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In chemical graph theory, benzenoid systems are interrogated as they exhibit the chemical compounds known as benzenoid
hydrocarbons. Benzenoid schemes are circumscribed as planar connected finite graphs having no cut vertices wherein the entire
internal sections are collaboratively congruent regular hexagon. 'e past couple of decennium has acknowledged an extravagant
development regarding implementation of information theoretic framework in miscellaneous ramification of science, for in-
stance, in social sciences, biological, physical, and engineering. Explicitly, this tremendous improvement has been outstanding in
the field of soft computing, molecular biology, and information technology. 'e information theory, delineated by Claud
Shannon, has no less importance when it was considered. Shannon put forwarded the apprehension of entropy to enumerate
upper bounds in transmission rates in telephonic channels, in optical communication, and in wireless. 'e prestigious feature of
entropy is that it entitles the amount of uncertainty in a system. 'e substantial participation of this paper is to explore
characteristics of graph entropies and then keep moving forward to talk about the formation of coronoid polycyclic aromatic
hydrocarbons. Likewise, we estimate entropies through precise topological indices established on degree of terminal nodes.

1. Introduction

Consider D � (DV,DE) be a graph containing DV andDE

as the vertex set and the edge set ofD correspondingly. 'e
size and the order of D are expressed by m and n corre-
spondingly, and 􏽢I(a) is characterized as the degree of any
vertex a. Topological descriptors of a chemical structure are
molecular descriptors. In QSPR/QSAR analyses, miscella-
neous molecular descriptor is operated to correlate different
biological and physico-chemical activities. In this study, we
will talk about some degree-based indices.

To determine the unpredictability of a scheme, entropy is
used [1]. 'is consideration was grown for analyzing the
fundamental information of graphs. Laterally, it was
employed substantially in graphs and chemical networks.

'e graph entropy [2] consideration demonstrated on the
denominations of vertex orbits. Utilization of graph entropy
is interdisciplinary [3].

In the literature, diverse graph entropies are estimated by
means of degree of vertex, order of the graphs, eccentricity of
the vertices, and characteristic polynomials [4, 5]. Over the
past few years, graph entropies are estimated which are
established on matchings, independent sets, and degree of
vertices [6]. Mowshowits and Dehmer talked about few
relations between the complexity of graphs and Hosoya
entropy. We postulated that the presented degree-based
entropy can be employed to assess network diversity.
Equivalent entropy measures which are established on
vertex-degrees to distinguish network diversity have been
suggested by Tan and Wu [7].
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In chemical graph theory, benzenoid structures are in-
terrogated [8] since they exhibit the chemical compounds
known as benzenoid hydrocarbons. Benzenoid schemes are
circumscribed as planar connected finite graphs having no
cut vertices wherein the entire internal sections are col-
laboratively congruent regular hexagons.

In [9], interpretation of the entropy was put forwarded
for the edge weighted graphD � (Dv;DE;ψ(az)), in which
DV, DE, and ψ(az) symbolize the set of vertices, the set of
edges, and the edge weight of the edge (az) in D corre-
spondingly. Subsequently the entropy of the edge weighted
graph is portrayed in the following equation. 'e relation
between topological indices and corresponding entropy
measures is presented in Table 1.

ENTψ(D) � − 􏽘

a′z′∈De

ψ a′z′( 􏼁

􏽐az∈DE
ψ(az)

log
ψ a′z′( 􏼁

􏽐az∈DE
ψ(az)

􏼢 􏼣.

