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In this paper, we study some properties of the solutions of a stochastic Lotka–Volterra predator-prey model, namely, the
boundedness in the mean of numerical solutions, the strong convergence for this kind of solutions, and the turnpike property of
solutions of an optimal control problem in a population modelled by a Lotka–Volterra system with stochastic environmental
fluctuations. Even though there are numerous results in the deterministic case, there are few results for the behavior of numerical
solutions in a population dynamic with random fluctuations. First, we show, using the Euler–Maruyama scheme, that the
boundedness of numerical solutions and the convergence of the scheme are preserved in the stochastic case. Second, we analyze a
property of the long-term behavior of a Lotka–Volterra system with stochastic environmental fluctuations known as turnpike
property. In optimal control theory, the optimal solutions dwell mostly in the neighborhood of a balanced equilibrium path,
corresponding to the optimal steady-state solution. Our study shows, by means of the Stochastic Maximum Principle, that this
turnpike property is preserved, when the noise in the system is small. Numerical simulations are implemented to support
our results.

1. Introduction

In 1925, Vito Volterra and Alfred Lotka obtained simulta-
neously a mathematical model on population dynamics and
competition systems [1, 2]. )eir models are based on the
increment, noted by Umberto D’Ancona [3], of fish pop-
ulation due to reduction in fishing during World War I and
the subsequent growth of sharks after the war.

)e Lotka–Volterra equations are the simplest predator-
prey model of interaction between two populations. )is
model assumes that the prey population finds food all the
time, that the food of the predator depends entirely on the
prey population, and that the environment does not fluc-
tuate so that it might influence the two populations. )e
model consists in a nonlinear ordinary differential equation
system [4].

If we denote by x1(t) and x2(t) the differentiable
functions meaning the density of the population of prey and
predator, respectively, the deterministic model is given by

dx1(t) � αx1(t) − βx1(t)x2(t)( dt,

dx2(t) � −cx2(t) + δx1(t)x2(t)( dt,
(1)

where α, β, c, and δ are positive constants, with α being the
intrinsic growth rate of the prey population, c being the
intrinsic death rate of the predator population, and β and δ
being the contact rates per unit of time between predator and
prey, and vice versa, respectively.

)ere exists no explicit solution for this system [5], but
numerical solutions can be found. It is very well known that
this system has a stable solution in (0, 0) and that it has a
nonasymptotic solution and has a limit cycle [6, 7]. Also,
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there exist positive solutions, and there are existence and
uniqueness of global positive solutions [8]. )is determin-
istic model, however, does not take into account fluctuations
in the environment, which play, in general, an important
role in any real biological system, presenting disturbances
caused by natural random variations in environmental
conditions. In the study and modeling of the interaction
between populations, it is also important to consider some
stochastic factors that have impact on their growth, per-
sistence, and extinction. Demographic and environmental
factors, acting as disturbances or diffusion processes, can be
modelled by suitable stochastic differential equations, which
take into account the fact that independent individual
stochastic events can affect each population, so they must
contain different diffusion processes. )e existence and
uniqueness of a global positive solution of the system and the
conditions for which extinction occurs for a stochastic prey-
predator model have been extensively studied by various
methods [9–11], including the Stochastic Maximum Prin-
ciple (see [12]). In [13], the stochastic uniform boundedness
of the solution and the existence of a globally unique positive
solution are obtained, for a predator and prey model that
incorporates disease invasion and sudden catastrophic
shocks. Also, for stochastic predator-prey models with
distributed delay and both white and telegraph noises, the
existence at least of one positive T-periodic solution has been
proved by constructing a stochastic Lyapunov function with
regime switching [14]. In [15], a three-species model with
time delays and Lévy jumps is investigated, given sufficient
conditions for persistence in mean and extinction of three
species, one-predator-two-prey. Unlike the present work,
they use the discontinuous stochastic process to study some
abrupt nature phenomena such as climate change and they
do not introduce controls in the species, as we do in this
analysis. Likewise, some mutualism systems (with the co-
operation of two species) in random environments have
been studied, obtaining positive solutions and their
uniqueness [16]. However, there is limited mathematical
literature on boundedness in the mean and strong con-
vergence for numerical solutions and turnpike property for
controlled stochastic systems [17, 18].

