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Intraday range (the difference between intraday high and low prices) is often used to measure volatility, which has proven to be a
more efficient volatility estimator than the return-based one. Meanwhile, a growing body of studies has found that economic
policy uncertainty (EPU) has important impact on stock market volatility. In this paper, building on the range-based volatility
model, namely, the conditional autoregressive range (CARR) model, we introduce the CARR-mixed-data sampling (CARR-
MIDAS) model framework by considering intraday information to investigate the impact of EPU on the volatility of Chinese stock
market and to explore the predictive ability of EPU for Chinese stock market.*e empirical results show that both the China EPU
(CEPU) and global EPU (GEPU) have a significantly negative effect on the long-run volatility of Chinese stock market. Fur-
thermore, we find that taking into account the CEPU and GEPU leads to substantial improvement in the ability to forecast the
volatility of Chinese stock market. We also find that the CEPU provides superior volatility forecasts compared to the GEPU. Our
findings are robust to different forecasting windows.

1. Introduction

Modelling and forecasting volatility is of great importance
for many financial applications such as asset allocation, risk
measurement, and option pricing. It is well known that stock
market volatility exhibits clustering and high persistence.
Although predictable, it is still difficult to forecast accurately.
In this paper, we investigate the impact of economic policy
uncertainty (EPU) on the volatility of Chinese stock market
and explore the predictive ability of EPU for Chinese stock
market. By doing so, we shed new light on the role of EPU in
Chinese stock market volatility.

Recently, Baker et al. [1] developed an EPU index which
is based on newspaper coverage to measure policy-related
economic uncertainty, and it has received a great deal of
attention in the literature (see Al-*aqeb and Algharabali [2]
for a detailed literature review). As measured by the EPU
index of Baker et al. [1], the level of EPU keeps rising since
the global financial crisis of 2008. In particular, the current
level of EPU is at extremely elevated levels due to a series of

events including the US-China trade war and the corona-
virus (COVID-19) pandemic, which have forced govern-
ments around the world to make frequent changes to their
policies in order to limit the economic impact of these
events. Intuitively, this high EPU may affect investors’ in-
vestment decisions and hence stock markets. Indeed, recent
studies have shown that EPU has a significant impact on
stock markets. Pástor and Veronesi [3, 4] investigated the
impact of EPU and political uncertainty on the volatility of
US stock market and observed that policy changes increase
volatility, risk premia, and correlations among stocks. Liu
and Zhang [5] found that incorporating EPU as an addi-
tional predictive variable into the HAR-RV model signifi-
cantly improves the forecasting ability of the model for the
volatility of US stock market. Arouri et al. [6] investigated
the impact of EPU on the US stockmarket returns and found
that an increase in EPU significantly decreases stock returns
and this effect is stronger and persistent during extreme
volatility periods. Liu et al. [7] found that EPU has a sig-
nificant impact on the volatility of the US stock market.
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Moreover, out-of-sample results show that adding EPU as
explanatory variable to the volatility model can indeed
improve its forecasting performance. Using the VAR model,
Tsai [8] analyzed the impact of EPU on the stock returns of
22 stock markets worldwide. Duan et al. [9] investigated the
impacts of leverage effect and EPU on future volatility in the
framework of regime switching. Mei et al. [10] found that
taking into account the US EPU leads to substantial im-
provement in the ability to forecast the volatility of European
stock market. Xiong et al. [11] studied the correlation be-
tween China EPU (CEPU) and Chinese stock market
returns. Yu and Song [12] found that global EPU (GEPU)
has a significant impact on the volatility of US stock market.
Balcilar et al. [13] showed that the EPU of major economies
is likely to predict stock market volatility in emerging stock
markets. Chiang [14] examined EPU and risks on excess
stock returns for G7 markets using monthly observations
and found that the stock returns are negatively correlated
with EPU innovation. However, those studies mainly focus
on the US and European stock markets.

