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Asian citrus psyllid, Diaphorina citri Kuwayama (Liviidae: Hemiptera) is a menacing and notorious pest of citrus plants. It vectors
a phloem vessel-dwelling bacterium Candidatus Liberibacter asiaticus, which is a causative pathogen of the serious citrus disease
known as Huanglongbing. Huanglongbing disease is a major bottleneck in the export of citrus fruits from Pakistan. It is being
responsible for huge citrus economic losses globally. In the current study, several prediction models were developed based on
regression algorithms of machine learning to monitor different phenological stages of Asian citrus psyllid to predict its population
about different abiotic variables (average maximum temperature, average minimum temperature, average weekly temperature,
average weekly relative humidity, and average weekly rainfall) and biotic variable (host plant phenological patterns) in citrus-
growing regions of Pakistan. 'e pest prediction models can be used for proper applications of pesticides only when needed for
reducing the environmental and cost impacts of pesticides. Pearson’s correlation analysis was performed to find the relationship
between different predictor (abiotic and biotic) variables and pest infestation rate on citrus plants. Multiple linear regression,
random forest regressor, and deep neural network approaches were compared to predict population dynamics of Asian citrus
psyllid. In comparison with other regression techniques, a deep neural network-based prediction model resulted in the least root
mean squared error values while predicting egg, nymph, and adult populations.

1. Introduction

'e citrus greening disease, which is also known as
Huanglongbing, is a severe affliction to citrus plants that
causes significant losses to the citrus economy, caused by a
phloem-dwelling bacterium Candidatus Liberibacter asiat-
icus. 'is incurable and economically damaging disease is
transmitted by infection of a sucking pest, Asian citrus
psyllid (ACP), which is a transmitting vector agent of
Candidatus Liberibacter asiaticus phloem-inhabiting bac-
terium. Effective management of ACP is crucial for pre-
venting the losses caused by Huanglongbing and ACP

complex [1]. 'ere are three types of bacteria, Candidatus
Liberibacter asiaticus, Candidatus Liberibacter americanus,
and Candidatus Liberibacter africanus, associated with the
spreading of Huanglongbing throughout the citrus-growing
areas worldwide [2]. Huanglongbing is a vector-borne
disease, and its causative agents grow and transmit through
ACP [3].

Psyllid population growth rate is directly associated with
the flush phenology (biotic factor) of host plants because
female adults are only able to lay eggs on young, tender, and
succulent plant leaves, and resultantly, the nymphs are more
likely to hatch and grow during the season of abundant flush
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growth on citrus plants. Availability of flush growth and
optimum meteorological conditions leads to large infesta-
tions of ACP on citrus plants. Different meteorological
conditions such as relative humidity, temperature, and
rainfall in the study area are important factors influencing
the existence of ACP stages in the field. Citrus host plant
phenological characteristics have the tremendous ability to
influence psyllid biology, survival, and resultant pest out-
breaks under optimum environmental conditions [4–6].

Entomologists carried out various trials previously re-
garding population change of psyllid over time and these
types of studies are significantly useful in future pest pre-
diction and forecasting. Keeping in view, the significant
effect of weather factors on insect populations and natural
enemies’ existence can be correlated with the changing pest-
natural enemies’ populations, which will better explain the
density curves of both psyllid and associated insect enemies
[7–9].

'e science of ecology in natural sciences studies the
mutual relationships among the biotic and abiotic compo-
nents of the ecosystem to understand ecological processes
and make predictions about future trends. Machine learning
(ML) techniques have advantages over typical statistical
approaches because these techniques are modeling ecolog-
ical processes in a better way by allowing better decision-
making and informed actions in the real world without (or
with minimal) human involvement. ML techniques not only
provide a flexible framework for the execution of data-
driven tasks but also help for the integration of expert
knowledge into the system [10].

'e abilities of ML algorithms to model high-dimen-
sional and nonlinear data with complex interactions,
missing values, and identification of complicated structures
from more complex datasets are defeating typical statistical
approaches in population modeling [11]. Recent advance-
ments in ML are deep learning (DL) techniques [12].'e DL
approaches have the potential of automated feature learning,
and the complex structures allow to solve more complex
problems faster and accurately and reduce error while
modeling regression problems and increasing accuracy in
classification problems analysis in the presence of large
dataset availability [13].

