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In this article, a modified method called the Elzaki decomposition method has been applied to analyze time-fractional
Zakharov–Kuznetsov equations. In this method, the Adomian decomposition technique and Elzaki transformation are combined.
Two problems are investigated to show and validate the efficiency of the suggested method. It is also shown that the solutions
achieved from the current producer are in good contact with the exact solutions to show with the help of graphs and table. It is
observed that the suggested technique is to be reliable, efficient, and straightforward to implement for many related models of
engineering and science.

1. Introduction

Nonlinear fractional partial differential equations play
important role in demonstrating different physical ap-
pearances identified with solid-state physics, fluid me-
chanics, chemical kinetics, population dynamics, plasma
physics, nonlinear optics, protein chemistry, soliton
theory, etc. ,ese nonlinear problems, just as their sci-
entific arrangements, are of tremendous enthusiasm for
suitable subjects. In many above-discussed science and
engineering areas, the nonlinear problems perform a key
factor in many phenomena. Differential equations
demonstrate several frameworks and the majority of
them are nonlinear [1–4].

,e Zakharov–Kuznetsov (ZK) equation is an ex-
tremely appealing model equation for investigating

vortices in geophysical streams. ,e ZK problems show
up in numerous regions of material science, implemented
arithmetic, and designing. Specifically, it appears in the
territory of quantum physics [5–9]. ,e ZK problems
administer the conduct of feebly nonlinear particle
acoustic plasma waves, including cold particles and hot
isothermal electrons within sight of a smooth magnetic
field [10, 11]. Solitary wave arrangements were produced
by determining the nondirect higher order of broadened
KdV conditions for the free surface removal [12]. By
utilizing fractional strategy, the precise expository
structures of some nonlinear advancement equations in
numerical material science, to be specific, space time-
fractional Zakharov–Kuznetsov and modified Zakhar-
ov–Kuznetsov equations, were obtained [13]. It has been
investigated in the past decades by many with the
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techniques such as new iterative Sumudu transform
method [14], homotopy perturbation transform method
[15], extended direct algebraic method [16], natural de-
composition method, and q-homotopy analysis trans-
form method [17].

In the last three decades, fractional differential condi-
tions have picked up importance and ubiquity, mostly since
its exhibited uses in various fields of material science and
design. Numerous significant phenomena in electromag-
netics, acoustics, viscoelasticity, electrochemistry and ma-
terial science, likelihood and measurements,
electrochemistry of erosion, concoction physical science,
and sign preparation are depicted in fractional differential
equations [18–23]. Consequently, special consideration has
been given to discover solutions of fractional differential
equations.

,e investigation of these equations and their solu-
tions has extraordinary enthusiasm for numerous spe-
cialists because of its different applications. To refer to a
couple, Wazwaz [24] used the Adomian disintegration
strategy as a dependable method for treating Schrodinger
conditions. In Wazwaz [25], the variational emphasis
technique was utilized to obtain specific solutions for
both linear and nonlinear Schrodinger equations. Ad-
ditionally, Shah et al. [26] utilized He’s recurrence def-
inition as a technique to look for Schrodinger equations
arrangements. ,e arrangements decided to end up being
in good concurrence with the outcomes decided in
[24, 25]. Notwithstanding, we mean to couple the Elzaki
transform built up as late by Elzaki [27] with the com-
mended technique for the 80th Adomian decay strategy
[28, 29]. Recently, many researchers obtained the results
of FPDEs; interested readers can see [30–36].

In this present work, the Elzaki decomposition technique
is applied to investigate the result of the fractional-order ZK
equation. ,e fractional derivatives are defined by the
Caputo operator. ,e result of the given problems shows the
validity of the suggested method. ,e solutions of the
suggested technique are analyzed and shown with the help of

the table and figures. Applying the current method, the
results of time-fractional equations and integral-order
equations are investigated. ,e given method is very helpful
in solving other fractional-order of PDEs.

2. Basic Definitions

2.1. Definition. ,e fractional-order Riemann–Liouville
ρ> 0, of a function f ∈ Cı, ρ≥ −1, is given as [27]

J
ρ
h(ξ) �

1
Γ(ρ)

􏽚
ξ

0
(ξ − 1)

ρ−1
h(η)zη , ρ, ξ > 0,

J
ρ
h(ξ) � h(ξ).