To our knowledge, there are few studies investigating the
impact of EPU on the volatility of Chinese stock market.
Chinese stock market is one of the largest and most im-
portant emerging stock markets, which has gained a great
deal of attention from investors. It is characterized by large
fluctuations, and it is expected that it may be affected by
changes in economic policies. Naturally, investigation of the
impact of EPU on the volatility of Chinese stock market and
exploration of the predictive ability of EPU are important for
investors in Chinese stock market, who are eager to un-
derstand the dynamics of volatility for the sake of portfolio
allocation and risk management.

Previous studies investigated the impact of EPU on the
volatility of Chinese stock market relying mainly on the
generalized autoregressive conditional heteroskedasticity-
mixed-data sampling (GARCH-MIDAS) model by Engle
et al. [15]. *e choice of MIDAS-based approach is based on
the fact that the EPU and stock market data are sampled at
different frequencies, i.e., EPU is on a monthly basis, while
stock market data are available at a daily frequency. Using
the GARCH-MIDAS approach, Yu et al. [16] and Yu and
Huang [17] provided evidence that GEPU has a significantly
positive effect on the volatility of Chinese stock market and
has predictive ability for the volatility of Chinese stock
market, while Li et al. [18] explored the effects of directional
(up and down) GEPU on Chinese stockmarket volatility and
provided evidence that up and down GEPU have positive
impacts on Chinese stock market volatility and the GEPU
index predicts Chinese stock market volatility. Furthermore,
Wang et al. [19] employed a GARCH-MIDAS model with
skew Student’s t-distribution to examine the impact of
domestic and foreign EPU on the volatility of China’s fi-
nancial stocks and found that the EPU index has a negative
impact on the volatility of China’s financial stocks. Recently,
Li et al. [20] used a predictive regression approach to in-
vestigate the impact of EPU on Chinese stock market vol-
atility and provided evidence that the EPU index has a
significantly negative impact on future volatility of Chinese
stock market. *e predictive regression model adopted by Li

et al. [20] requires the frequency of EPU to match that of
predicted (realized) volatility. As a result, Li et al. [20]
employed the monthly data to perform the analysis, which
may ignore important structural features of stock market
data and constrain the choice of forecast horizons (i.e., one
month).

*e GARCH-MIDAS model offers a convenient
framework to combine data that are sampled at different
frequencies, avoiding the loss of information. Essentially, the
GARCH-MIDAS model is a return-based volatility model
that uses daily (squared or absolute) close-to-close returns to
estimate volatility, which fails to exploit the intraday in-
formation. An alternative approach for estimating volatility
is to apply the intraday range, which is based on intraday
high and low prices. *e main advantage of the range-based
volatility estimator over the traditional volatility estimator
based on closing prices (or close-to-close returns) is its
information content: the range contains information about
all intraday price movements. Parkinson [21] showed that
the range is a more accurate volatility estimator than the
volatility estimator based on the daily returns. Since then,
the range-based volatility has received a great deal of at-
tention in the literature (see, e.g., Alizadeh et al. [22], Brandt
and Jones [23], Li and Hong [24], Degiannakis and Livada
[25], and Chou et al. [26]). In particular, Chou [27] in-
troduced a conditional autoregressive range (CARR) model
to model the dynamics of the range, showing that the model
yields more accurate volatility estimates than the traditional
return-based GARCH model.

Motivated by the above interpretation, in this paper,
we aim to introduce the CARR-MIDAS approach to in-
vestigate the impact of EPU on the volatility of Chinese
stock market and to explore the predictive ability of EPU
for Chinese stock market. Importantly, our methodology
is founded on the range-based CARR model, which allows
us to exploit intraday information. Also, the proposed
CARR-MIDAS model builds upon the GARCH-MIDAS
model, which features a multiplicative decomposition of
volatility into a short-run (high-frequency) component
and a long-run (low-frequency) component that allows us
to incorporate exogenous explanatory variables such as
the EPU. It is claimed that the multiplicative component
model is able to capture complex volatility dynamics such
as the high persistence of volatility as well as to handle well
structural breaks or nonstationarities in volatility (see
Wang and Ghysels [28], Conrad and Kleen [29], and Xie
[30]).