Machine learning techniques have been used in several
studies related to pest’s population prediction such as mod-
eling the population dynamics of paddy stem borer (Scirpo-
phaga incertulas) [14], the population density of Scirtothrips
dorsalis Hood [15], risk of Melon thrip (T. palmi), dia-
mondback moth (P. xylostella) [16], fluctuating trends of
Dendrolimus superans population [17], population phenology
of Black Planthopper (Nilaparvata lugens) [18], population
occurrence of mosquitoes in correlation with different so-
cioeconomic factors and landscape variables [19], Prostepha-
nus truncatus infestation and accompanying damages tomaize
grain storage in correlation with abiotic factors [20], fluctu-
ating trends of cotton’s pest population (:rips tabaci linde)
[21], and the effect of temperature and rainfall monitored by
Watts and Worner [22] to the establishment of mealybug
(Planococcus citri) and aphid (Myzus Persicae, Aphis gossypii,
Eriosoma lanigerum, and Brevicoryne brassicae).

'e random forest regressor (RFR) model has been
employed by researchers in various fields related to pre-
diction and classification problems; for example, the authors
of [23–25] used this ensemble learning approach prediction
of dengue, citrus flatid planthopper, and sunn pest’s
nymphal stage, respectively. For earlier prediction of pest’s
risk, the multiple linear regression (MLR) model was
adopted by numerous researchers. 'e authors of [26, 27]
implementedMLR approach to model potential risk of black
planthopper and oriental fruit fly (Bactrocera dorsalis)
population, respectively.

Deep neural network (DNN) has broader applicability in
the following agricultural domains in general. Chlingaryan
et al. [10] used DNN for estimation of crop yield prediction.
'e authors of [28, 29] deployed DNN for the prediction of
soil moisture contents, and Scher [30] used DNN for
weather conditions’ prediction. DNN has been also used for
land cover and crop type classification, image identification,
and classification of plants and weeds [31–34]. Rammer and
Seidl [35] deployed DNN and RFR to predict damages that
will occur in the future through bark beetle population
outbreak using pest’s historical data and concluded that
DNN has the tremendous power to model bark beetle
outbreaks’ dynamics and other ecological prediction prob-
lems. 'is review of previous studies shows a research gap
concerning the use of ML and DL models in the prediction
of phenological stages of insects-pests. Keeping in view the
literatures, the present study was conducted to (a) make
comparative analysis of different machine and deep learning
techniques to predict phenological stages of ACP and (b)
monitor the cumulative effect of different weather factors
and host plant phenology on psyllid phenological stages.

In present research, we made a comparative analysis of
different regression-based approaches, i.e., DNN, MLR, and
RFR models, to predict the population of different ACP-
phenological stages using environmental variables and host-
plant phenology variables as independent variables. By using
the abovementioned regression approaches, we evaluated
the combined effect of different independent variables on
three ACP-phenological stages, i.e., eggs, nymphs, and
adults separately.

2. Materials and Methods

2.1. Study Site and Data Collection. For data collection to
monitor population dynamics of Asian Citrus Psyllid, two
study locations, Square No.9 (31° 25′50.4″ N; 73° 03′40.2″ E;
elevation 190m) and PARS (N31o23’35.20”; E73o01’27.0”;
elevation 210m), were selected from University of Agri-
culture Faisalabad (UAF), Pakistan. From both study lo-
cations, 15 trees of two citrus species, sweet orange (Citrus
sinensis sensu latu), and kinnow (Citrus reticulata) were
randomly selected and tagged properly to monitor pop-
ulation fluctuations of ACP on weekly basis from a time
course, 26 March 2011 to 20 April 2013. A detailed de-
scription of both study sites and ACP-phenological stages’
data collection is given in [36]. We used datasets spanning
25months to reduce experimental errors and to confirm the
psyllid response in different weather conditions in different
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seasons. If psyllid population increases in spring, then we
repeated this for next spring to see if psyllid responds
similarly.

