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In order to prevent the occurrence of traffic accidents, drivers always focus on the running conditions of the preceding and
rear vehicles to change their driving behavior. By taking into the “backward-looking” effect and the driver’s anticipation
effect of flux difference consideration at the same time, a novel two-lane lattice hydrodynamic model is proposed to reveal
driving characteristics. +e corresponding stability conditions are derived through a linear stability analysis. +en, the
nonlinear theory is also applied to derive the mKdV equation describing traffic congestion near the critical point. Linear and
nonlinear analyses of the proposed model show that how the “backward-looking” effect and the driver’s anticipation
behavior comprehensively affect the traffic flow stability. +e results show that the positive constant c, the driver’s an-
ticipation time τ, and the sensitivity coefficient p play significant roles in the improvement of traffic flow stability and the
alleviation of the traffic congestion. Furthermore, the effectiveness of linear stability analysis and nonlinear analysis results is
demonstrated by numerical simulations.

1. Introduction

With the rapid development of wireless technologies and
intelligent vehicles in the past years, the vehicle-to-vehicle
(V2V) communication [1, 2] can not only alleviate the
congested traffic flow but also provide pleasurable driving
experiences. To reveal the realistic traffic phenomena, there
have emerged various traffic models such as car-following
models [3–10], cellular automation models [11, 12], mac-
rotraffic models [13–15], lattice hydrodynamic models
[16–21], continuum models [22–24], and gas kinetic models
[25].

By incorporating the ideas of car-following as well as
continuum models, the first lattice hydrodynamic model
[26] with a conservation equation (1) and a flow equation (2)
was proposed in 1998.

ztρj + ρ0 ρjvj − ρj−1vj−1  � 0, (1)

zt ρjvj  � a ρ0V ρj+1  − ρjvj , (2)

where ρ0V(ρj+1) and ρjvj denote the optimal flow and the
actual flow, respectively. ρ0 is the average density, and a

refers to the driver’s sensitivity. +en, the stability condition
and mKdV equation can be, respectively, obtained with the
linear analysis and nonlinear analysis methods. Subse-
quently, many extended works have been developed by
taking different factors into accounts, such as driver’s
memory [27–31], driver’s anticipation effect [32–34], density
difference [35], traffic interruption probability [36–38], and
“backward-looking” effect [39–41].

In addition to the information from the preceding ve-
hicle, drivers always focus on the running conditions of the
rear vehicles from the rear-view mirror to change their
driving behavior. By considering the “backward-looking”
effect, Ge and Cheng [39] presented the BL-LV model as
follows:

ρj(t + τ)vj(t + τ) � ρ0VF ρj+1(t) 

+ H ρ − ρj−1(t)  · H ρj−1(t) − ρc ρ0VB ρj−1(t) ,
(3)
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where H(·) and ρc represent the Heaviside function and the
safety density, respectively. ρ denotes a parameter close to 1.
VF(·) is the optimal velocity function for “forward-looking.”
While VB(·) is the optimal velocity function for “backward-
looking,” which works if and only if ρc ≤ ρj−1(t)≤ ρ holds.
Functions VF(·) and VB(·) have exactly the opposite effects
and are defined as

VF ρj+1  � tanh
2
ρ0

−
ρj+1

ρ20
−
1
ρc

  + tanh
1
ρc

 ,

VB ρj−1  � c −tanh
2
ρ0

−
ρj−1

ρ20
−
1
ρc

  + tanh
1
ρc

  ,

(4)

where c is a positive constant that represents the relative role
of the “backward-looking.”

For the sake of safe and comfortable driving, drivers always
predict the velocity of the preceding vehicles so that they can
adjust their driving velocity at the next moment. +is driving
behavior is known as the anticipation effect [42] or predictive
effect [43, 44]. Wang et al. [43] added the driver’s anticipation
effect into the optimal velocity (OV) function in a single-lane
lattice model. Later, Kaur and Sharma [44] extended the single-
lane model [43] to the two-lane case along with the optimal
current difference (OCD) effect. By considering the anticipation
effects in theOCD term as well as theOV function, Sharma [45]
constructed a new lattice hydrodynamic model with an an-
ticipation coefficient α, where the positive α represents the
anticipation effect while the negative α represents the delay
effect. +en, Li et al. [32] adopted this anticipation effect to the
multiple optimal current differences’ anticipation version.
Meanwhile, numerical results indicated that only the infor-
mation of three preceding lattices [46] was enough for the
improvement of traffic stability. In view of the anticipation effect
of flux difference, Chang and Cheng [47] proposed a new lattice
model as follows:

zt ρjvj  � aρ0V ρj+1  − a 1 + k1( ρjvj

+ k2 ρj+1(t + τ)vj+1(t + τ) − ρjvj ,
(5)

where τ represents the driver’s anticipation time and k1 and
k2 denote the deviation degree of speed vj and the feedback
gain, respectively. Some previous studies have considered
the “backward-looking” effect and the anticipation effect of
flux difference separately. In a real traffic system, the velocity
of the current vehicles is not only affected by the preceding
vehicles but also affected by the rear vehicles. Generally, the
information of the rear vehicles could be received by the
rear-view mirror. According to the information, drivers
could change their driving behavior to avoid the traffic
accidents. Meanwhile, the velocity of the preceding vehicles
could be predicted by drivers on the basis of the vehicle
distance information, so that they can adjust their driving
velocity in a period of anticipation time. However, the above
two factors have never been considered simultaneously in
the existing lattice models. +is motivates us to develop a
new lattice model by incorporating the “backward-looking”
effect with the anticipation effect of flux difference.

+e outline of this paper is organized as follows. In
Section 2, we introduce a new lattice hydrodynamic model
considering the flux anticipation difference effect and the
“backward-looking” effect and use the linear stability theory
to derive the stability condition of the traffic flow. In Section
3, the propagation behavior of traffic density waves is
presented by means of the nonlinear analysis method. In
Section 4, numerical simulations are carried out to validate
the results of linear and nonlinear stability analyses. At last,
the conclusions are drawn in Section 5.

2. The Extended Lattice Hydrodynamic Model
and Linear Stability Analysis

In light of the aforementioned facts, a novel lattice model is
presented by taking the flux anticipation difference effect
and the “backward-looking” effect (FADBE) into account as
follows:

zt ρjvj  � a ρ0VF ρj+1(t)  + H ρ − ρj−1(t)  · H ρj−1(t) − ρc ρ0VB ρj−1(t)  

− aρjvj + ap ρj+1(t + τ)vj+1(t + τ) − ρjvj ,
(6)

where p is the sensitivity coefficient of the anticipation flux
difference. +e greater p is, the stronger the driver’s an-
ticipation effect is. τ means the anticipation time, and
ρj+1(t + τ)vj+1(t + τ) − ρjvj represents the anticipation flux
difference between the preceding lattice j + 1 and the

current lattice j. +e optimal velocity functions and the
functionH(·) are the same as those in Ge and Cheng’s model
[39].

After eliminating the velocity term vj in equations (1)
and (6), the following density equation can be derived:
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z
2
t ρj(t) + aρ20 V ρj+1(t)  − VF ρj(t)  + VB ρj−1(t)  − VB ρj−2(t)  

+ aztρj + ap ztρj − ztρj+1(t + τ)  � 0.
(7)

When p � 0, the model reduces to Ge and Cheng’s
model [39]. In addition, the lattice model coincides with
Nagatani’s model [26] when p � 0 and τ � 0.

+e influence of the “backward-looking” effect and the
anticipation effect has been studied by linear stability
analysis. +e uniform traffic stream with the fixed density ρ0
and the optimal velocity V(ρ0) is defined as the stable state.
One can obtain the solution of the steady-state vehicular
system as follows:

ρj(t) � ρ0,

v(j) � VF(ρ) + VB(ρ).
(8)

+en, yj is supposed as a small perturbation added into
the steady-state solution at lattice j, and the perturbed so-
lution is

ρj(t) � ρ0 + yi(t). (9)

Equation (9) is substituted into equation (7), and the
derived equation is linearized. +e equation is obtained as

z
2
t yj(t) + aρ20VF

′ ρ0(  yj+1(t) − yj(t) 

+ aρ20VB
′ ρ0(  yj−1(t) − yj−2(t) 

− apztyj+1(t + τ) +(ap + a)ztyj � 0.

(10)

Let the small perturbation yj(t) � exp(ikj + zt), and
inserting it into equation (10), we gain

z
2

+ aρ20 VF
′ ρ0(  e

ik
− 1  + VB

′ ρ0(  e
ik

− e
− 2ik

  

− apze
zτ+ik

+(ap + a)z � 0.
(11)

Assuming z � z1(ik) + z2(ik)2 + · · · and putting it into
equation (11), we reserve the first-order and second-order
terms of ik by neglecting higher-order terms. +en, one can
get

z1 � −ρ20 VF
′ ρ0(  + VB

′ ρ0( ( ,

z2 �
2apz1 − 2z

2
1 + 2apz

2
1τ − aVF

′ ρ0( ρ20 + 3aVB
′ ρ0( ρ20

2a
.