Sometimes, the appearance of random fluctuations in
the environment alters the population dynamics of deter-
ministic systems, causing the extinction process. )en, the
corresponding model may lose the boundedness of the
solutions, its stability, or its robustness and the numerical
scheme may diverge. Also, when an environmental fluctu-
ation occurs, the stability of the turnpike solution could be
altered, causing loss of optimality. Hence, it is important to
analyze the persistence of the former properties, because
doing so allows us to describe the degeneracy of the
properties of the system. A novelty of our analysis is the use
of two controls in the populations and the extension of the
work of [18] to a stochastic case, by using the Stochastic
Maximum Principle. )us, we have combined some tech-
niques of the Geometric Control)eory with the property of
exponential stability of the numerical solution of our sto-
chastic model. We consider that a stochastic framework
allows a more realistic study of the population dynamics and
competition systems. )is consideration is equally valid in
other areas where the goal is to obtain the asymptotic sta-
bility of the trajectories at late time points [19], under
different initial conditions, for example, in the aggregate-
growth model in economics [20] or in the analysis and
design of schemes of dynamic real-time optimization and
economic-model predictive control [21].

To study the stochastic model, we take into account
random fluctuations in α and β and for the sake of simplicity
and to place the equilibrium point of the system at (1, 1), we
have selected α � β � c � δ � 1, following [17]. In addition,
we introduce controls u1(t) and u2(t) representing, by ex-
ample, the hunting in each population and two independent
random variations in each population, W1(t) andW2(t),
given by standard Wiener process and defined over a
probability space (Ω, F, P). We have modulated the effect of
the controls and the fluctuations with the constants 0.4 and
0.2 for the controls and the coefficients α1 ∈ (0, 1] and
α2 ∈ (0, 1], for the environmental fluctuations, on the prey
and the predator populations, respectively. We obtain the
following system of stochastic differential equations:

dx1(t) � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1(t),

dx2(t) � −x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)( dt + α2dW2(t),
(2)

with the conditions

x1(0) � 0.7,

x2(0) � 0.5,

x1(T) � 0.7,

x2(T) � 0.5,

(3)

where 0.4x1(t)u1(t) represents the moderate hunting of
the prey, by a factor of 0.4, and 0.2x2(t)u2(t) represents the
moderate hunting of the predator, by a factor of 0.2. )e

maximum possible value that these constants can take is 1,
which corresponds to the total hunting of the species.
)us, we have the following stochastic optimal control
problem: to find the controls u1(t) and u2(t) and the states
x1(t) and x2(t) of system (2) which minimize the cost
functional

J u1, u2(  � E
1
2


T

0
x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t) dt .

(4)
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Stochastic differential system (2) is of the general type

dx � f(t, x(t), u(t))dt + g(t, x(t), u(t))dW(t), (5)

where u(t) � (u1(t), u2(t)), f(t, x, u) � (f1(t, x, u),

. . . , fn(t, x, u))⊤ is a measurable function defined for
(t, x, u) ∈ [0, T] × Rn × Rm and Rm-valued, known as the
drift, u: R⟶ Rm is a measurable function called the
control, and g(t, x, u) � (g1 (t, x, u), . . . , gm(t, x, u)), with
gj(t, x, u) � (g1j(t, x, u), . . . , gnj(t, x, u))⊤, where
1≤ j≤m, being a measurable function defined also on
[0, T] × Rn × Rm and Rn×m-valued (n × m-real matrix),
called the diffusion coefficient. In this work,

f(t, x, u) �
x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)

−x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)
 ,

g(t, x, u) �
α1 0

0 α2
 .

(6)

To find the optimal control that minimizes (4) in this
optimal control problem, we use the Pontryagin Maximum
Stochastic Principle, setting forward differential stochastic
equations (2) and the following backward differential sto-
chastic equations or terminal value problem:

dp(t) � −fx(t, x, u)
⊤

p(t) + 
m

j�1
g

j
x(t, x(t), u(t))

⊤
qj(t)

− f0(t, x(t), u(t))( xdt + q(t)dW(t), p(T)

� (0.5, 0.7)
⊤

,

(7)

where

f0(t, x, u) �
1
2

x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t) . (8)

p is the adjoint variable and q is a matrix given by

p(t) �
p1(t)

p2(t)
 ,

q(t) �
q11(t) q12(t)

q21(t) q22(t)
 ,

dW(t) �
dW1(t)

dW2(t)
 .