Meteorological data during the experimental period
regarding daily temperature (maximum, minimum, and
average temperature), rainfall, and relative humidity on
daily basis were documented from the meteorological ob-
servatory of the Crop Physiology (CP) department in the
Agricultural faculty of UAF. 'e effect of meteorological
(abiotic) factors was also monitored by calculating the
percentage of branches infected with different life stages of
ACP, i.e., eggs, nymphs, and adults individually and
collectively.

2.2. Model Development. In this study, three models, i.e.,
RFR, DNN, and MLR, were employed to model population
dynamics of ACP.'eGoogle Collaboratory was used, and it
is an effective cloud computing environment for developing
python-based applications.

2.3. Random Forest Regressor. Random forest is an ensem-
bled learning approach proposed in [36] and used both for
regression and classification problems’ analysis [37]. Each
random forest is composed of a specified number of decision
trees, and each decision tree trains on samples of training
data by following a randomized approach called Bagging
(Bootstrap aggregating). Random forest regressor returns
the output in the form of the mean value calculated from the
results of the prediction of all decision trees. It minimizes the
effect of model overfitting by introducing randomness in
variables and data instances’ selection. RFRs have the ca-
pability of efficient training and testing. As each prediction is
made by random forests (RFs), a built-in mechanism is
usually found in RF to calculate test errors, e.g., root mean
squared error (RMSE), mean absolute error (MAE), and
confidence [38]. Hyperparameter tuning is an important
step in the development of models. In order to train the RF,
we set the value of n_estimators (number of decision trees)
as 20 and random_state� 42, while keeping other hyper-
parameters with their default values.We used RMSE as a loss
function to calculate test errors. 'e mathematical formu-
lation of RMSE is given as follows:

RMSE �
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where yi and 􏽢yi are the actual and predicted values, re-
spectively, and n is the number of observations. For eval-
uating the accuracies of the forecasting models, RMSE is a
common indicator used in regression problems analysis
[39].

2.4. Deep Neural Network. Artificial neural networks
(ANNs) were developed in the middle of the nineteenth
century. 'e term “deep learning” refers to training of
deeper and larger ANNs. Here, deeper and larger are

concerned with more layers and more neurons as compared
to ANNs [12]. DNNs are the result of recently developed
improved algorithms which are optimizing the weights of
the connections [40].

For predicting the population phenology of ACP, we
developed a DNN comprised of one input layer consisting of
six input neurons/nodes and two hidden layers with six and
eight neurons, respectively. 'e activation function and
optimizer used are ReLu and Adam, respectively. DNN
architecture also consisted of one output layer with a single
neuron to predict each ACP life stage, i.e., eggs, nymphs, and
adults separately. We used dense layers to make the model
more stable for prediction (Figure 1).

2.5. Multiple Linear Regression. To quantify the relationship
between different input variables (Average Max Temp,
Average Min Temp, AverageWeekly Temp, AverageWeekly
RH, Average Weekly Rainfall, and Branches with Flush) and
ACP phenological stages, Pearson correlation analysis was
performed. We used Pearson correlation coefficient (R)
values as criteria to select suitable input variables for de-
veloping the MLR model. 'e MLR model was deployed
with a stepwise selection method to monitor the fluctuating
trends of ACP population occurrence. Equation (2) for MLR
is given below:

y � β0 + β1x1 + β2x2 + · · · + βkxk + ε, (2)

where y refers to predicted or response variable.'e range of
predictors or controlled variables starts from x1 to xk. β0 is
called the intercept or constant variable and β1 to βk are the
regression coefficients of controlled variables. ε is fitted or
residual error to indicate the uncertainty in the model [41].
We normalized the dataset before fitting the MLR model on
the respective dataset to monitor the population growth of
ACP in relation to host plant phenology and different abiotic
factors.

2.6. Feature Importance. To measure the importance of
different input variables for predicting different ACP-phe-
nological stages, we used a feature importance graph using
RFR. 'e feature importance graphs for eggs and nymphs
reveal that “branches with flush” is one of the most im-
portant variables for ACP egg and nymph growth (Figure 2).