(12)

+e uniform steady-state flow remains stable as z2 is pos-
itive. On the contrary, the uniform flow tends to be unstable if
the value of z2 is negative.When z2 is equal to zero, the formula
of the neutral stability condition is acquired as

a �
2 VF
′ ρ0(  + VB

′ ρ0( ( 
2ρ20

M
, (13)

where M � −VF
′(ρ0) + 3VB

′(ρ0) − 2(VF
′ (ρ0) + VB

′(ρ0))p + 2
(VF
′(ρ0) + VB

′(ρ0))
2pτρ20. +e stability condition for the

uniform traffic flow is obtained as

a>
2 VF
′ ρ0(  + VB

′ ρ0( ( 
2ρ20

M
. (14)

It is obvious that the stable condition (14) is reduced to
that of Ge and Cheng’s model [39] when p � 0. Equation
(14) shows that the parameters p, τ, and c play important
roles in the performance of the traffic system.

+e phase diagram of (ρ, a) is shown in Figure 1, where ρ
is density and a denotes sensitivity. Note that c denotes a
positive constant considering the “backward-looking” effect
[40, 41]. +ree solid curves in each pattern of Figure 1
represent the neutral stability curves under c � 0.1. +e
phase diagram is divided into two regions: the stable and
unstable regions are above and below the solid neutral
stability curve, respectively. In the stable region, the traffic
flow will remain stable with a perturbation. In the unstable
region, the congested traffic will happen even with a small
perturbation. Figure 1 depicts the neutral stability curves of
the FADBE model for different values of driver’s anticipa-
tion time τ and the sensitivity coefficient p of the antici-
pation flux difference when c � 0.1. As shown in Figure 1,
the corresponding stable region expands gradually with the
increasing values of τ and p, which means that the driver’s
anticipation effect can contribute to the stabilization of
traffic flow obviously.

Figure 2 demonstrates the neutral stability curves of the
FADBE model for different values of τ and c when p � 0.1.
As shown in Figure 2, the corresponding neutral stability
curves and critical points decrease gradually with the in-
creasing values of τ and c. When the value of c is fixed in
each pattern of Figure 2, the stability of the traffic flow can be
improved efficiently with the increasing value of anticipation
time τ.

Figure 3 exhibits that the phase diagram of (ρ, a) of the
FADBE model for different values of the positive constant
c (c � 0.05, 0.1, 0.15, 0.2) and the sensitivity coefficient
p (p � 0.1, 0.2, 0.3) when τ � 1.5. With the increasing value
of the positive constant c in each pattern of Figure 3, the
amplitudes of neutral stability curves all fall down gradually
when the value of the parameter p is fixed. For different
values of c, it can be seen from each pattern of Figure 3 that
the corresponding peak value of solid curves lowers down
with the increasing value of p. +ese phenomena demon-
strate that when the value of c or p increases, the area of the
stable region becomes larger. +us, it can be concluded that
the traffic flow stability can be improved by incorporating
the positive constant c and the sensitivity coefficient p.

3. Nonlinear Stability Analysis

To investigate the influence of the “backward-looking” effect
and the anticipation effect of flux difference, we carried out
the reduction perturbation method to obtain the mKdV
equation. +e slow variables X and T are defined as follows:
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X � ε(j + bt),

T � ε3t,

ρj � ρc + εR(X, T),

(15)

where ε (0< ε≪ 1) is a small positive scaling parameter.
Substituting equation (15) into equation (7), each term of

equation (7) is expanded up to the fifth-order of ε with the
Taylor expansion technique as follows:
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Figure 1: +e neutral stability curves for c � 0.1 for different values of p and τ: (a) p � 0.1; (b) p � 0.2; (c) p � 0.3; (d) p � 0.4.
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ε2 b + ρ2c VF
′ + VB
′(  zXR

+ ε3
b
2

a
− b

2
pτ −

3
2
ρ2cVB
′ +

1
2
ρ2cVF
′ z

2
XR

+ ε4 zTR −
1
2
b
3
pτ2 −

7
6
ρ2cVB
′ −

1
6
ρ2cVF
′ z

3
XR +

1
6
ρ2cV
′″
B +

1
6
ρ2cV

x2032;″
f zXR

3
 

+ ε5
2b

a
− 2bpτ zXzTR + −

1
6
b
4
pτ3 −

5
8
ρ2cVB
′ +

1
24
ρ2cVF
′ z

4
XR +

1
12
ρ2cV
′″
f −

1
4
ρ2cV
′″
B z

2
XR

3
  � 0,

(16)
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Figure 2: +e neutral stability curves for p � 0.1 for different values of τ and c: (a) τ � 0.5; (b) τ � 1.5; (c) τ � 2.5; (d) τ � 3.5.
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where
VF
′ � (dV(ρ)/dρ)|ρ�ρc