(9)

In our case, we have

dp1(t) � x1(t) − p1(t) + p1(t)x2(t) + 0.4p1(t)u1(t) − p2(t)x2(t)( dt + q11(t)dW1(t) + q12(t)dW2(t)

dp2(t) � x2(t) + p2(t) + p1(t)x1(t) − p2(t)x1(t) + 0.2p2(t)u2(t)( dt + q21(t)dW1(t) + q22(t)dW2(t)

p1(T) � 0.5

p2(T) � 0.7

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (10)

Analytic explicit solutions are not known for coupled (2)
and (10), and they must be solved numerically. )erefore, let
us find the necessary conditions for the controls in terms of

the adjoint variable. We define the following extended
Hamiltonian equation:

H(t, x(t), p(t), q(t)) � 〈p(t), f(t, x, u)〉 + tr[q(t)g(t)] − f0(t, x, u). (11)

We obtain

H � x1(t)p1(t) − x1(t)x2(t)p1(t) − 0.4x1(t)p1(t)u1(t) − x2(t)p2(t)

+ x1(t)x2(t)p2(t) − 0.2x2(t)p2(t)u2(t) + α1q11(t) + α2q22(t)

−
1
2

x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t) .

(12)

)us,
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Hu1
� −0.4x1(t)p1(t) − u1(t),

Hu2
� −0.2x2(t)p2(t) − u2(t).

(13)

And, according to the necessary conditions of the Sto-
chastic Maximum Principle, we have

u1(t) � −0.4p1(t)x1(t)

u2(t) � −0.2p2(t)x2(t)
. (14)

As we have already mentioned, systems (2), (10), and
(14) can be solved by numerical methods, like the
Euler–Maruyama scheme.

)e Euler–Maruyama scheme, corresponding to (11), is
the simplest effective computational method used in sto-
chastic differential equations. )e Euler–Maruyama ap-
proximation is a continuous time stochastic process x,
obtained by truncating Itô’s formula of the stochastic Taylor
series after the first terms. For each k≥ 1, it computes the
approximations xk ≈ x(kΔtk). We select a grid of [0, T]:

0≤ t0 < · · · < tN � T, (15)

defining

Δtk � tk+1 − tk,

ΔWk � Wk+1 − Wk.
(16)

We denote x(tk) by xk and x0 (the initial value).
)erefore, we have, for k � 1, . . . N,

xk+1 � xk + f xk, tk, uk( Δtk + g xk, tk, uk( ΔWk, (17)

where xk � x(tk) and we can consider

ΔWk �
���
Δtk


sk, (18)

with si being a random real number in the interval [0, 1]. In
this paper, we will consider an equidistant discretization of
the time and ΔWk ≤ l, with l constant.

2. Properties of Solutions of the Stochastic
Lotka–Volterra Model

We are interested in the numerical solutions of system (2)
and their properties, such as boundedness and convergence.
)us, we introduce the following assumptions:

(i) (H1) f(x, t, u) andg(x, t, u) satisfy the Lipschitz
and linear growth conditions: there exist constants
C1 andC2, such that

‖f(x, t, u) − f(y, t, u)‖≤C1‖x − y‖,

‖g(x, t, u) − g(y, t, u)‖≤C2‖x − y‖.
(19)

(i) (H2) )ere exists a constant C3, such that
‖ui(t)‖≤C3, for i � 1, 2.

(ii) (H3) )ere exists a constant C4, such that
E‖x0‖

2 ≤C4, where E‖x0‖
2 is the expected value of

‖x0‖
2.

(iii) (H4) By writing xk � (xk,1, xk,2) and
pk � (pk,1, pk,2), there exist constants b, c, d, and e,
such that, for ∀k≥ 1,|xk+1,1|≤ b,

|xk+1,2|≤ c, |pk+1,1|≤ d, and |pk+1,2|≤ e.