(1)

,e operator of some properties:
For h ∈ Cı, ρ≥ − 1, ρ, β≥ 0, and ρ> − 1,

J
ρ
J
β
h(ξ) � J

ρ+β
h(ξ),

J
ρ
J
β
h(ξ) � J

ρ
J
β
h(ξ),

J
βξρ �
Γ(ρ + 1)

(β + ρ + 1)
ξβ+ρ

.

(2)

2.2. Lemma. If ı − 1< ρ≤ ı, ı ∈ N and h ∈ Cı, ρ≥ −1, then
DρJρh(ξ) � h(ξ) [18–20],

D
ρ
J
ρ
h(ξ) � h(ξ) − 􏽘

m−1

ı�0
h

(ı)
(0)

ξı

ı!
, ξ > 0. (3)

,e basic theory of the Elzaki transformation:
A new transform called the Elzaki transform defines the

function exponential order that we found in the set A, define
by [27]

A � h(I): 􏽘 M, k1, k2 > 0,
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌h(I)|<Me
|I|/kı􏽮 , if(I) ∈ (−1)

ı
×[0,∞). (4)
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,e finite number M must be constant, k1 and k2 of
infinite or finite, for a specified function in the set.,e Elzaki
transformation is defined throughout the following integral
problem:

E[h(I)] � T(s) � s 􏽚
∞

0
h(I)e

−I/sdI, I≥ 0, k1 ≤ s≤ k2.

(5)

We can obtain the next solution from the explanation
and the basic investigation

E I
n

􏼂 􏼃 � m!s
m+2

,

E h′(I)􏼂 􏼃 �
T(s)

s
− sh(0),

E h″(I)􏼂 􏼃 �
T(s)

s
2 − h(0) − sh′(0),

E h
(m)

(I)􏽨 􏽩 �
T(s)

s
m − 􏽘

n−1

k�0
s
2− m+k

h
(k)

(0).

(6)

2.3.  eorem. ,e Elzaki Riemann–Liouville transform of
the derivative can be defined as given if T(s) is the Elzaki
transformation of (I) [27]:

E D
ρ
h(I)􏼂 􏼃 � s

− ρ
T(s) − 􏽘

m

k�1
D

ρ− k
h(0)􏽮 􏽯⎡⎣ ⎤⎦, −1<m − 1≤ ρ<m.

(7)

proof. Taking the Laplace transformation of
h′(I) � d/dIh(I), we have

L D
ρ
h(I)􏼂 􏼃 � s

ρ
T(s) − 􏽘

m−1

k�0
s

k
D

ρ− k− 1
h(0)􏽨 􏽩

� s
ρ
T(s) − 􏽘

m−1

k�0
s

k−1
D

ρ− k
h(0)􏽨 􏽩 � s

ρ
T(s) − 􏽘

m−1

k�0
s

k−2
D

ρ− k
h(0)􏽨 􏽩

� s
ρ
T(s) − 􏽘

m−1

k�0

1
s

− k+2 D
ρ− k

h(0)􏽨 􏽩 � s
ρ
T(s) − 􏽘

m−1

k�0

1
s
ρ− k+2− ρ D

ρ− k
h(0)􏽨 􏽩

� s
ρ
T(s) − 􏽘

m−1

k�0
s
ρ 1
s
ρ− k+2 D

ρ− k
h(0)􏽨 􏽩

L D
ρ
h(I)􏼂 􏼃 � s

ρ
T(s) − 􏽘

m−1

k�0

1
s

􏼒 􏼓
ρ− k+2

D
ρ− k

h(0)􏽨 􏽩⎡⎣ ⎤⎦.

(8)

,erefore, the fractional-order Elzaki transform of h(I)

is

E D
ρ
h(I)􏼂 􏼃 � s

− ρ
T(s) − 􏽘

m

k�0
(s)

ρ− k+2
D

ρ− k
h(0)􏽨 􏽩⎡⎣ ⎤⎦. (9)

□

2.4. Definition. Using ,eorem 1, the fractional Caputo ET
is provided as [18–20]

E D
ρ
Ig(I)􏽨 􏽩 � s

ρ
E[g(I)] − 􏽘

ı−1

k�0
s
2− ρ+k

g
(k)

(0), where ı − 1< ρ< ı. (10)
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3. The General Implementation of Elzaki
Decomposition Technique

In this section, we present the Elzaki decomposition tech-
nique producer for fractional partial differential equation.