V
′″
F � (d3V(ρ)/dρ3)|ρ�ρc

⎧⎨

⎩ and

VB
′ � (dV(ρ)/dρ)|ρ�ρc

V
′″
B � (d3V(ρ)/dρ3)|ρ�ρc

⎧⎨

⎩ . Near the critical point (ρc, ac),

the value of ac is defined as ac � a(1 + ε2). +e squared and
cubic terms of ε are eliminated in equation (16) with the

consideration of b � −ρ2c(VF
′ + VB
′). One can get the sim-

plified equation as follows:

ε4 zTR − g1z
3
XR + g2zXR

3
 

+ ε5 g3z
2
XR + g4z

4
XR + g5z

2
XR

3
  � 0,

(17)
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Figure 3: +e neutral stability curves for τ � 1.5 for different values of c and p: (a) c � 0.05; (b) c � 0.1; (c) c � 0.15; (d) c � 0.2.
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g1 � −
1
6
ρ2c 7VB
′ + VF
′ + 3pρ4cτ

2
VB
′ + VF
′( 
3

 ,

g2 � ρ2c V
′″
F + V
′″
B ,

g3 �
1
2
ρ2c 3VB
′ − VF
′ − 2p VB

′ + VF
′(  + 2pρ2cτ VB

′ + VF
′( 
2

 ,

g4 � −
1
24
ρ2c 15VB

′ − VF
′ + 4pρ6cτ

3
VB
′ + VF
′( 
4

  −
1
3a
ρ4c(apτ − 1) VB

′ + VF
′(  3pρ4cτ

2
VB
′( 
3

+ VF
′ 

−
1
3a
ρ4c(apτ − 1) VB

′ + VF
′(  3pρ4cτ

2
VF
′( 
3

+ VB
′ 7 + 9pρ4cτ

2
VF
′( 
2

  ,

g5 � −
1
12
ρ2c 3V

′′′
B − V
′′′
F  −

1
3a
ρ4c(apτ − 1) VB

′ + VF
′(  V
′′′
B + V
′′′
F .

(18)

To derive the standard mKdV equation, the following
transformations are applied:

T �
1
g1

T′,

R �

��
g1

g2



R′.

(19)

+us, equation (17) is converted into the standardmKdV
equation as follows:

zT′R′ � z
3
XR′ − zXR′

3
+ ε

g3

g1
z
2
XR′ +

g4

g1
z
4
XR′ +

g5

g2
z
2
XR′

3
 .

(20)

When the term O(ε) is ignored, the kink-antikink sol-
iton solution of the mKdV equation can be rewritten as

R0′ X, T′(  �
�
c

√
tanh

�
c

2



X − cT′(  , (21)

where c represents the propagation velocity. +e specific
value of c can be provided only when the following solv-
ability condition is satisfied:

R0′, M R0′ (  ≡ 
∞

−∞
dXR0′M R0′  � 0, (22)

where M[R0′] � (1/g1)[g3z
2
XR′ + g4z

4
XR′ + (g1g5/g2)

z2XR′
3
]. By solving equation (22), the general solution of

propagation velocity c can be calculated as

c �
5g2g3

2g2g4 − 3g1g5
. (23)

Hence, the corresponding kink-antikink solution is
derived as

ρj � ρc + ε
���
g1c

g2



tanh
�
c

2



X − cg1T(  , (24)

where ε2 � ((ac/a) − 1), and the amplitude of the density
wave A is defined as

����������
(g1ε2C/g2)


. According to the kink-

antikink solution equation (24), one can get the coexisting

phases which include the freely moving phase with low
density (ρj � ρc − A) and the congested phase with high
density (ρj � ρc + A).

Based on the linear and nonlinear theory analyses,
numerical simulations are carried out with the compre-
hensive consideration of the anticipation effect of flux dif-
ference and the “backward-looking” effect.

4. Numerical Simulations

As a positive constant c considering the “backward-looking”
effect has been studied fully in some previous studies
[36, 40, 41], this paper will focus on the effects of parameters
p and τ in this part. Periodic boundary conditions are
adopted by a step function as follows:

ρj(0) � ρ0 � 0.25, j ∈ [1, N],

ρj(1) �

ρ0; j≠
N

2
,
N

2
− 1,

ρ0 + Δρ; j �
N

2
− 1,

ρ0 − Δρ; j �
N

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where Δρ � 0.01 is the initial perturbation and other pa-
rameters are set as N � 200, a � 1.2, and ρ0 � ρc � 0.25.