Hence, the Euler–Maruyama scheme can be expressed in
our case by the following systems:

xk,1 � xk−1,1 + xk,1 − xk,1xk,2 − 0.4xk,1uk,1 Δtk + ΔWk

xk,2 � xk−1,2 + −xk,2 + xk,1xk,2 − 0.2xk,2uk,2 Δtk + ΔWk

pk,1 � pk−1,1 + xk,1 − pk,1 + pk,1xk,2 + 0.4pk,1(t)uk,1 − pk,2xk,2 Δtk + pk,1ΔWk

pk,2 � pk−1,2 + xk,2 + pk,2 + pk,1xk,1 + 0.2pk,2uk,2Δtk + pk,2ΔWk 

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (20)

where

uk,1 � −0.4pk,1xk,1,

uk,2 � −0.2pk,2xk,2.
(21)

We observe that our functions f(x, t, u) andg(y, t, u)

satisfy assumption (H1), because, for f1(x, u, t), we have

f1(x, u, t) − f1(y, u, t)
����

���� � 1 − 0.4u1(t) x1(t) − x1(t)x2(t) − 1 − 0, 4u1(t) y1(t) − y1(t)y2(t)
����

����

≤ 1 − 0.4u1(t)  x1(t) − y1(t)(  + y1(t)y2(t) − x1(t)x2(t)
����

����

≤L1 x1(t) − y1(t)
����

���� + y1(t)y2(t) − x1(t)x2(t)
����

����

≤L1 x1(t) − y1(t)
����

���� + y1(t) − x1(t)
����

���� y2(t) − x2(t)
����

����

≤L1 x1(t) + y1(t)
����

���� + L2 x2(t) − y2(t)
����

����

≤C1 x1(t) − y1(t)
����

���� + x2(t) − y2(t)
����

���� 

≤C1‖x − y‖,

(22)
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for constants L1, L2, and C1. Similarly, for f2(x, u, t), it is
trivial for g.

Now, we have our first result.

Theorem 1. Let xk and pk be the numerical solution of
Euler–Maruyama scheme (20); then, under (H1)–(H4) as-
sumptions, there exist positive constants M0 and N0, such
that

E xk



2 ≤M0,

E pk



2 ≤N0.

(23)

Proof. Observing expressions (20), we can use the following
inequality, for any real numbers c, θ, and η:

|c + θ + η|
2 ≤ 3 |c|

2
+|θ|

2
+|η|

2
 , (24)

to obtain the constants b and c linked to assumption H4,
from additional constants r and l and constants C3 andC4 of
assumptions H2 andH3. Furthermore,

E xk+1,1



2 ≤ 3E x0,1



2

+ 3E xk+1,1 − xk+1,1xk+1,2 − 0.4xk+1,1 uk+1,1Δk+1




2

≤ 3E ΔWk+1



2

+ 3E xk+1,1 − xk+1,1xk+1,2



2



+ 0.4xk+1,1uk+1,1



2

+ 3E x0,1



2

+ 3E ΔWk+1




+2 xk+1,1 − xk+1,1xk+1,2


 0.4xk+1,1uk+1,1


Δk+1

≤ 3E x0,1



2

+ 3r E xk+1,1



2

+ xk+1,1xk+1,2



2

+ 2 xk+1,1



2

xk+1,2




+0.4 xk+1,1


 uk+1,1



2

+ 2 xk+1,1


 + 2 xk+1,1


 xk+1,2


 + 3E ΔWk+1



2

≤ 3C
2
4 + 3r b

2
+ 3b

2
c
2

+ 0.4b
2
C
2
3 + 2b + 2bc  + 3l.

(25)

Also, for xk+1,2, we have

E xk+1,2



2 ≤ 3E x0,2



2

+ 3E | − xk+1,2 + xk+1,1xk+1,2

−0.2xk+1,2uk+1,2 Δk+1



2
 + 3E ΔWk+1



2

≤ 3E x0,2



2

+ 3E −xk+1,2



2

+ xk+1,1xk+1,2 − 0.2xk+1,2uk+1,2



2



+2 −xk+1,2


 xk+1,1xk+1,2 − 0.2xk+1,2uk+1,2


 + 3E ΔWk+1



2

≤ 3E x0,2



2

+ 3r E −xk+1,2



2

+ xk+1,1xk+1,2



2



+ 2 |xk+1,1xk+1,2 + 0.2 xk+1,2uk+1,2


  + −0.2xk+1,2uk+1,2



2

+2 xk+1,2


 xk+1,1xk+1,2


 + 0.2 xk+1,2uk+1,2


  + 3E ΔWk+1



2

≤ 3C
2
4 + 3r b

2
+ b

2
c
2

+ 2 bc + 0.2bC
2
3  + 0.2c

2
C
2
3 − 2c

2
b + 0.2cC

2
3  + 3l

2
.