D
ρΨ(ξ,I) + LΨ(ξ,I) + NΨ(ξ,I) � q(ξ,I), ξ,I≥ 0, ı − 1< ρ< ı,

(11)

and the initial condition is

Ψ(ξ, 0) � k(ξ). (12)

Applying the Elzaki transform to equation (11), we get

E D
ρΨ(ξ,I)􏼂 􏼃 + E[LΨ(ξ,I) + NΨ(ξ,I)] � E[q(ξ,I)].

(13)

Using the Elzaki transform differentiation property,

1
s
ρ E[Ψ(ξ,I)] − s

2− ρΨ(ξ, 0) � E[q(ξ,I)] − E[LΨ(ξ,I) + NΨ(ξ,I)]

E[Ψ(ξ,I)] � s
2Ψ(ξ, 0) + s

ρ
E[q(ξ,I)] − s

ρ
E[LΨ(ξ,I) + NΨ(ξ,I)].

(14)

Now, Ψ(ξ, 0) � k(ξ) and hence
E[Ψ(ξ,I)] � s

2
k(ξ) + s

ρ
E[q(ξ,I)] − s

ρ
E[LΨ(ξ,I) + NΨ(ξ,I)],

(15)

where Ψ(ξ,I) is defined as

Ψ(ξ,I) � 􏽘
∞

ı�0
Ψı(ξ,I). (16)

,e nonlinearity of Adomian polynomials terms N is
defined as

NΨ(ξ,I) � 􏽘
∞

ı�0
Aı,

(17)

Aı �
1
ı!

dı

dλı
N 􏽘
∞

ı�0
λıΨı( 􏼁⎡⎣ ⎤⎦⎡⎣ ⎤⎦

λ�0

, ı � 0, 1, 2, . . . .

(18)

Putting equation (16) and (17) into (15), we have

E 􏽘

∞

ı�0
Ψı(ξ,I)⎡⎣ ⎤⎦ � s

2
k(ξ) + s

ρ
E[q(ξ,I)] − s

ρ
E L 􏽘

∞

ı�0
Ψı(ξ,I) + 􏽘

∞

ı�0
Aı

⎡⎣ ⎤⎦. (19)

Now using EDM, we have

E Ψ0(ξ,I)􏼂 􏼃 � s
2
k(ξ) + s

ρ
E[q(ξ,I)]. (20)

Generally, we can write

E Ψı+1(ξ,I)􏼂 􏼃 � −s
ρ
E LΨı(ξ,I) + Aı􏼂 􏼃, ı≥ 1. (21)

Taking the inverse Elzaki transform of equation (21), we
have

Ψ0(ξ,I) � k(ξ) + E
− 1

s
ρ
E[q(ξ,I)]􏼂 􏼃,

Ψı+1(ξ,I) � −E
− 1

s
ρ
E LΨı(ξ,I) + Aı􏼂 􏼃􏼂 􏼃.

(22)

4. Main Results

Example 1. Consider the two-dimensional Zakhar-
ov–Kuznetsov equation as

D
ρ
IΨ + Ψ2􏼐 􏼑ξ +

1
8
Ψ2􏼐 􏼑ξξξ +

1
8
Ψ2􏼐 􏼑ξζζ � 0, 0< ρ≤ 1,

(23)

and the initial condition is

Ψ(ξ, ζ, 0) �
4
3
ηsinh2(ξ + ζ), (24)

where η is an arbitrary constant.
Taking Elzaki transform of equation (23), we have

E
z
ρΨ

zI
ρ􏼢 􏼣 � E − Ψ2􏼐 􏼑ξ −

1
8
Ψ2􏼐 􏼑ξξξ −

1
8
Ψ2􏼐 􏼑ξζζ􏼔 􏼕,

1
s
ρ E[Ψ(ξ, ζ,I)] − s

2− ρ
[Ψ(ξ, ζ, 0)] � E − Ψ2􏼐 􏼑ξ −

1
8
Ψ2􏼐 􏼑ξξξ −

1
8
Ψ2􏼐 􏼑ξζζ􏼔 􏼕.