(1)

2. Structure of Coronoid Polycyclic
Aromatic Hydrocarbons

Coronoids are derived by these benzenoid systems by re-
moving some interior vertices or edges. 'is will create a
different interior region enclosed by a polygon having
greater than six edges. By using the abovementioned con-
ditions, more than one hexagon can be trimmed from the
originator benzenoid structure. Coronoid is a benzenoid
with a hole. It may have more than one hole. Graphical
illustration of coronoid and noncoronoid systems is pro-
vided in Figures 1(a) and 1(b). It is to be noted that
Figure 1(b) is noncoronoid because some of its edges do not
belong to any of its hexagons [14].

tCycloarenes are macrocyclic combined compounds
constituted by circumferentially connected benzene loops that
enclose a hole with inner-directed carbon-hydrogen bonds.
As a consequence, cycloarenes are connected with a subclass
of circulenes or coronoids. 'e background of cycloarenes
traces back to 1987; meanwhile, the main example with 12
benzene rings, categorized as kekulene, was disclosed by Staab
and Diederich [15]. 'ere have been countless hypothetical
investigations focusing on the magnetic tendency, vibrational
rate of occurrences of cycloarenes, and aromaticity [16].
Kekulene and cyclo decakis benzene were the merely two
substantial patterns accessible for analysis [17].

Afterwards, Kumar et al. [18] synthesized another model
of cycloarene, with 14 benzene rings, specifically septulene.
'e synthesis of kekulene and septulene has kick started
numerous theoretical and experimental studies on coro-
noids [19]. 'e study of coronoids is also gaining mo-
mentum due to their superaromaticity. Superaromaticity or
macrocyclic aromaticity is described as an additional ther-
modynamic consolidation as a consequence of macrocyclic
association in tremendous-ring molecules like kekulene, and
it constitutes a little contribution of universal aromaticity.

Whole coronoids investigated until now are approxi-
mately superaromatic through constructive superaromatic
stabilization energies (SSEs). Intriguingly, the extent of SSE

oscillates between single-layered and several-layered species.
SSEs for even-layered coronoids [9, 20–22] are high, while
those for odd-layered ones [5, 23, 24] are pretty low [23].
'is provides an impetus for a deeper study into the
properties of coronoid systems and their relationship with
the underlying molecular structures. 'is study might be
applicable to various fields of nanotechnology. As an il-
lustration, the eradication of a unique carbon atom with a
graphite framework establishes a one-atom hole referred to
as a Schottky defect [25]. Individual-wall nanocones, [26]
grime platelets, [27], and extended graphite layers [24] may
contain vacancy hole defects involving larger (multiatom)
holes which can be studied by modeling them as coronoids
[28]. Graphenes are nanosized polycyclic aromatic hydro-
carbons with potential uses in the fabrication of organic
electronic devices [29]. 'e origination of coronoids by
demonstrating a cavity in nanographene might be an effi-
cacious approach to regulate their electronic and optical
properties without amendments to their exterior structures.
'e cavities, that make an integral part of the coronoids, act as
prototypes for scheming and synthesizing novel nano-
materials of significance in nano and biotechnology and the
incipient field of nano-medicines.'ey have also been used in
the design and synthesis of distinct porous and mesoporous
materials grounded on calixarenes and mesoporous silica for
the sequestration and complexation of toxic nuclear waste and
other environmental pollutants [30] Coronoid systems are
also widely examined in the study of coronoid hydrocarbons.

It has been proved that it is possible to compute the total
π-electron energy, the resonance energy, and the enumer-
ation of coronoid hydrocarbons accurately using the
knowledge of coronoid structures [20].'e conjugate graph-
theoretical circuit theory, inspired by Clar’s aromatic sextet,
correlates to the description of diverse enclosed consolidated
cycles existing in the polycyclic aromatic compounds
[31, 32]. 'is theory also provides combinatorial and graph-
theoretical methods for efficient determination of the rel-
ative stabilities of coronoid structures, graphenes, cyclo-
arenes, carbon nanotubes, and nanotori. For further
information on the comprehensive research issued on
coronoid systems by both Dias with coauthors and Cyvin
with coauthors, refer to [21]. In comparison to the com-
putationally intensive quantum chemical calculations, the
graph-theoretical techniques are considerably more pro-
ductive in obtaining the properties of coronoid systems.
During a recent investigation, Aihara et al. [23] emphasized
that the graph theory is not merely an extremely valuable
mechanism in estimating topological resonance energies but
additionally in uncovering significant challenges along the
previous speculations of aromaticity. By employing graph-
theoretical approaches, the investigation of coronoid net-
works has gained increased importance [22].