*e contributions of the paper are twofold. First, we
introduce a new range-based CARR-MIDAS model
framework combing the insights of range-based CARR and
return-based GARCH-MIDAS. Compared to the CARR
model, the CARR-MIDAS model allows us to incorporate
exogenous explanatory variables directly into the long-run
component of volatility. Hence, using the CARR-MIDAS
model that incorporates EPU, we are able to study the re-
lation between EPU and stock market volatility. Compared
to the return-based GARCH-MIDAS model, our proposed
range-based CARR-MIDAS model utilizes more (intraday)
information for estimating volatility.
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Second, using the CARR-MIDAS approach, an empirical
analysis based on the Shanghai Stock Exchange Composite
Index (SSEC) of China and two EPU indices, namely, the
CEPU and GEPU, is conducted. *e empirical results show
that the CARR-MIDAS models (with the CEPU and GEPU)
outperform the CARR model in terms of both in-sample
fitting and out-of-sample forecast. Both the CEPU and
GEPU have a significantly negative impact on the Chinese
stock market volatility. Moreover, both the CEPU and
GEPU can greatly improve the forecast accuracy for Chinese
stock market volatility for forecast horizons of one-day
ahead up to one month. Most importantly, we find that the
CEPU provides superior volatility forecasts compared to the
GEPU. Our empirical results are robust to different fore-
casting windows.

*e remainder of the paper is organized as follows. In
Section 2, we introduce the methodology of our CARR-
MIDAS model. Section 3 presents the empirical results,
while Section 4 concludes the paper.

2. Methodology

2.1. &e Range. In this paper, we employ the intraday range
by considering intraday information to investigate the
volatility of Chinese stock market. *e intraday range of
Parkinson [21] is defined as

Ri,t �
log Hi,t  − log Li,t 

�������
4 log(2)

 , (1)

where Hi,t and Li,t are the highest and lowest prices of an
asset observed on day i in month t, respectively. Parkinson
[21] showed that the intraday range given by equation (1) is
an unbiased estimator of volatility. Assuming that the log-
price of an asset follows a Brownian motion with zero drift,
Parkinson [21] proved that the range is 4.9 times more
efficient than the daily squared return based on the closing
prices. Moreover, Degiannakis and Livada [25] showed that
the price range volatility estimator is more accurate com-
pared to the realized volatility estimator constructed from
five, or less, intraday returns.

2.2.&e CARR-MIDASModel. Inspired by the return-based
GARCH-MIDAS model of Engle et al. [15], we propose in
the paper the range-based CARR-MIDAS model to describe
the dynamics of the range, which can be written as

Ri,t � λi,tεi,t, εi,t |Fi− 1,t ∼ i.i.d. f(·),

λi,t � τtgi,t,

gi,t � (1 − α − β) + α
Ri− 1,t

τt

+ βgi− 1,t,

log τt(  � m + θ1 

K

k�1
φk c1( log RRVt− k( ,

(2)

where λi,t is the conditional mean of the range based on the
information set, Fi− 1,t, up to day i − 1 of month t, the error

term εi,t is assumed to be independent and identically
distributed (i.i.d.) with unit mean from density f(·) with
positive support, and RRVt � 

Nt

i�1 R2
i,t is the realized range

volatility (RRV) in month t, where Nt is the number of
trading days in month t. Note that the conditional range,
λi,t, is multiplicatively decomposed into a short-run (high-
frequency) component, gi,t, and a long-run (low-fre-
quency) component, τt. *e short-run component, gi,t, is
specified as a GARCH(1, 1)-like process. To ensure
nonnegativity and stationarity for the short-run com-
ponent gi,t, we assume that α> 0, β> 0, and α + β< 1. *e
long-run component, τt, is modelled in the spirit of the
MIDAS regression, which is driven by the smoothing
monthly RRV with the weighting scheme φk. One-pa-
rameter beta polynomial is employed as the weighting
scheme due to its parsimony and flexibility:

φk(c) �
(1 − k/K)

c− 1


K
j�1 (1 − j/K)

c− 1, (3)

where K is the number of MIDAS lags with 
K
k�1 φk(c) � 1.