(26)

Finally, defining

M1,0 � 3C
2
4 + 3r b

2
+ 3b

2
c
2

+ 0.4b
2
C
2
3 + 2b + 2bc  + 3l,

M2,0 � 3C
2
4 + 3r b

2
+ b

2
c
2

+ 2 bc + 0.2bC
2
3  + 0.2c

2
C
2
3 − 2c

2
b + 0.2cC

2
3  + 3l

2
,

(27)
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and M0 � (M1,0, M2,0), we have in the lexicographic order

E xk



2 ≤M0 � M1,0, M2,0 . (28)

Similarly for pk+1,1 and pk+1,2, we find constants N1,0 and
N2,0, such that

E pk



2 ≤N0 � N1,0, N2,0 , (29)

concluding the proof. □

Theorem 2. Let xk and pk be the numerical solution of the
Euler–Maruyama scheme (20); then, under assumptions
(H1)–(H4), there exist positive constants C5 and C6, given by
assumption (H1), and there exist a constant P, such that

E xk − x tk( 



2 ≤PΔte(2T+2) C5+C6( ). (30)

Proof. We define the process

Z1(t) � 
∞

k�0
xk1[kΔt,(k+1)Δt](t), (31)

and we assume x0 ≠ x(0). For 0≤ tk+1 ≤T, we have

xk+1 − x tk+1(  � x0 − x(0) + 
tk+1

0
f Z1(s)(  − f(x(s)) ds

+ 
tk+1

0
g Z1(s)(  − g(x(s)) dW(s).

(32)

Hence, using (24) and Schwarz inequality, it follows that

E xk+1 − x tk+1( 



2 ≤ 3ΔtE x0 − x(0)



2

+ 3E 
tk+1

0
f Z1(s) − f(x(s))( ds





2

+ 3E 
tk+1

0
g Z1(s) − g(x(s))( dW(s)





2

.

(33)

By Itô isometry

E xk+1 − x tk+1( 



2 ≤ 3ΔtE x0 − x(0)



23(T) 

tk+1

0
E f Z1(s)(  − f(x(s))



2ds

+ 3
tk+1

0
E g Z1(s)(  − g(x(s))



2ds.

(34)

And, by the Lipschitz assumption, we obtain

E xk+1 − x tk+1( 



2 ≤ 3ΔtE x0 − x(0)



2

+(3T + 3) 
tk+1

0
C5 + C6( E Z1 − x(s)



2ds

≤ 3ΔtE x0 − x(0)



2

+(3T + 3) C5 + C6(  

k

j�0
E xj − x tj 



.

(35)
)erefore, if |x0 − x(0)|≤P, by the discrete case of

Gronwall inequality, we obtain

E xk+1 − x tk+1( 



2 ≤ 3PΔte(2T+2) C5+C6( ). (36)

Hence, for Δt⟶ 0, we obtain the strong convergence to
the exact solution. □

3. Stochastic Turnpike Property

In this section, we analyze the stability of optimal-trajectory
turnpike property of the solutions of the stochastic Lot-
ka–Volterra model. )e turnpike property means that the

most important fact about the behavior of solutions is the
optimality criterion considered and the choice of time in-
terval or the data used are irrelevant, for times far from the
endpoints of the time interval. )is property is a charac-
teristic of the turnpike theory which was introduced by
Samuelson in mathematical economics and recently has
been reconsidered in Control )eory by the authors of
[18, 22]. )e turnpike property of a solution in an optimal
control problem means that an optimal trajectory for most
of the time could stay in a neighborhood of a balanced
equilibrium path, corresponding to the optimal steady-state
solution.

A general result on the turnpike property for nonlinear
optimal control systems, positing that the optimal trajectory,
the optimal control, and the corresponding adjoint vector
remain exponentially close to a steady state, was proved in
[18]. In particular, for a Lotka–Volterra system, the study in
[17] reports this behaviour. In Figures 1–4, we can observe
the turnpike property for state transfer x1, x2, and (x1, x2),
optimal controls u1 and u2, and adjoint states p1 and p2,
respectively, in the numerical solution of system (1), for
values of parameters α � β � c � δ � 1, using the
Euler–Maruyama scheme [17]. Here, we request that the
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turnpike property for numerical solutions should prevail in a
Lotka–Volterra stochastic model, and for this purpose, we
will use the approach used in [18].