3. Coronoid System C1[u, v, w, x]

In this fragment, we will take into consideration the single
coronoid system. 'is system is also recognised as one hole
benzenoid. It is extracted by eradicating few of the interior
edges or vertices from the benzenoid system. In this
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procedure, a hole is created within the system having a lowest
size of two benzenes. 'e x-circumscribed basic coronoid
system is defined as Ck[u, v, w, x], k � 1, 2, in which u≥ 3,
v, w≥ 1, and x≥ 1. 'e coronoid structure fluctuates corre-
spondingly to its parameters u, v, w, and x bringing escalation
to the particular cases. In [21, 33], some particular cases are
discussed, and these exclusive models are employed to
prognosticate the resonance energy of aromatic molecules. In
theoretical chemistry, these models are considered as ideal
models to investigate conjugation circuits of π electrons.

'ese special cases are used to predict the resonance
energy of aromatic molecules and have attracted a great deal
of interest in the field of theoretical chemistry as ideal
models to explore conjugation circuits of π-electrons
[34, 35]. We will represent coronoid structure as
C1[u, v, w, x] in which u≥ 3 and 1≤ v≤w≤ u. Figure 2 il-
lustrates C1[u, v, w, x] graphically.

Table 2 portrays the edge partition of C1[u, v, w, x] on
the basis of degrees of terminal vertices of each edge.

3.1. Results for Coronoid System C1[u, v, w, x]

3.1.1. Randic
�
Entropy of C1[u, v, w, x]. We enumerate the

Randic
�
index for α � 1, − 1, 1/2, − 1/2 with the help of Tables 1

and 2 as follows:

Rα C1[u, v, w, x]( 􏼁 � (6) ×(4)
α

+(4u + 6v + 2w + 22) ×(6)
α

+ (6x + 8)u +(9x + 12)v +(3x + 4)w + 9x
2

+ 3x − 58􏼐 􏼑 ×(9)
α
.

(2)

'erefore, equation (1) with Tables 1 and 2 is in the form
as follows:

Table 1: Degree-based topological indices together with their corresponding edge weight ψ(az) of the edge az.

Degree-based topological indices Edge weight ψ(az) of the edge az Entropies

'e randic
�
index [10] (􏽢I(r) × 􏽢I(s))α, α � 1, − 1, 1/2, − 1/2 'e randic

�
entropy [11]

'e atom bond connectivity index [12]
����������������������
􏽢I(r) + 􏽢I(s) − 2/􏽢I(r) × 􏽢I(s)

􏽱

'e atom bond connectivity entropy [11]

'e geometric arithmetic index [13] 2
�������������������
􏽢I(r) × 􏽢I(s)/􏽢I(r) + 􏽢I(s)

􏽱

. 'e geometric arithmetic entropy [11]

(a) (b)

Figure 1: Coronoid and noncoronoid systems.

1 2
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Figure 2: Coronoid system of C1[u, v, w, x] [34].
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ENTRα
C1[u, v, w, x]( 􏼁 � log Rα( 􏼁 −

1
Rα( 􏼁

􏽘

3

i�1
􏽘

az∈DEi

(􏽢I(a) × 􏽢I(z))
α

􏽨 􏽩log (􏽢I(a) × 􏽢I(z))
α

􏽨 􏽩,

ENTRα
C1[u, v, w, x]( 􏼁 � log Rα( 􏼁 −

6
Rα( 􏼁

4α( 􏼁log 4α􏼂 􏼃 −
(4u + 6v + 2w + 22)

Rα( 􏼁
6α( 􏼁log 6α􏼂 􏼃

−
(6x + 8)u +(9x + 12)v +(3x + 4)w + 9x

2
+ 3x − 58

Rα( 􏼁
9α( 􏼁log 9α􏼂 􏼃,

ENTR1
C1[u, v, w, x]( 􏼁 � log (96 + 54x)u +(144 + 81x)v +(48 + 27x)w + 81x

2
+ 27x − 366􏽨 􏽩

−
24 log[4]