*e model specification described above is the standard
CARR-MIDAS model, which is more flexible than the
original CARR model of Chou [27]. It is straightforward to
show that

λi,t � ωt + αRi− 1,t + βλi− 1,t, (4)

where ωt � (1 − α − β)τt implies the time-varying param-
eter which allows to capture structural changes in condi-
tional volatility. Lamoureux and Lastrapes [31] showed that
structural changes should be taken into account when
modelling volatility, otherwise may cause spurious apparent
persistence in the volatility process (or long-memory vol-
atility). Assuming constant long-run component, the
CARR-MIDAS model reduces to the CARR model:

Ri,t � λi,tεi,t, εi,t |Fi− 1,t ∼ i.i.d. f(·),

λi,t � ω + αRi− 1,t + βλi− 1,t,
(5)

where ω � (1 − α − β)τ.
To further explore the explanatory ability of EPU on

Chinese stock market volatility, we extend the long-run
component in equation (2) by incorporating EPU as

log τt(  � m + θ1 

K

k�1
φk c1( log RRVt− k( 

+ θ2 

K

k�1
φk c2( log EPUt− k( ,

(6)

where EPUt is the EPU index in month t. In regard to the
EPU index, we consider in this paper the CEPU and GEPU.

2.3. Maximum Likelihood Estimation. *e CARR-MIDAS
model is easy to estimate. We use the quasimaximum
likelihood method to estimate the parameters of the CARR-
MIDAS model. *e log-likelihood function of the CARR-
MIDAS model can be written as
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ℓ(Θ) � − 
T

t�1


Nt

i�1
log λi,t  − log f

Ri,t

λi,t

   , (7)

where Θ is the vector of all model parameters.
To implement the CARR-MIDAS model, we need to

specify the density f(·) (or the distribution of the error term
εi,t). We choose the Gamma density function, which can be
written as

f εt(  �
]
Γ(])

]εi,t 
]− 1

exp − ]εi,t , εi,t ≥ 0, (8)

where ] (]> 0) is the shape parameter. It is important to note
that the Gamma distribution is flexible and includes the
exponential distribution as a special case when ] takes the
value of 1. Moreover, Xie and Wu [32] showed that the
Gamma distribution can reduce both the inlier and outlier
problems.

*en, the log-likelihood function can be written as

ℓ(Θ) � − 
T

t�1


Nt

i�1
log λi,t  + log(Γ(])) − ] log(]) − (] − 1)log

Ri,t

λi,t

  + ]
Ri,t

λi,t

. (9)

Hence, the maximum likelihood estimators, Θ, can be
obtained by maximizing the log-likelihood function in
equation (9):

Θ � argmax
Θ

ℓ(Θ). (10)

3. Empirical Results

3.1. Data. We use the CARR-MIDAS approach to investi-
gate the impact of EPU on the volatility of Chinese stock
market and to explore the predictive ability of EPU for
Chinese stock market. *e data used in the paper consist of
daily open, high, low, and close prices for the Shanghai Stock
Exchange Composite Index (SSEC) of China from January 4,
2005, to December 31, 2020, resulting in a total of 3889 daily
observations. *e data are obtained from Wind Database of
China. *e intraday range is computed using equation (1).
As EPU, we consider the monthly CEPU index and GEPU
(current) index constructed by Baker et al. [1], which are
obtained from https://www.policy.uncertainty.com/. *e
daily range of SSEC and monthly EPU (CEPU and GEPU)
are presented in Figure 1, which shows that the well-known
behaviors of volatility clustering in the Chinese stock market
are apparent, and Chinese stock market experienced par-
ticularly strong fluctuations during the periods of global
financial crisis of 2007-2008 and Chinese stock market
turbulence of 2015-2016. In addition, we find that the EPU
indices seem to increase over the sample period particularly
in the recent years. Moreover, it is interesting to note that the
CEPU is generally larger and significantly more volatile than
the GEPU, suggesting that Chinese government makes more
frequent adjustments of economic policy.