(25)
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Applying the inverse Elzaki transform, we have

Ψ(ξ, ζ,I) � E
− 1

s
2Ψ(ξ, ζ, 0)􏼐 􏼑 + E

− 1
s
ρ
E − Ψ2􏼐 􏼑ξ −

1
8
Ψ2􏼐 􏼑ξξξ −

1
8
Ψ2􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

Ψ(ξ, ζ,I) �
4
3
ηsinh2(ξ + ζ) + E

− 1
s
ρ
E − Ψ2􏼐 􏼑ξ −

1
8
Ψ2􏼐 􏼑ξξξ −

1
8
Ψ2􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕.

(26)

Using ADM procedure, we get

􏽘

∞

ı�0
Ψı(ξ, ζ,I) �

4
3
η sinh2(ξ + ζ) + E

− 1
s
ρ
E −N(Ψ)ξ −

1
8

N(Ψ)ξξξ −
1
8

N(Ψ)ζζξ􏼔 􏼕􏼔 􏼕, (27)

where the nonlinear terms can be defined by Adomian
polynomials in the above equations.

N(Ψ) � Ψ2 � 􏽘
∞

ı�0
Aı(Ψ), (28)

Adomian polynomials are given as

A0 � Ψ20,

A1 � 2Ψ0Ψ1,

A2 � 2Ψ0Ψ2 + Ψ21,

Ψ0(ξ, ζ,I) �
4
3
ηsinh2(ξ + ζ),

Ψı+1(ξ, ζ,I) � E
− 1

s
ρ
E − 􏽘

∞

ı�0
Aı(Ψ)⎛⎝ ⎞⎠

ξ

−
1
8

􏽘

∞

ı�0
Aı(Ψ)⎛⎝ ⎞⎠

ξξξ

−
1
8

􏽘

∞

ı�0
Aı(Ψ)⎛⎝ ⎞⎠

ζζξ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(29)

for ı � 0, 1, 2, . . . ,

Ψ1(ξ, ζ,I) � E
− 1

s
ρ
E − Ψ20􏼐 􏼑ξ −

1
8
Ψ20􏼐 􏼑ξξξ −

1
8
Ψ20􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

Ψ1(ξ, ζ,I) � −
224
9
η2sinh3(ξ + ζ)cosh(ξ + ζ) −

32
3
η2sinh(ξ + ζ)cosh3(ξ + ζ)􏼒 􏼓E

− 1
s
ρ+2

􏼐 􏼑

Ψ1(ξ, ζ,I) � −
224
9
η2sinh3(ξ + ζ)cosh(ξ + ζ) −

32
3
η2sinh(ξ + ζ)cosh3(ξ + ζ)􏼒 􏼓

I
ρ

Γ(ρ + 1)
.

(30)
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,e few terms of the given methods are

Ψ2(ξ, ζ,I) � E
−1

s
ρ
E − 2Ψ0Ψ1( 􏼁ξ −

1
8
2Ψ0Ψ1( 􏼁ξξξ −

1
8
2Ψ0Ψ1( 􏼁ξζζ􏼔 􏼕􏼔 􏼕,

Ψ2(ξ, ζ,I) �
128
27

η3 1200 cosh6(ξ + ζ) − 2080 cosh4(ξ + ζ) + 968 cosh2(ξ + ζ) − 79􏼐 􏼑
I

2ρ

Γ(2ρ + 1)
,

Ψ3(ξ, ζ,I) � E
− 1

s
ρ
E − 2Ψ0Ψ2 + Ψ21􏼐 􏼑ξ −

1
8
2Ψ0Ψ2 + Ψ21􏼐 􏼑ξξξ −

1
8
2Ψ0Ψ2 + Ψ21􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

Ψ3(ξ, ζ,I) � −
2048
81

η4sinh(ξ + ζ)cosh(ξ + ζ) 88400 cosh6(ξ + ζ) − 160200􏽨

cosh4(ξ + ζ) + 85170 cosh2(ξ + ζ) − 11903􏽩
I

3ρ

Γ(3ρ + 1)
.