3. Results

3.1. Effect of Abiotic Factors on Population Fluctuations of
ACP. To study the impact of various abiotic factors on the
population phenology of D. citri during the experimental
time duration of 25 months on an individual and cumulative
basis for different citrus species, correlation coefficient
values by using Minitab software were calculated (Table 1).
In the case of the ACP-eggs’ population, host plant flush
growth patterns and average weekly relative humidity have a
significant and positive relationship with ACP-eggs’ pro-
duction and growth as R� 0.44 and 0.247 and p≤ 0.05).
ACP-nymphs’ growth was found to be positively correlated
with input variable branches with flush as R� 0.48 and
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Figure 1: Deep neural network architecture for predicting ACP population dynamics.
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Figure 2: Feature importance graphs for different ACP phenological stages. (a) Input variables importance for ACP-egg’s growth. (b) Input
variables importance for ACP-nymph’s growth. (c) Input variables importance for ACP-adult’s growth.
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p≤ 0.05. Average weekly rainfall and relative humidity were
nonsignificant and negatively correlated with ACP-nymphs’
abundance.

It is clear from the results that average minimum
temperature, average maximum temperature, and average
weekly temperature showed positive and significant impact
on the population of ACP-adults (R� 0.233, 0.25, and 0.244
and p≤ 0.05). Cumulatively, from the time course of March
2011 to April 2013, rainfall and relative humidity exerted a
significant but negative impact on the ACP population.
Meanwhile, all three temperatures exerted a positive but not
nonsignificant correlation with population of ACP (Table 1).

3.2. Comparison of Different Regression Approaches to Predict
ACP-Eggs’ Population. To predict ACP-eggs’ population, all
three employed models were fitted using training data. We
experimented with these regression-based approaches on
eight types of datasets (Figure 3). Figure 3 shows a com-
parison of actual and predicted values. We have categorized
models from best to worst in the context of their perfor-
mance in ACP-eggs’ population. In most cases, the DNN
model resulted in the least RMSE value of 0.63925 while
predicting the ACP-eggs’ population. 'e RMSE value was
computed by taking the mean of RMSE values obtained
from results of eight datasets. 'e RFR model was the other
best regression approach which resulted in the second least
RMSE value of 0.70375. RFR is an ensemble method which
is much efficient in extracting meaningful information
from the given data. It was found to be true in previous
studies [18, 35]. 'e MLR model resulted in the RMSE
value of 0.7935 as it could not perform well in comparison
with other approaches deployed for ACP-eggs’ population
prediction. 'ese findings are consistent with result of
[19, 42, 43].

In the case of ACP-nymphs’ population prediction, the
DNN model performed better when compared with the

other competitive approaches (Figure 4). DNN has the least
RMSE value. Before the training of a prediction model,
hyperparameter tuning was performed to attain the best
parameters for each model. 'en, models were retrained
using these best parameters to obtain minimum the loss
function’s values. 'e residuals calculated by DNN, RFR,
and MLR models were 1.1875, 1.38775, and 1.2715, re-
spectively (Table 2).

ACP-adult stage considers to be more threatening for all
ornamental and citrus plants. Timely identification and
removal from citrus cultivars is a matter of great interest for
citrus growers. While predicting the ACP-adults’ population
in relation to different abiotic variables (Table 1) and flush
growth patterns, the DNNmodel resulted in an RMSE value
of 3.6776 which was the least RMSE value as compared to
residuals computed by RFR and MLR models (Figure 5).
RFR and MLR models resulted in 6.0553 and 8.6883 re-
siduals while predicting ACP-adults’ population’s fluctuat-
ing trends, respectively (Table 2).

4. Discussion and Conclusion

Pest’s population prediction can be used as a tool for area-
wide integrated pest management programs as it will help to
reduce the applications of agrochemicals in fields [27]. Dif-
ferent abiotic factors can be used as independent variables for
building a pest’s population prediction model [44]. Along
with abiotic factors, there are also some biotic factors that can
be used for predicting pest population abundance, e.g., host
plant phenology [27, 45]. It was found that, during seasons of
abundant flush growth, more infestation of ACP-eggs and
ACP-nymphs were observed in citrus orchards, and the same
effects were observed in [1, 8, 46]. Proper pest management
strategies will help to conserve psyllid-natural enemies by
minimizing pesticides applications in fields so that they can
play their role as a biocontrol agent against ACP effectively.
Optimum climatic conditions and host plant phenological

Table 1: Pearson’s correlation coefficient values between different ACP phenological stages and different abiotic variables and host plant
flush growth patterns.