Table 1 presents summary statistics. Panel A reports
summary statistics of the daily range for the SSEC. *e
results show that the SSEC range is positively skewed and
highly leptokurtic. From the Jarque–Bera statistics, we ob-
serve that the SSEC range fails the normality assumption.
*e Ljung–Box Q statistics for autocorrelation up to 10 lags
provide evidence of high persistence (or long-memory
property) for the SSEC range, suggesting that our proposed

CARR-MIDAS framework that assumes a multiplicative
component structuremight be appropriate for modelling the
conditional range. Panel B reports summary statistics of the
monthly CEPU and GEPU. It is worth noting that the CEPU
is significantly larger and more volatile than the GEPU,
which is consistent with the findings in Figure 1, indicating
that economic policy changes more often in China.

3.2.EstimationResults. Table 2 reports the estimation results
for the standard CARR-MIDAS model and its specification
with the EPU (CARR-MIDAS-CEPU and CARR-MIDAS-
GEPU) discussed in Section 2.2. In addition, estimates for
the CARR model are presented for the purpose of com-
parison. For the CARR-MIDAS specifications, we employ
three MIDAS lag years, i.e., we choose K � 36 for the
monthly RRV and EPU. Conrad and Kleen [29] showed that
the data will identify the optimal weighting scheme as long as
K is chosen reasonably large.

As can be seen from the table, the estimate of the
persistence coefficient α + β in the CARR model is close to
one, showing high persistence in the conditional range
process. Note also that, in the CARR-MIDAS estimation
results, the estimates of the persistence coefficient of the
short-run component, α + β, are less than one, with its
magnitude smaller than that of the CARR, indicating that
accounting for long-run component reduces persistence in
the short-run component. Additionally, the estimates of the
parameter θ1 are significant positive, which suggests that the
monthly RRV is positively related to long-run volatility of
Chinese stock market. It is interesting to note that the es-
timates of the parameter θ2 in the CARR-MIDAS-CEPU and
CARR-MIDAS-GEPU models are all negative and statisti-
cally significant, implying that both CEPU and GEPU have
significantly negative effect on long-run volatility of Chinese
stock market.*at is, an increase in CEPU or GEPU predicts
lower levels of long-run volatility of Chinese stock market.
*is result is consistent with the findings of Li et al. [20] and
Wang et al. [19].

Figure 2 plots the conditional range (λi,t) along with the
long-run component (τt) from the CARR-MIDAS

4 Complexity

https://www.policy.uncertainty.com/


02-Jan-2005 04-May-2010 03-Sep-2015 02-Jan-2021
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SSEC daily range

(a)

2005 2009 2013 2017 2020
0

200

400

600

800

1000
Monthly EPU

CEPU
GEPU

(b)

Figure 1: Daily range of SSEC and monthly EPU (CEPU and GEPU).

Table 1: Summary statistics.

Mean Min. Max. Std. dev. Skewness Kurtosis Jarque–Bera Q(10)
Panel A: daily range
SSEC 0.0110 0.0015 0.0639 0.0075 2.1969 9.9680 10995.7980 9176.8674
Panel B: monthly EPU
CEPU 261.6636 26.1441 970.8299 242.6354 1.4383 4.0095 74.3495 1240.5849
GEPU 145.2330 48.8196 429.5147 72.9342 1.2406 4.4544 66.1778 1015.1523
Q(10) is the Ljung–Box statistic for autocorrelation up to 10 lags.

Table 2: Estimation results.