We claim that the following theorem holds.

Theorem 3. 9e solution of the optimal stochastic control
problem

,

min J u1, u2(  � E
1
2


T

0
x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t) dt a.s.

dx1(t) � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1(t),

dx2(t) � −x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)( dt + α2dW2(t),

x1(0) � 0.7,

x2(0) � 0.5,

x1(T) � 0.7,

x2(T) � 0.5,

(37)

satisfies the following property, called the turnpike property.
Setting x � (x1, x2), u � (u1, u2), and p � (p1, p2), there
exist C7, C8, and C9 positive constants, such that

xT(t) − x
����

���� + pT(t) − p
����

���� + uT(t) − u
����

����≤ C7 + C9( e
− C8t

, ∀t ∈ [0, T], (38)

where x, p, and u are the static solutions of the optimal
stochastic control problem, which means,

minE
1
2

x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t)   a.s.

0 � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1(t),

0 � −x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)( dt + α2dW2(t),

(39)

u1(t)
����

����≤ 1,

u2(t)
����

����≤ 1.
(40)

Proof. System (37) has the following general form:
dx � f(t, x(t), u(t))dt + g(t, x(t), u(t))dW(t), (41)

with Hamiltonian equation (11). Following the idea in [18],
we will keep this general form in our optimal stochastic
control problem. We consider the solution to a static
problem associated with (37), (x, p, q, u), and the pertur-
bation of variables (x, p, q, u):

xT(t) � x(t) + δx(t),

pT(t) � p(t) + δp(t),

uT(t) � u(t) + δu(t),

qT(t) � q(t) + ψ(t)δu(t),

(42)

where ψ(t) is white noise, getting the Hamiltonian
perturbed:
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Figure 1: State transfer limit trajectory (x1(t), x2(t)), using the Euler–Maruyama scheme, 16th iteration.
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Figure 2: State transfer (x1, x2)-limit trajectory in the phase space, using the Euler–Maruyama scheme, 16th iteration.
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Figure 3: Optimal controls u1(t) and u1(t), using the Euler–Maruyama scheme, 16th iteration.
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δH � Hxδx + Huδu + Hpδp + Hqψ(t)δq. (43)

)us, according to the Stochastic Maximum Principle,

dxT(t) �
zH

zp
dt +

zH

zq
dW(t)

dpT(t) � −
zH

zx
dt + q(t)dW(t)

0 �
zH

zu

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (44)

which leads to

Hp(x, p, q, u) � 0,

−Hx(x, p, q, u) � 0,

Hq(x, p, q, u) � 0,

Hu(x, p, q, u) � 0,

(45)

and then, by (43),

δu(t) � − Huu( 
− 1

Huxδx(t) + Hupδp(t) + Huqψ(t)δq(t) . (46)

Hence, it follows that

δ
dx

dt
  � δ

zH

zp
  + δ

zH

zq
 

� −Hpxδp − Hux − Huu( 
− 1

Huxδx + Hupδp + Huqψ(t)δq(t)  ,

δ
dp

dt
  � −δ

zH

zx
 

� Hxpδx + Hup − Huu( 
− 1

Huxδx + Hupδp + Huqψ(t)δq(t)  .

(47)

Now, however,
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Figure 4: Adjoint states p1(t) and p2(t), using the Euler–Maruyama scheme, 16th iteration.
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δHx � Hxxδx + Huxδu + Hpxδp + Hqxδq

� Hxxδx + Hux −H
−1
uu Hxuδx(t) + Hpuδp(t) + Hquδq(t)  

+ Hpxδp + Hqxδq

� Hxx − HuxH
−1
uuHux δx + Hpx − HuxH

−1
uuHpu δp

+ Hqx − HuxH
−1
uuHqu δq,

δHp � Hxpδx + Hupδu + Hppδp + Hqpδq

� Hxpδx + Hup − Huu( 
− 1

Hxuδx(t) + Hpuδp(t) + Hquδq(t)  

+ Hppδp + Hqpδq

� Hxp − HupH
−1
uuHxu δx − HupH

−1
uuHpu δp

+ Hqp − HupH
−1
uuHqu δq.