(96 + 54x)u +(144 + 81x)v +(48 + 27x)w + 81x
2

+ 27x − 366􏽨 􏽩

−
6(4u + 6v + 2w + 22)log[6]

(96 + 54x)u +(144 + 81x)v +(48 + 27x)w + 81x
2

+ 27x − 366􏽨 􏽩

−
9 (6x + 8)u +(9x + 12)v +(3x + 4)w + x

2
+ 3x − 58􏼐 􏼑log[9]

(96 + 54x)u +(144 + 81x)v +(48 + 27x)w + 81x
2

+ 27x − 366􏽨 􏽩
,

ENTR1/2
C1[u, v, w, x]( 􏼁 � log

(4
�
6

√
+ 18x + 24)u +(6

�
6

√
+ 27x + 36)v

+(2
�
6

√
+ 9x + 12)w + 27x

2
+ 9x + 22

�
6

√
− 162

⎡⎢⎣ ⎤⎥⎦

−
12 log[2]

(4
�
6

√
+ 18x + 24)u +(6

�
6

√
+ 27x + 36)v +(2

�
6

√
+ 9x + 12)w + 27x

2
+ 9x + 22

�
6

√
− 162􏽨 􏽩

−

�
6

√
(4u + 6v + 2w + 22)log[

�
6

√
]

(4
�
6

√
+ 18x + 24)u +(6

�
6

√
+ 27x + 36)v +(2

�
6

√
+ 9x + 12)w + 27x

2
+ 9x + 22

�
6

√
− 162􏽨 􏽩

−
3 (6x + 8)u +(9x + 12)v +(3x + 4)w + x

2
+ 3x − 58􏼐 􏼑log[3]

(4
�
6

√
+ 18x + 24)u +(6

�
6

√
+ 27x + 36)v +(2

�
6

√
+ 9x + 12)w + 27x

2
+ 9x + 22

�
6

√
− 162􏽨 􏽩

,

ENTR− 1
C1[u, v, w, x]( 􏼁 � log

14
9

+
2x

3
􏼒 􏼓u +

7
3

+ x􏼒 􏼓v +
7
9

+
x

3
􏼒 􏼓w + x

2
+

x

3
−
23
18

􏼔 􏼕

+
(3/2)log[4]

((14/9) +(2x/3))u +((7/3) + x)v +((7/9) +(x/3))w + x
2

+(x/3) − (23/18)􏽨 􏽩

+
(1/6)(4u + 6v + 2w + 22)log[6]

((14/9) +(2x/3))u +((7/3) + x)v +((7/9) +(x/3))w + x
2

+(x/3) − (23/18)􏽨 􏽩

+
(1/9) (6x + 8)u +(9x + 12)v +(3x + 4)w + x

2
+ 3x − 58􏼐 􏼑log[9]

((14/9) +(2x/3))u +((7/3) + x)v +((7/9) +(x/3))w + x
2

+(x/3) − (23/18)􏽨 􏽩
,

ENTR(− 1/2)
C1[u, v, w, x]( 􏼁 � log

4
�
6

√ + 2x +
8
3

􏼠 􏼡u +(
�
6

√
+ 3x + 4)v +

2
�
6

√ + x +
4
3

􏼠 􏼡w + 3x
2

+ x +
22

�
6

√ −
49
3

􏼢 􏼣

+
(3/2)log[2]

((4/
�
6

√
) + 2x +(8/3))u +(

�
6

√
+ 3x + 4)v +((2/

�
6

√
) + x +(4/3))w + 3x

2
+ x +(22/

�
6

√
) − (49/3)􏽨 􏽩

+
(1/

�
6

√
)(4u + 6v + 2w + 22)log[

�
6

√
]