4.1.$e Effect of Anticipation Time τ. In order to analyze the
anticipation time’s influence on the stability of the traffic
system, the temporal and spatial evolution of density waves
between time t � 10000 − 10200 s is depicted in Figure 4 for
different anticipation time τ with fixed parameters p � 0.1
and c � 0.05. Since the given parameters in Figures 4(a)–4(c)
do not satisfy the linear stable condition equation (14), kink-
antikink density waves appear and the initial stable traffic
flow evolves into nonuniform traffic flow with the added
perturbation. To reveal the amplitude of the density wave
more clearly, Figure 5 describes the density profile of each
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Figure 4: +e evolution of the traffic densities for different values of parameter τ: (a) τ � 1.0; (b) τ � 1.5; (c) τ � 2.0; (d) τ � 2.5.
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Figure 5: +e density profile at t � 10200 with different values of τ: (a) τ � 1.0; (b) τ � 1.5; (c) τ � 2.0; (d) τ � 2.5.
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Figure 6: +e evolution of the traffic densities for different values of parameter p: (a) p � 0; (b) p � 0.05; (c) p � 0.1; (d) p � 0.15.
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Figure 7: Continued.
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subfigure shown in Figure 4 at t� 10200. Moreover,
Figures 5(a)–5(c) reveal that the amplitudes of density waves
corresponding to Figures 4(a)–4(c) weaken as the antici-
pation time τ increases. When τ � 2.5, i.e., the parameters in
Figure 4(d) satisfy the linear stability condition, the added
perturbation will disappear, and the traffic flow will even-
tually return to a uniform state. Figure 5(d) can get results
similar to Figure 4(d). +is phenomenon indicates that
driver’s anticipation effect of flux difference could signifi-
cantly promote the stabilization of traffic flow.

4.2. $e Effect of Sensitivity Coefficient p. To expose the
sensitivity coefficient’s influence on the stability of the traffic
system, the temporal and spatial evolution of density waves
between time t � 10000 − 10200 s is exhibited in Figure 6 for
different values of p with fixed c � 0.05 and τ � 2. When
p � 0, the FADBE model degrades into Ge and Cheng’s
model [39]. Note that the parameters in Figures 6(a)–6(c) do

not satisfy the linear stable condition equation (14).
+erefore, the stop-go traffic density waves occur with the
small added perturbation in Figures 6(a)–6(c). Meanwhile,
the amplitude of the density wave decreases gradually as the
value of p increases. Especially in Figure 6(d), the congested
state entirely disappears when p � 0.15. +e relationship
between Figures 6 and 7 is similar to the relationship be-
tween Figures 4 and 5. Figure 7 describes the density profile
of each subfigure shown in Figure 6 at t� 10200. As pa-
rameter p increases, the traffic flow becomes more gentle
and stable. +is indicates that the sensitivity coefficient p

contributes to suppressing the traffic congestion.
Figures 8(a) and 8(b) describe the flux against the density

with different parameters corresponding to the traffic flow in
Figures 4 and 6, respectively. In Figure 8, the amplitude of
the hysteresis loops reduced with the increasing value of τ or
p. When the corresponding parameter τ ≥ 2.5 or p≥ 0.15,
the hysteresis loop turns into a stable point, which means
that the traffic flow eventually becomes stable even with the
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Figure 7: +e density profile at t � 10200 with different values of p: (a) p � 0; (b) p � 0.05; (c) p � 0.1; (d) p � 0.15.
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added small perturbation. To sum up, as the anticipation
time τ or the sensitivity coefficient p increases, the stability
of the system can be enhanced by incorporating the driver’s
anticipation effect and the “backward-looking” effect.

5. Conclusion

In this paper, a novel lattice hydrodynamic model with the
anticipation effect of flux difference and the “backward-
looking” effect is constructed to explore the traffic driving
behavior for a single-lane traffic system. +e stability con-
ditions and the solution of the mKdV equation are deduced,
respectively, based on the linear stability analysis and
nonlinear theory. +e results of the theoretical analysis
display that the increasing values of both the driver’s an-
ticipation time and the sensitivity coefficient of the antici-
pation flux difference can contribute to enlarging the stable
region. Numerical simulations reveal that the FADBE model
is effective in stabilizing traffic flow even with perturbations.
By considering the anticipation effect of flux difference and
the “backward-looking” effect simultaneously, the traffic
congestion can be alleviated effectively, which is in accor-
dance with the conclusions of the theoretical analysis. Future
work will focus on solving the traffic congestion onmultilane
road problem, the automation for longitudinal driving, and
the vehicular emergency warning system.
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