.3. To evaluate
the tracking performance, three tracking indexes on sum
absolute error SEk, total square error TEk, and maximum
absolute error MEk are defined as follows:

SEk � 􏽘
100

i�0
ej(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

TEk � 􏽘
100

i�0
ej(i)􏽨 􏽩

2
,

MEk � sup
i∈ 0,1,...,100{ }

ej(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(37)

In the simulation, the EA-HOILC is run 10 times, and
the optimized control gains are shown in Table 1.

Figure 2 exhibits the system output performance at it-
erations j � 15, j � 22, and j � 39 by using EA-HOILC with
the average values of optimal control gains in 10 times. To
compare the convergence speed between EA-HOILC and
conventional HOILC with different parameters, the control
gains in HOILC proposed in [30] with 2-order are, re-
spectively, chosen as following two cases. Case 1: W1 � 0.7,
W2 � 0.3, L1 � 0.3, and L2 � 0.2 and Case 2: W1 � 0.6,
W2 � 0.4, L1 � 0.2, and L2 � 0.1. *e corresponding sum
absolute error SEk, total square error TEk, and maximum
absolute error MEk of tracking are shown in Figure 3. From
Figure 3, one can observe that the case with lager control
gains in W1, L1, and L2 can achieve faster convergent speed
in conventional HOILC. Moreover, it is clearly revealed that
the proposed EA-HOILC can make the convergence itera-
tions less than the conventional HOILC with the same order.
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End

No
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Yes

Figure 1: *e flowchart of the proposed EA-HOILC.

Table 1: Optimized control gains of EA-HOILC in different times.

Times W1 W2 L1 L2

1 0.7474 0.2526 0.4932 0.4570
2 0.7827 0.2173 0.4724 0.4569
3 0.7313 0.2687 0.4924 0.4068
4 0.7972 0.2028 0.4067 0.4856
5 0.7161 0.2839 0.4209 0.4177
6 0.7243 0.2757 0.4456 0.4744
7 0.7465 0.2535 0.4424 0.4678
8 0.7502 0.2498 0.4209 0.4682
9 0.7543 0.2457 0.4954 0.4156
10 0.7474 0.2526 0.4932 0.4570
Average 0.7827 0.2173 0.4724 0.4569
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6. Conclusions

In this paper, an HOILC law utilizing the tracking infor-
mation of several previous iterations is proposed for the
nonlinear discrete-time system. *e convergence is rigor-
ously analyzed based on the mathematical induction. In
order to improve the convergence performance of the de-
veloped HOILC, the EA with global optimization is intro-
duced to optimize the control gains. With the optimal
control gains, the proposed EA-HOILC can achieve faster
convergence speed. In simulation, it is shown that the sum
absolute error, total square error, and maximum absolute
error of tracking in EA-HOILC are convergent faster than
those in the conventional HOILC with same order. How-
ever, it is worth noting that because EA is adopted to select
the control gains, the offline computing time of EA-HOILC
is longer. It is very suitable for the cases in which fewer
iterations are required only. For instance, to destroy a target
with bombs, the proposed method can reduce the number of
bombs at the cost of computing time. Future research will
extend the EA-HOILC developed in this paper to the dy-
namical systems with uncertainties in real application
[35–37].
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