((4/
�
6

√
) + 2x +(8/3))u +(

�
6

√
+ 3x + 4)v +((2/

�
6

√
) + x +(4/3))w + 3x

2
+ x +(22/

�
6

√
) − (49/3)􏽨 􏽩

+
(1/3) (6x + 8)u +(9x + 12)v +(3x + 4)w + x

2
+ 3x − 58􏼐 􏼑log[3]

((4/
�
6

√
) + 2x +(8/3))u +(

�
6

√
+ 3x + 4)v +((2/

�
6

√
) + x +(4/3))w + 3x

2
+ x +(22/

�
6

√
) − (49/3)􏽨 􏽩

.

(3)

Table 2: Edge partition of the coronoid system C1[u, v, w, x] on the basis of degrees of terminal vertices of each edge.

(􏽢I(a), 􏽢I(z)) Number of replication Classes of edges
(2, 2) 6 DE1
(2, 3) 4u + 6v + 2w + 22 DE2
(3, 3) (6x + 8)u + (9x + 12)v + (3x + 4)w + 9x2 + 3x − 58 DE3
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3.1.2. :e Atom Bond Connectivity Entropy of C1[u, v, w, x].
Simple calculations with Tables 1 and 2 yield the atom bond
connectivity index as follows:

ABC C1[u, v, w, x]( 􏼁 � 2
�
2

√
+ 4x +

16
3

􏼒 􏼓u

+(3
�
2

√
+ 6x + 8)v +

�
2

√
+ 2x +

8
3

􏼒 􏼓w

+ 6x
2

+ 2x + 14
�
2

√
−
116
3

.

(4)

'erefore, equation (1) with Tables 1 and 2 is in the form
as follows:

ENTABC C1[u, v, w, x]( 􏼁 � log(ABC) −
1

(ABC)
􏽘

3

i�1
􏽘

az∈DEi

�������������
􏽢I(a) + 􏽢I(z) − 2

􏽢I(a) × 􏽢I(z)

􏽳

⎡⎢⎢⎣ ⎤⎥⎥⎦log

�������������
􏽢I(a) + 􏽢I(z) − 2

􏽢I(a) × 􏽢I(z)

􏽳

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ENTABC C1[u, v, w, x]( 􏼁 � log 2
�
2

√
+ 4x +

16
3

􏼒 􏼓u +(3
�
2

√
+ 6x + 8)v +

�
2

√
+ 2x +

8
3

􏼒 􏼓w + 6x
2

+ 2x + 14
�
2

√
−
116
3

􏼔 􏼕

−
6[1/

�
2

√
]log[1/

�
2

√
]

(2
�
2

√
+ 4x +(16/3))u +(3

�
2

√
+ 6x + 8)v +(

�
2

√
+ 2x +(8/3))w + 6x

2
+ 2x + 14

�
2

√
− (116/3)􏽨 􏽩

−
(4u + 6v + 2w + 22)[1/

�
2

√
]log[1/

�
2

√
]

(2
�
2

√
+ 4x +(16/3))u +(3

�
2

√
+ 6x + 8)v +(

�
2

√
+ 2x +(8/3))w + 6x

2
+ 2x + 14

�
2

√
− (116/3)􏽨 􏽩

−
(6x + 8)u +(9x + 12)v +(3x + 4)w + x

2
+ 3x − 58􏼐 􏼑[2/3]log[2/3]

(2
�
2

√
+ 4x +(16/3))u +(3

�
2

√
+ 6x + 8)v +(

�
2

√
+ 2x +(8/3))w + 6x

2
+ 2x + 14

�
2

√
− (116/3)􏽨 􏽩

.

(5)

3.1.3. :e Geometric Arithmetic Entropy C1[u, v, w, x].
Simple calculations with Tables 1 and 2 yield the geometric
arithmetic index as follows:

GA(G) �
8

�
6

√

5
+ 6x + 8􏼠 􏼡u +

12
�
6

√

5
+ 9x + 12􏼠 􏼡v

+
4

�
6

√

5
+ 3x + 4􏼠 􏼡w + 9x

2
+ 3x − 52 +

44
�
6

√

5
.