Predictor variables Phonological stage Correlation coefficient (R) Sig.
Average Max Temp Eggs −0.052 0.663
Average Min Temp 0.011 0.929
Average Weekly Temp −0.019 0.871
Average Weekly RH 0.247 0.035∗∗

Average Weekly Rainfall 0.121 0.308
Branches with flush 0.44 0.000∗∗

Average Max Temp Nymphs 0.065 0.583
Average Min Temp 0.043 0.715
Average Weekly Temp 0.053 0.654
Average Weekly RH −0.028 0.817
Average Weekly Rainfall −0.036 0.762
Branches with flush 0.48 0.000∗∗

Average Max Temp Adults 0.233 0.047∗∗

Average Min Temp 0.25 0.033∗∗

Average Weekly Temp 0.244 0.038∗∗

Average Weekly RH −0.013 0.914
Average Weekly Rainfall 0.051 0.667
Branches with flush −0.053 0.655

Complexity 5



patterns have a great impact on ACP’s survival, biology, and
resultant pest abundance. 'e findings of this work are
consistent with studies of [4, 5, 47]. ACP’s population was
found to decrease significantly with rainfall and relative
humidity and increased with temperature. 'e ACP-
adults’ population was seen at its peak from March to
April and September to October where maximum ACP-
adults’ population was observed in former study duration.

DNN is an appropriate choice for modeling the ACP
population dynamics prediction problems as it has the
potential to model complex data [35]. DL, an emerging and
powerful evolution in ML, can become a powerful tool for
ecologists because of its quantitative and predictive nature
[48–50]. Because of generalizability of DL algorithms, they
are competent models for prediction problems specifically in
ecology and generally in all domains of research related to
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Figure 3: A comparison of actual and predicted ACP-eggs’ values using different models. (a) DNN, (b) RFR, and (c) MLR comparison of
different regression approaches to predict ACP-nymphs’ population.
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forecasting problems. It was concluded here that DNN
outperformed other classical and statistical regression
techniques while modeling ACP population fluctuating
trends, and we can deploy it in the future for modeling
complex forecasting problems. 'e RFR techniques also

performed better than the statistical model MLR while
predicting ACP-egg and ACP-adult population. According
to [18], RFR can be more robust for prediction by acting
upon some factors such as proper adjustment of hyper-
parameter values and larger datasets.

In this study, various regression-based models, ranging
from classical regression to deep learning-based regression,
were employed for predicting the population dynamics of
ACP. Current study compared predicting of the perfor-
mance of various models by comparing and evaluating their
resultant RMSE values. Different input variables, i.e., Av-
erage Max Temp, Average Min Temp, Average Weekly
Temp, Average Weekly RH, Average Weekly Rainfall, and
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Figure 4: A comparison of actual and predicted ACP-nymphs’ values using different models. (a) DNN, (b) RFR, and (c)MLR comparison of
different regression approaches to predict ACP-adults’ population.

Table 2: A comparison of RMSE values computed by different
regression techniques for ACP-egg, ACP-nymph, and ACP-adult
populations.
Models RMSE-eggs RMSE-nymphs RMSE-adults
RFR 0.7037 1.3877 6.0553
MLR 0.7935 1.2715 8.6883
DNN 0.63925 1.1875 3.6776
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Branches with flush, were used in present regression-based
models.'e key findings of this research can be summarized
as follows. (1) 'e DNN model with differently tuned
hyperparameters (Input, hidden, output layers, activation
functions, and optimizer) is best suited for predicting
population phenology of ACP. (2) A comparison of RMSE
values computed by different regression-based models
depicted that the DNN-based model has the potential to

model time-series forecasting problems. (3) 'e RFR model
was another effective regression-based model and a good
choice for predicting ACP-population dynamics as it
resulted in the second least RMSE values for different ACP-
phenological stages’ population prediction. (4) For reliable
predictions and optimization of different regression-based
models, configurations are also crucial. (5) 'e model which
resulted in the smallest mean-RMSE value for the
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Figure 5: A comparison of actual and predicted ACP-adults’ values computed by different regression techniques. (a) DNN. (b) RFR.
(c) MLR.
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corresponding ACP-phenological stage was considered as
the best prediction model.
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