CARR CARR-MIDAS CARR-MIDAS-CEPU CARR-MIDAS-GEPU
α 0.1532 (0.0075) 0.1739 (0.0024) 0.1731 (0.0024) 0.1726 (0.0024)
β 0.8340 (0.0080) 0.7705 (0.0027) 0.7677 (0.0028) 0.7679 (0.0028)
m(ω) 0.0001 (0.0000) − 2.1709 (0.0060) − 1.8975 (0.0053) − 1.5643 (0.0045)
θ1 0.3976 (0.0020) 0.3456 (0.0024) 0.3506 (0.0023)
c1 11.1079 (0.0544) 12.3186 (0.0061) 11.7892 (0.0721)
θ2 − 0.1172 (0.0027) − 0.1854 (0.0027)
c2 1.9172 (0.0122) 7.3200 (0.0405)
] 5.6010 (0.1266) 5.6324 (0.0092) 5.6420 (0.0096) 5.6443 (0.0087)
Log-lik 15970.0035 15981.5230 15985.0211 15985.8600
AIC − 31932.0070 − 31951.0460 − 31954.0421 − 31955.7200
Log-lik is the log-likelihood, and AIC is the Akaike information criterion. Numbers in parentheses are standard errors for the model parameters.
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framework. It is obvious that the long-run component of
volatility appears smooth and tracks secular volatility trends
over the sample period. All of the CARR-MIDAS models
(the standard CARR-MIDAS, the CARR-MIDAS-CEPU,
and the CARR-MIDAS-GEPU) do a good job in capturing
the long-run trend of Chinese stock market volatility.

Turning to the shape parameter of theGamma distribution,
]’s in the models are estimated to be significantly larger than

one, ranging from 5.60 to 5.65. *e estimates of ] indicate a
significant deviation from the exponential distribution.

Finally, we find that the standard CARR-MIDAS model
significantly improves the CARR model, in terms of the log-
likelihood and the Akaike information criterion (AIC). *e
result demonstrates that the multiplicative component
structure for the conditional range is important to improve
the model fit. Moreover, the extended CARR-MIDAS
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Figure 2: Conditional range (λi,t) and the long-run component (τt) from the CARR-MIDAS framework.
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models (CARR-MIDAS-CEPU and CARR-MIDAS-GEPU)
outperform the standard CARR-MIDAS model, which
highlights the value of incorporating EPU into range (vol-
atility) modelling. Note also that the CARR-MIDAS-GEPU
model provides a slightly better performance in empirical fit
than the CARR-MIDAS-CEPU model.

3.3. Out-of-Sample Results. In this section, we investigate
whether EPU has predictive ability on Chinese stock market
volatility using the CARR-MIDAS approach. *e out-
of-sample exercise is performed based on a rolling window
(parameter estimates) scheme with a fixed window size of
3000 trading days. For each new forecast, we roll the window
forward daily. *e forecast horizon is set to one day, one
week, two weeks, and onemonth, i.e., 1-day, 5-days, 10-days,
and 22-days ahead forecasts.

As volatility cannot be observed directly, we require a
proxy of the true volatility for forecast evaluation. In this
paper, we use the daily realized range volatility (RRV) based
on 5-min high-frequency data as the proxy of the true
volatility, which is defined as

RRVi,t � 

J

j�1
R
2
j,i,t, (11)

where Rj,i,t is the jth intraday range at day i in month t. It has
been documented in the literature that RRV is five times
more efficient than the realized volatility measure (see, e.g.,
Christensen and Podolskij [33]).

To assess the forecast performance of the CARR-MIDAS
approach, we use two robust loss functions, the mean
squared error (MSE) and the quasilikelihood (QLIKE),
which are given by

MSE: lossi,t � MVi,t − FVi,t 
2
,

QLIKE: lossi,t �
MVi,t

FVi,t

− log
MVi,t

FVi,t

− 1,

(12)

where MVi,t �
������
RRVi,t


is the measured volatility (Since

RRV measures the variance (squared volatility), we take the
square root transformation for RRV as the measured (true)

volatility.) and FVi,t is the forecasted volatility. Patton [34]
showed that the MSE and QLIKE loss functions are robust to
imperfect volatility proxies and provide consistent ranking
of forecasts.