(6)

'erefore, equation (1) with Tables 1 and 2 is in the form
as follows:

ENTGA C1[u, v, w, x]( 􏼁 � log(GA) −
1

(GA)
􏽘

3

i�1
􏽘

az∈DEi

2
����������
􏽢I(a) × 􏽢I(z)

􏽱

􏽢I(a) + 􏽢I(z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦log

2
����������
􏽢I(a) × 􏽢I(z)

􏽱

􏽢I(a) + 􏽢I(z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

ENTGA C1[u, v, w, x]( 􏼁 � log
8

�
6

√

5
+ 6x + 8􏼠 􏼡u +

12
�
6

√

5
+ 9x + 12􏼠 􏼡v +

4
�
6

√

5
+ 3x + 4􏼠 􏼡w + 9x

2
+ 3x − 52 +

44
�
6

√

5
􏼠 􏼡

−
(4u + 6v + 2w + 22)[2

�
6

√
/5]log[2

�
6

√
/5]

(((8
�
6

√
/5) + 6x + 8)u +((12

�
6

√
/5) + 9x + 12)v +((4

�
6

√
/5) + 3x + 4)w + 9x

2
+ 3x − 52 +(44

�
6

√
/5)􏼑

.

(7)
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4. Coronoid System C1[u, v, w, x]

'e coronoid system of D is delineated as C2[n, p, q, r], in
which x≥ 1, u≥ 3, and 1≤ v<w≤ u. Figure 3 shows the
coronoid system of C2[u, v, w, x] [34, 35].

'e approach we will use here is to form the partitions of
the edges of C2[u, v, w, x] of terminal vertices of each edge
(see Table 3).

4.1. Results for Coronoid System C2[u, v, w, x]

4.1.1. Randic
�
Entropy of C2[u, v, w, x]. We enumerate the

Randic
�
index for α � 1, − 1, 1/2, − 1/2 with the help of Tables 3

and 1 as follows:

Rα C2[u, v, w, x]( 􏼁 � (6) ×(4)
α

+(4u + 4v + 4w + 24) ×(6)
α

+ (6u + 6v + 6w)x + 9x
2

− 9x − 40􏼐 􏼑 ×(9)
α
.

(8)

As a consequence, equation (1) with Tables 1 and 3 is
embodied in the form as follows:

ENTRα
C2[u, v, w, x]( 􏼁 � log Rα( 􏼁 −

1
Rα( 􏼁

􏽘

3

i�1
􏽘

az∈DEi

(􏽢I(a) × 􏽢I(z))
α

􏽨 􏽩log (􏽢I(a) × 􏽢I(z))
α

􏽨 􏽩,

ENTR1
C2[u, v, w, x]( 􏼁 � log (24 + 54x)(u + v + w) + 81x

2
− 81x − 192􏼐 􏼑

−
24 log[4]

(24 + 54x)(u + v + w) + 81x
2

− 81x − 192􏼐 􏼑

−
6(4u + 4v + 4w + 24)log[6]

(24 + 54x)(u + v + w) + 81x
2

− 81x − 192􏼐 􏼑
−

9 (6u + 6v + 6w)r + 9x
2

− 9x − 40􏼐 􏼑log[9]

(24 + 54x)(u + v + w) + 81x
2

− 81x − 192􏼐 􏼑
,

ENTR− 1
C2[u, v, w, x]( 􏼁 � log

2
3

(1 + x)(u + v + w)x
2

− x +
19
18

􏼒 􏼓 +
(3/2)log[4]

(2/3)(1 + x)(u + v + w)x
2

− x +(19/18)􏼐 􏼑

+
(1/6)(4u + 4v + 4w + 24)log[6]

(2/3)(1 + x)(u + v + w)x
2

− x +(19/18)􏼐 􏼑
+

(1/9) (6u + 6v + 6w)x + 9x
2

− 9x − 40􏼐 􏼑log[9]