(48)

)erefore,

δx(t) � Aδx + Bδp + Cδq,

δp(t) � Dδ x + Eδp + Fδq,
(49)

where A, B, C, D, E, andF are the matrices

A � Hxx − HuxH
−1
uuHux,

B � Hpx − HuxH
−1
uuHpu,

C � Hqx − HuxH
−1
uuHqu,

D � −Hxp − HupH
−1
uuHxu,

E � −HupH
−1
uuHpu,

F � −Hqp − HupH
−1
uuHqu.

(50)

Denoting Z(t) � (δx(t), δp(t))⊤ and considering
dW � ψ(t)δq, system (49) is equivalent to the following
stochastic system:

dZ(t) � MZ(t)dt + QdW, (51)

where M �
B −CH

−1
uuC

†

A D
  and Q �

E

F
 .

)erefore, writing M � M0 + F(Z(s)), we consider the
mild solution of (51):

Z(t) � e
M0 t− t0( )Z0 + 

t

t0

e
M0(t− s)

F(Z(s))ds + 
t

t0

e
M0(t− s)

QdW(s), (52)

for M0 constant. By Schwarz inequality, it follows that

E‖Z(t)‖
2 ≤ 3 E e

M0 t− t0( )Z(0)
�����

�����
2



+E 
t

t0

e
M0(t− s)

MZ(s)ds

��������

��������

2

+ E 
t

t0

e
M0(t− s)

QdW(s)

��������

��������

2

.

(53)

Using Itô isometry,

E‖Z(t)‖
2 ≤ 3 E e

C8 t− t0( )Z(0)
�����

�����
2



+ e
C8t

����
����
2


t

t0

e
− M0s

����
����
2
E‖MZ(s)‖

2ds + e
C8t

����
����
2


t

t0

e
− M0s

����
����
2
E‖Q‖

2ds,

(54)
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for some constant C8. By Gronwall inequality,

E‖Z(t)‖
2 ≤C9e

C2t


t

t0

e
− M0s

����
����
2
E‖MZ(s)‖

2
+ E‖Z(s)‖

2
 ds,

(55)

for a constant C9. )us,

E‖Z(t)‖
2 ≤C9e

− C8t
. (56)

On the other hand, for Hamiltonian (12), we have
Huq � 0, and then, using (46),

δu(t) � − Huu( 
− 1

Huxδx(t) + Hupδp(t) . (57)

Also, we can estimate ‖δu‖2. Let M and K be constants
defined by L � ‖H−1

uu‖ and M � max ‖Hup‖, ‖Hux‖ , so

E‖δu(t)‖
2 ≤ L

2
M

2
C9e

− C8t
, (58)

and finally, for a constant C7, we arrive at

E‖x(T) − x‖
2

+ E‖p(T) − p‖
2

+ E‖u(T) − u‖
2 ≤C9e

− C8t
+ C7e

− C8t
. (59)

)erefore, the solution of system (41) has the turnpike
property. In particular, the numerical solution of system (37)
has the turnpike property. □

Observation 1. Restriction (40) for the controls is related to
the hunting of the species in the Lotka–Volterra model;

however, in a more general context, it is possible not to
consider it, since the theorem will remain valid.

Example 1. We consider the following stochastic optimal
control problem system:

min J u1, u2(  � E
1
2


T

0
x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t) dt a.s.

dx1(t) � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1(t),

dx2(t) � −x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)( dt + α2dW2(t).

(60)

By applying the Stochastic Maximum Principle, we
obtain the following adjoint system:

dp1(t) � x1(t) − p1(t) − p1(t)x2(t) + 0.4p1(t)u1(t) − p2(t)x2(t)( dt + p1(t)dW1(t),

dp2(t) � x2(t) + p2(t) + p1(t)x1(t) − p2(t)x1(t) + 0.2p2(t)u2(t)( dt + p2(t)dW2(t),
(61)

with the static problem associate

minE
1
2

x
2
1(t) + x

2
2(t) + u

2
1(t) + u

2
2(t)  a.s. x1, x2, u1, u2 ,

0 � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1(t),

0 � −x2(t) + x1(t)x2(t) − 0.2x1(t)u2(t)( dt + α2dW2(t),

u1(t)
����

����≤ 1,

u2(t)
����

����≤ 1,

(62)

and we arrive at
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0 � x1 1 − x2 − 0.4u1( ,

0 � x2 −1 + x1 − 0.2u2( ,

1≥ u1, u2.