Moreover, we evaluate the predictive ability of the
CARR-MIDAS approach by employing the model confi-
dence set (MCS) test of Hansen et al. [35]. *e MCS pro-
cedure examines a given set of competing models and
identifies the set of the best performing models with some
confidence level, namely, the MCS. *is procedure is per-
formed based on an equivalence test and an elimination rule.
To be specific, let M0 be an initial set of all competing
models. *e null hypothesis for the equivalence test is given
by

H0,M: E duv,i,t  � 0, ∀u, v ∈M,M ⊂M0
, (13)

where duv,i,t ≡ lossi,t(u) − lossi,t(v) denotes the difference in
theMSE or QLIKE loss of models u and v. Following Hansen
et al. [35], the test statistic for the null hypothesis H0,M is
given by

TM � max
u,v∈M

tuv


,

tuv �
duv�������

var duv 

 ,

(14)

where duv is the average loss difference and var(duv) denotes
a bootstrapped estimate of var(duv). If the null hypothesis
H0,M is rejected, the set M is reduced using the elimination
rule, eM � argmaxu∈Msupv∈Mtuv. *e test is performed it-
eratively, until no further model can be eliminated. *e final
set of surviving models are denoted by MMCS. Following
Hansen et al. [35], we implement theMCS procedure using a
block bootstrap of 105 replications and a significance level of
10%.

Table 3 presents the out-of-sample forecast evaluation
results. It can be seen from the table that the standard
CARR-MIDAS model improves upon the forecasting per-
formance of the CARR model for all forecast horizons in
terms of the two loss functions. *is indicates the usefulness
of modelling a long-run component (or multiplicative
component structure). More importantly, by incorporating

Table 3: Out-of-sample forecast evaluation results.

Horizon CARR CARR-MIDAS CARR-MIDAS-CEPU CARR-MIDAS-GEPU
Panel A: MSE loss function
1 6.4698e − 06 5.6615e − 06 4.0326e − 06 4.7452e − 06
5 8.7122e − 06 7.4566e − 06 4.9309e − 06 5.9348e − 06
10 1.0675e − 05 8.7959e − 06 5.4236e − 06 6.6263e − 06
22 1.3883e − 05 9.8059e − 06 5.5660e − 06 6.7895e − 06
Panel B: QLIKE loss function
1 5.3383e − 02 4.8970e − 02 3.6363e − 02 4.2160e − 02
5 6.9746e − 02 6.4000e − 02 4.5982e − 02 5.3552e − 02
10 8.3782e − 02 7.4541e − 02 5.1807e − 02 6.0427e − 02
22 1.0811e − 01 8.5781e − 02 5.8370e − 02 6.6381e − 02
MSE is the mean squared error, and QLIKE is the quasilikelihood. Bold entries indicate the model with the lowest loss value per horizon (in each row). Shaded
entries indicate the model is included in the MCS at a 10% significance level.
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C(G)EPU, the extended CARR-MIDAS model, the CARR-
MIDAS-C(G)EPU model, provides better performance than
the standard CARR-MIDASmodel, suggesting that volatility
forecasting can be improved when the C(G)EPU is taken
into consideration. It is interesting to note the CARR-MI-
DAS-CEPU model outperforms the CARR-MIDAS-GEPU
model in all cases. *e results demonstrate that the CEPU is
more important than the GEPU for forecasting volatility of
Chinese stock market. Overall, the CARR-MIDAS-CEPU
model consistently gives the lowest loss values and is clearly
the preferred and best forecasting model, followed by the
CARR-MIDAS-GEPU model.

*e shaded entries in Table 3 identify the model included
in the MCS at the significance level of 10%. *e results show
that the CARR-MIDAS-CEPU model is the only model that
includes in the MCS for all forecast horizons, suggesting that
the CARR-MIDAS-CEPU model significantly outperforms
all other models.

3.4. Robustness Check. For the robustness check, out-of-
sample forecast is also performed on the SSEC over different
forecast windows (out-of-sample periods). We choose two
different forecast windows, 500 and 1000.*e out-of-sample
forecast evaluation results are reported in Tables 4 and 5 for
the two forecast windows, respectively. As is consistent with
the results in Table 3, the CARR-MIDAS-CEPU model
performs significantly better than the others.