(31)

,e EDM result is

Ψ(ξ, ζ,I) � Ψ0(ξ, ζ,I) + Ψ1(ξ, ζ,I) + Ψ2(ξ, ζ,I) + Ψ3(ξ, ζ,I) + · · · ,

Ψ(ξ, ζ,I) �
4
3
η sinh(ξ + ζ) −

224
9
η2sinh3(ξ + ζ)cosh(ξ + ζ) +

32
3
η2sinh(ξ + ζ)cosh3(ξ + ζ)􏼒 􏼓

I
ρ

Γ(ρ + 1)

+
128
27

η3 1200 cosh6(ξ + ζ) − 2080 cosh4(ξ + ζ) + 968 cosh2(ξ + ζ) − 79􏼐 􏼑
I

2ρ

Γ(2ρ + 1)
−
2048
81

η4sinh(ξ + ζ)

cosh(ξ + ζ) 88400 cosh6(ξ + ζ) − 160200 cosh4(ξ + ζ) + 85170 cosh2(ξ + ζ) − 11903􏽨 􏽩
I

3ρ

Γ(3ρ + 1)
+ · · · .

(32)

For ρ � 1, we have

Ψ(ξ,I) �
4
3
η sinh2(ξ + ζ − ηI). (33)

In Figure 1, the exact and the EDM solutions of problem
1 at ρ � 1 are shown by Figures 1(a) and 1(b), respectively.
From the given figures, it can be seen that both the EDM and
exact results are in close contact with each other. Also, in
Figures 1(c) and 1(d), the EDM solutions of problem 1 are
investigated at different fractional-order ρ � 0.8 and 0.6. It is
analyzed that time-fractional problem results are convergent
to an integer order effect as time-fractional analysis to in-
teger order. In Figure 2, the first graph shows the two di-
mensions of exact and analytical solutions with respect to ξ
and I and second one shows the different fractional-order

graph with respect to ξ and I. Table 1 shows the different
fractional-order absolute error.

Example 2. Consider the three-dimensional Zakhar-
ov–Kuznetsov equation as

D
ρ
IΨ + Ψ3􏼐 􏼑ξ + 2 Ψ3􏼐 􏼑ξξξ + 2 Ψ3􏼐 􏼑ξζζ � 0, 0< ρ≤ 1,

(34)

and the initial condition is

Ψ(ξ, ζ, 0) �
3
2
η sinh

1
6

(ξ + ζ)􏼔 􏼕, (35)

where η is an arbitrary constant.
Taking Elzaki transform of equation (34), we have

E
z
ρΨ

zI
ρ􏼢 􏼣 � E − Ψ3􏼐 􏼑ξ − 2 Ψ3􏼐 􏼑ξξξ − 2 Ψ3􏼐 􏼑ξζζ􏼔 􏼕,

s
ρ
E[Ψ(ξ, ζ,I)] − s

2− ρ
[Ψ(ξ, ζ, 0)] � E − Ψ3􏼐 􏼑ξ − 2 Ψ3􏼐 􏼑ξξξ − 2 Ψ3􏼐 􏼑ξζζ􏼔 􏼕.

(36)
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Figure 1: (a) ,e exact solution figure of Ψ(ξ,I) of Example 1. (b) ,e EDM solution figure of Ψ(ξ,I) of Example 1. (c) ,e graph EDM
result of Ψ(ξ,I) at ρ � 0.8 problem 1. (d) ,e graph EDM result of Ψ(ξ,I) at ρ � 0.6 problem 1.
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Figure 2: Continued.
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Using inverse Elzaki transformation,

Ψ(ξ, ζ,I) � E
− 1

s
2Ψ(ξ, ζ, 0) + s

ρ
E − Ψ3􏼐 􏼑ξ − 2 Ψ3􏼐 􏼑ξξξ − 2 Ψ3􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

Ψ(ξ, ζ,I) �
3
2
η sinh

1
6

(ξ + ζ)􏼔 􏼕 + E
− 1

s
ρ
E − Ψ3􏼐 􏼑ξ − 2 Ψ3􏼐 􏼑ξξξ − 2 Ψ3􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕.