(63)

By using Lagrange multipliers method, we obtain

0 � p1 1 − x2 − 0.4u1(  + p2x2 − x1,

0 � p2 −1 + x1 − 0.2u2(  − p1x1 − x2,

0 � −u1 − 0.4p1x1,

0 � −u2 − 0.2p2x2.

(64)

We calculate the solutions using ©Stephen Wolfram,
LLC, obtaining the values: x1 � 0.9615, x 2 � 0.8621, p1 �

−0.8966, p2 � 1.1154, u1 � 0.3448, and u2 � −0.1923.

Hence, it follows that B �
0.13795 0

0 0.32306 , C � 0, and

B − CH−1
uuC† �

0.13795 0
0 0.32306 . )e eigenvalues of B −

CH−1
uuC† are τ1 � 0.13795 and τ2 � 0.32306. Finally, we

arrived at

E‖x(T) − x‖
2

+ E‖p(T) − p‖
2

+ E‖u(T) − u‖
2 ≤C3e

− C2t
,

(65)

with C1 � o(3) and C2 � 0.32306, which proves that system
(60) has the turnpike property.

4. Numerical Simulations

We have computed numerically the solutions of the systems

dx1(t) � x1(t) − x1(t)x2(t) − 0.4x1(t)u1(t)( dt + α1dW1,

dx2(t) � −x2(t) + x1(t)x2(t) − 0.2x2(t)u2(t)( dt + α2dW2,

x1(0) � 0.5,

x2(0) � 0.7,

dp1(t) � x1(t) − p1(t) + p1(t)x2(t) + 0.4p1(t)u1(t) − p2(t)x2(t)( dt + p1(t)dW1,

dp2(t) � x2(t) + p2(t) + p1(t)x1(t) − p2(t)x1(t) + 0.2p2(t)u2(t)( dt + p2(t)dW2,

p1(60) � 0.5,

p2(60) � 0.7,

(66)

taking independent Wiener processes dW1(t) and dW2(t)

and the parameters α1 and α2 equal to the following:
(α1, α2) � (0.15, 0.10), (α1, α2) � (0.10, 0.15), and
(α1, α2) � (0.07, 0.03). We have programmed in ©R-Project,
and the figures show the convergence of the algorithm in the
12th iteration. )e program is very sensitive to the values of

parameters (α1, α2). Comparing the deterministic and sto-
chastic cases, we note the prevalence of the turnpike
property in the stochastic case, for a small stochastic per-
turbation of the deterministic case. )is behavior is con-
sistent both for the states (Figure 5 and Figure 6) for the
controls (Figure 7) and the adjoint states (Figure 8).
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Figure 5: Stochastic state transfer limit trajectory (x1(t), x2(t)), using the Euler–Maruyama scheme, 12th iteration.
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5. Conclusion

In this paper, we have considered the stochastic controlled
Lotka–Volterra prey-predator model, introducing two

noise-independent perturbations in prey and predator
populations. Considering the numerical solutions via
Euler–Maruyama scheme, we have proved the boundedness
in the mean and strong convergence for this kind of

0.6 0.8 1.0
X1

1.2
X2

1.0

1.5

2.0

2.5

3.0

Figure 6: Stochastic state transfer (x1, x2)-limit trajectory in the phase space, using the Euler–Maruyama scheme, 12th iteration.
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Figure 7: Stochastic optimal controls u1(t) and u2(t), using the Euler–Maruyama scheme, 12th iteration.
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Figure 8: Stochastic adjoint states p1(t) and p2(t), using the Euler–Maruyama scheme, 12th iteration.
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solutions. On the other hand, for this stochastic model, we
have combined some techniques of the Geometric Control
)eory with the property of exponential stability of the
numerical solution to prove the persistence in the turnpike
property, under small stochastic perturbations of the de-
terministic Lotka–Volterra model, which is a novelty of our
work. Finally, we have presented an example to illustrate our
techniques, in the actual calculation of the estimations in-
volved in the theorems. )e numerical results are illustrated
in the corresponding graphics. From our numerical simu-
lations, we find that, if the noise perturbation is small (α1,
α1 < 0.20), then the turnpike property is preserved in the
stochastic model.
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