4. Conclusions

Motivated by the return-based GARCH-MIDAS model, we
introduce in this paper the range-based CARR-MIDAS
model that exploits intraday information from the high and
low prices. *e proposed CARR-MIDAS model allows for
exogenous explanatory variable such as EPU to model the
time-varying long-run volatility. We employ the CARR-
MIDAS approach to investigate the impact of EPU on the
volatility of Chinese stock market and to explore the pre-
dictive ability of EPU for Chinese stock market. We perform
an analysis on the SSEC of China and use two EPU indices
including CEPU and GEPU. We find that both the CEPU
and GEPU have a significantly negative effect on the long-
run volatility of Chinese stock market. *e multiplicative
component MIDAS structure for the conditional range is
important to improve the model fit. *e CARR-MIDAS
models significantly improve upon the empirical fit of the
original CARR model. Moreover, the extended CARR-
MIDASmodels (CARR-MIDAS-CEPU and CARR-MIDAS-
GEPU) outperform the standard CARR-MIDAS model,
which highlights the value of incorporating EPU into range
(volatility) modelling. Furthermore, out-of-sample results
demonstrate that taking into account the CEPU and GEPU
substantially improves our ability to forecast 1-day, 5-days
(one week), 10-days (two weeks), and 22-days (one month)
ahead volatility of Chinese stock market. In particular, we
find that the CEPU provides superior volatility forecasts

Table 4: Out-of-sample forecast evaluation results for forecast window of 500.

Horizon CARR CARR-MIDAS CARR-MIDAS-CEPU CARR-MIDAS-GEPU
Panel A: MSE loss function
1 5.8635e − 06 5.3300e − 06 3.9646e − 06 4.2818e − 06
5 8.0498e − 06 7.2398e − 06 5.0020e − 06 5.4611e − 06
10 9.9444e − 06 8.7142e − 06 5.6484e − 06 6.2006e − 06
22 1.3656e − 05 1.0430e − 05 6.3693e − 06 6.9867e − 06
Panel B: QLIKE loss function
1 4.6432e − 02 4.5667e − 02 3.4571e − 02 3.7338e − 02
5 6.1724e − 02 6.1738e − 02 4.4787e − 02 4.8592e − 02
10 7.4483e − 02 7.3153e − 02 5.1065e − 02 5.5565e − 02
22 1.0084e − 01 8.8528e − 02 6.1062e − 02 6.5505e − 02
MSE is the mean squared error, and QLIKE is the quasilikelihood. Bold entries indicate the model with the lowest loss value per horizon (in each row). Shaded
entries indicate the model is included in the MCS at a 10% significance level.

Table 5: Out-of-sample forecast evaluation results for forecast window of 1000.

Horizon CARR CARR-MIDAS CARR-MIDAS-CEPU CARR-MIDAS-GEPU
Panel A: MSE loss function
1 6.3291e − 06 5.4761e − 06 3.8849e − 06 4.5401e − 06
5 8.6110e − 06 7.2356e − 06 4.7254e − 06 5.6592e − 06
10 1.0671e − 05 8.5469e − 06 5.1621e − 06 6.2875e − 06
22 1.4443e − 05 9.6989e − 06 5.2976e − 06 6.4651e − 06
Panel B: QLIKE loss function
1 5.6089e − 02 5.0384e − 02 3.7588e − 02 4.2935e − 02
5 7.3891e − 02 6.5760e − 02 4.6985e − 02 5.4085e − 02
10 8.9510e − 02 7.6431e − 02 5.2300e − 02 6.0477e − 02
22 1.1905e − 01 8.9079e − 02 5.8530e − 02 6.6474e − 02
MSE is the mean squared error, and QLIKE is the quasilikelihood. Bold entries indicate the model with the lowest loss value per horizon (in each row). Shaded
entries indicate the model is included in the MCS at a 10% significance level.
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compared to the GEPU. According to the robustness check,
our empirical results are robust to different forecasting
windows. Overall, the findings highlight the role of EPU
particularly the CEPU as predictor of Chinese stock market
volatility.

Finally, future research could be extended to consider
application of our approach to risk management, or to
option pricing relying on EPU. Moreover, our proposed
model could be extended to incorporate regime switching in
the short-run component of volatility in the spirit of the
regime switching GARCH-MIDAS model of Pan et al. [36].
*e regime switching model has the capacity to accom-
modate structural breaks, which is a well-known stylized
feature of financial volatility.

Data Availability

*e data on the SSEC index of China are obtained from
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responding author upon request.
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