(37)

Applying the procedure of ADM, we get

􏽘

∞

ı�0
Ψı(ξ, ζ,I) �

3
2
η sinh

1
6

(ξ + ζ)t􏼔 􏼕 + E
− 1

s
ρ
E −N(Ψ)ξ − 2N(Ψ)ξξξ − 2N(Ψ)ξζζ􏽨 􏽩􏽨 􏽩, (38)
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Figure 2: (a) ,e exact and EDM solution figure of Ψ(ξ,I) of Example 1. (b) ,e EDM solution figure of different fractional-order of ρ at
Ψ(ξ,I) of Example 1. (c) ,e exact and EDM solution figure of Ψ(ξ,I) with respect to I Example 1. (d) ,e EDM solution figure of
different fractional-order of ρ with respect to I of Example 1.

Table 1: EDM result for a different value of ρ when η � 0.001 and absolute error of Example 1.

EDM
ξ ζ I ρ � 0.6 ρ � 0.8 EDM (ρ � 1) Exact (E) AE (E) (ρ � 1)

0.2 0.2
0.1 6.347977E− 5 6.378034E− 5 4.461135E− 5 4.488458-5 2.7323-7
0.3 6.374898E− 5 6.397867E− 5 4.441928E− 5 4.499518-5 5.76800-7
0.5 6.329478E− 5 6.358477E− 5 4.393236E− 5 4.488588-5 8.92644-7

0.5 0.5
0.1 3.961810E− 3 3.992936E− 3 4.124545E− 3 4.148347-3 2.3802-5
0.3 3.918638E− 3 3.937942E− 3 2.767287E− 3 2.868188-3 1.00902-4
0.5 2.851320E− 3 3.986888E− 3 3.014248E− 3 3.144685-3 1.31437-4

1.0 1.0
0.1 2.651681E− 2 2.755798E− 2 2.78556E− 02 2.864629-2 7.9069-4
0.3 2.147458E− 2 2.554775E− 2 2.69884E− 02 2.863881-2 1.65041-3
0.5 3.686988E− 3 3.286775E− 2 2.55842E− 02 2.861074-2 3.02654-3
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where the nonlinear terms can be defined by Adomian
polynomials in the above equations.

N(Ψ) � Ψ3 � 􏽘
∞

ı�0
Bı(Ψ). (39)

Adomian polynomials are given as

B0 � Ψ30,

B1 � 3Ψ20Ψ1,

B2 � 3Ψ20Ψ2 + 3Ψ20Ψ
2
1,

Ψ0(ξ, ζ,I) �
3
2
η sinh

1
6

(ξ + ζ)􏼔 􏼕,

Ψı+1(ξ, ζ,I) � E
− 1

s
ρ
E − 􏽘
∞

ı�0
Bı(Ψ)ξ − 2􏽘

∞

ı�0
Bı(Ψ)ξξξ − 2􏽘

∞

ı�0
Bı(Ψ)ξζζ⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

(40)

for ı � 0, 1, 2, . . . ,

Ψ1(ξ, ζ,I) � E
− 1

s
ρ
E − Ψ30􏼐 􏼑ξ − 2 Ψ30􏼐 􏼑ξξξ − 2 Ψ30􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

Ψ1(ξ, ζ,I) � − 3η3sinh2
1
6

(ξ + ζ)􏼔 􏼕cosh
1
6

(ξ + ζ)􏼔 􏼕 +
3
8
η3cosh3

1
6

(ξ + ζ)􏼔 􏼕􏼔 􏼕E
− 1 1

s
ρ+2􏼠 􏼡,

Ψ1(ξ, ζ,I) � − 3η3sinh2
1
6

(ξ + ζ)􏼔 􏼕cosh
1
6

(ξ + ζ)􏼔 􏼕 +
3
8
η3cosh3

1
6

(ξ + ζ)􏼔 􏼕􏼔 􏼕
I

ρ

Γ(ρ + 1)
.

(41)

,e subsequent terms are

Ψ2(ξ, ζ,I) � E
− 1

s
ρ
E − 3Ψ20Ψ1􏼐 􏼑ξ − 2 3Ψ20Ψ1􏼐 􏼑ξξξ − 2 3Ψ20Ψ1􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