(2/3)(1 + x)(u + v + w)x
2

− x +(19/18)􏼐 􏼑
,

ENTR1/2
K2[n, p, q, r]( 􏼁 � log (4

�
6

√
+ 18)(n + p + q) + 27r

2
− 27r + 24

�
6

√
− 108􏼐 􏼑

−
12 log[2]

(4
�
6

√
+ 18)(n + p + q) + 27r

2
− 27r + 24

�
6

√
− 108􏼐 􏼑

−

�
6

√
(4u + 4v + 4w + 24)log[

�
6

√
]

(4
�
6

√
+ 18)(n + p + q) + 27r

2
− 27r + 24

�
6

√
− 108􏼐 􏼑

−
3 (6u + 6v + 6w)x + 9x

2
− 9x − 40􏼐 􏼑log[3]

(4
�
6

√
+ 18)(n + p + q) + 27r

2
− 27r + 24

�
6

√
− 108􏼐 􏼑

,

ENTR(− 1/2)
C2[u, v, w, x]( 􏼁 � log

4
�
6

√ + 2x􏼠 􏼡(u + v + w) + 3x
2

− 3x + 4
�
6

√
−
31
3

􏼠 􏼡

+
(3/2)log[2]

(((4/
�
6

√
) + 2x)(u + v + w) + 3x

2
− 3x + 4

�
6

√
− (31/3)􏼑

+

�
6

√
(4u + 4v + 4w + 24)log[

�
6

√
]

(((4/
�
6

√
) + 2x))(u + v + w) + 3x

2
− 3x + 4

�
6

√
− (31/3)

+
(1/3) (6u + 6v + 6w)x + 9x

2
− 9x − 40􏼐 􏼑log[3]

((4/
�
6

√
) + 2x)(u + v + w)t + n3qx

2
h − 3 xx7 + C4;

�
6

√
− (31/3)􏼐 􏼑

.

(9)
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4.1.2. :e Atom Bond Connectivity Entropy of C2[u, v, w, x].
Simple calculations with Tables 1 and 3 yield the atom bond
connectivity index as follows:

ABC C2[u, v, w, x]( 􏼁 � (2
�
2

√
+ 4x)(u + v + w) + 6x

2

− 6x + 5
�
2

√
−
80
3

.

(10)

'erefore, equation (1) with Tables 1 and 3 is in the form
as follows:

ENTABC C2[u, v, w, x]( 􏼁 � log(ABC) −
1

(ABC)
􏽘

3

i�1
􏽘

az∈DEi

�������������
􏽢I(a) + 􏽢I(z) − 2

􏽢I(a) × 􏽢I(z)

􏽳

⎡⎢⎢⎣ ⎤⎥⎥⎦log

�������������
􏽢I(a) + 􏽢I(z) − 2

􏽢I(a) × 􏽢I(z)

􏽳

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ENTABC C2[u, v, w, x]( 􏼁 � log(ABC) −
[6/

�
2

√
]

(ABC)
log

1
�
2

√􏼢 􏼣 −
(4u + 4v + 4w + 24)

(ABC)

1
�
2

√􏼢 􏼣log
1
�
2

√􏼢 􏼣

−
(6u + 6v + 6w)x + 9x

2
− 9x − 40

(ABC)

2
3

􏼔 􏼕log
2
3

􏼔 􏼕.

(11)

4.1.3. :e Geometric Arithmetic Entropy of C2[u, v, w, x].
Simple calculations with Tables 1 and 3 yield the geometric
arithmetic index as follows:

GA(G) �
8

�
6

√

5
+ 6x􏼠 􏼡(u + v + w) + 9x

2
− 9x − 34 +

48
�
6

√

5
.

(12)

1 2

u

v w

vw

u

Figure 3: Coronoid system of C2[u, v, w, x] [35].

Table 3: Edge partition of C2[u, v, w, x] established on degrees of terminal vertices of each edge.