�
3
32
η5sinh

1
6

(ξ + ζ)􏼔 􏼕 765 cosh4
1
6

(ξ + ζ)􏼔 􏼕 − 729 cosh2
1
6

(ξ + ζ)􏼔 􏼕 + 91􏼔 􏼕
I

2ρ

Γ(2ρ + 1)
,

Ψ3(ξ, ζ,I) � E
− 1

s
ρ
E − 3Ψ20Ψ2 + 3Ψ20Ψ

2
1􏼐 􏼑ξ − 2 3Ψ20Ψ2 + 3Ψ20Ψ

2
1􏼐 􏼑ξξξ − 2 3Ψ20Ψ2 + 3Ψ20Ψ

2
1􏼐 􏼑ξζζ􏼔 􏼕􏼔 􏼕,

� −
3
128

cosh
1
6

(ξ + ζ)􏼔 􏼕 171738 cosh6
1
6

(ξ + ζ)􏼔 􏼕 − 349884 cosh4
1
6

(ξ + ζ)􏼔 􏼕 + 215496 cosh2
1
6

(ξ + ζ)􏼔 􏼕􏼔

− 36907]
I

2ρ

Γ(2ρ + 1)
.

(42)
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Figure 3: (a),e exact solution figure ofΨ(ξ,I) of Example 2. (b),e EDM solution figure ofΨ(ξ,I) of Example 2. (c),e EDM solution
figure of Ψ(ξ,I) at ρ � 0.8 Example 2. (d) ,e EDM solution figure of Ψ(ξ,I) at ρ � 0.6 Example 2.
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,e EDM result is

Ψ(ξ, ζ,I) � Ψ0(ξ, ζ,I) + Ψ1(ξ, ζ,I) + Ψ2(ξ, ζ,I) + Ψ3(ξ, ζ,I) + · · · ,

Ψ(ξ, ζ,I) �
3
2
η sinh

1
6

(ξ + ζ)􏼔 􏼕 − 3η3sinh2
1
6

(ξ + ζ)􏼔 􏼕cosh
1
6

(ξ + ζ)􏼔 􏼕􏼔

+
3
8
η3cosh3

1
6

(ξ + ζ)􏼔 􏼕􏼕
I

ρ

Γ(ρ + 1)
+

3
32
η5sinh

1
6

(ξ + ζ)􏼔 􏼕

765 cosh4
1
6

(ξ + ζ)􏼔 􏼕 − 729 cosh2
1
6

(ξ + ζ)􏼔 􏼕 + 91􏼔 􏼕
I

2ρ

Γ(2ρ + 1)

−
3
128

cosh
1
6

(ξ + ζ)􏼔 􏼕 171738 cosh6
1
6

(ξ + ζ)􏼔 􏼕 − 349884􏼔

cosh4
1
6

(ξ + ζ)􏼔 􏼕 + 215496 cosh2
1
6

(ξ + ζ)􏼔 􏼕 − 36907􏼕
I

2ρ

Γ(2ρ + 1)
+ · · · .

(43)

For ρ � 1,

Ψ(ξ,I) �
3
2
η sinh

1
6

(ξ + ζ − ηI)􏼔 􏼕. (44)

In Figure 3, the exact and the EDM solutions of Example
2 at ρ � 1 are shown by Figures 3(a) and 3(b), respectively.
From the given figures, it can be seen that both the EDM and
exact solutions are in close contact with each other. Also, in
Figures 3(c) and 3(d), the EDM results of problem 2 are
investigated at different fractional-order ρ � 0.8 and 0.6. It is
analyzed that time-fractional problem results are convergent

to an integer order effect as time-fractional analysis to in-
teger order. In Figure 4, the first graph shows the two di-
mensions of exact and analytical solutions with respect to I
and the second one shows the different fractional-order
graph with respect to I.

5. Conclusion

In this article, we investigated the time-fractional Zakhar-
ov–Kuznetsov equations using an Elzaki decomposition
method. ,e given test examples illustrate the leverage and
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Figure 4: (a),e exact and EDM solution ofΨ(ξ,I) with respect toI Example 1. (b),e EDM solution figure of different fractional-order
of ρ with respect to I of Example 1.

Complexity 11



effectiveness of the suggested method. ,e obtained solu-
tions are demonstrated by tables and graphs. ,e Elzaki
decomposition method solution is in close contact with the
actual result of the given problems.,e figures show that the
time-fractional solutions obtained have verified the con-
vergence towards the integer order solutions. Moreover, the
current technique is simple and straightforward as com-
pared to other analytical techniques; the proposed method
can solve other linear and nonlinear fractional-order partial
differential equations.
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