(􏽢I(a), 􏽢I(z)) Number of replication Classes of edges
(2, 2) 6 GE1
(2, 3) 4u + 4v + 4w + 24 GE2

(3, 3) (6u + 6v + 6w)x + 9x2 − 9x − 40 GE3
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'erefore, equation (1) with Tables 1 and 3 is in the form
as follows:

ENTGA C2[u, v, w, x]( 􏼁 � log(GA) −
1

(GA)
􏽘

3

i�1
􏽘

az∈DEi

2
����������
􏽢I(a) × 􏽢I(z)

􏽱

􏽢I(a) + 􏽢I(z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦log

2
����������
􏽢I(a) × 􏽢I(z)

􏽱

􏽢I(a) + 􏽢I(z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

ENTGA C2[u, v, w, x]( 􏼁 � log
8

�
6

√

5
+ 6x􏼠 􏼡(u + v + w) + 9x

2
− 9x − 34 +

48
�
6

√

5
􏼠 􏼡

−
(4u + 4v + 4w + 24)[2

�
6

√
/5]log[2

�
6

√
/5]

((8
�
6

√
/5) + 6x)(u + v + w)t + n9qx

2
h − 9 xx7 − C34; +(48

�
6

√
/5)􏼐 􏼑

.

(13)

5. Comparisons andDiscussion forC1[u, v, w, x]

In QSPR/QSAR discussions, topological indices are applied
to connect the biological functions of the anatomies with
their corporeal properties like distortion, strain energy,
stability, and melting point. 'ese determinations can be
accomplished by employing degree-based indices as these
indices have clarity of decision and rapidity. In this research,
we asseverated some degree-based entropies. We proposed a
new approach to estimate the entropy by estimating its
topological indices. 'e degree-based entropy can also be
exerted to structural chemistry, ecological networks, biology,
national security, social network, and so on. Additionally, to
investigate structural symmetry and asymmetry in real
networks, the values of entropies have a significant role.

Entropy is monotonically increasing function as in all sit-
uations. Here, we estimated mathematically all degree-based
entropies for diverse values of u andx keeping p � 1 and
q � 1 for C1[u, v, w, x]. Besides, we construct Tables 4 and 5
for tiny values of u, x, p � 1 and q � 1 for degree-based
entropy to numerical comparison for the structure of
C1[u, v, w, x]. Now, numerical comparison is represented in
Tables 4 and 5. Also, the graphical comparison is depicted in
Figures 4–6.

6. Comparisons andDiscussion forC2[u, v, w, x]

Multiple exploitations of complex networks deserted on the
entropy corresponding with structural information are
discussed. In [36–39], many methods were suggested to

Table 4: Comparison of Randic entropies for C1[u, 1, 1, x].

[u, x] ENTR1
ENTR− 1

ENTR1/2
ENTR− 1/2

[3, 1] 0.1132 1.8445 1.8542 1.8540
[4, 2] 0.9964 2.1801 2.1906 2.0910
[5, 3] 1.3732 2.4213 2.4296 2.2841
[6, 4] 1.6202 2.6094 2.6157 2.4560
[7, 5] 1.8065 2.7634 2.7684 2.6219
[8, 6] 1.9571 2.8939 2.8980 2.7511
[9, 7] 2.0839 3.0072 3.0305 2.8709
[10, 8] 2.1938 3.1072 3.1701 3.0134
[11, 9] 2.2907 3.1969 3.2793 3.1253
[12, 10] 2.3776 3.2781 3.3802 3.2018

Table 5: Comparison of ENTABC and ENTGA entropies for C1[u, v, w, x].

[u, s] ENTABC ENTGA

[3, 1] 1.8572 1.8360
[4, 2] 2.203 2.2801
[5, 3] 2.4412 2.5220
[6, 4] 2.6269 2.7097
[7, 5] 2.7893 2.8834
[8, 6] 2.8987 2.9998
[9, 7] 3.0111 3.0967
[10, 8] 3.0806 3.1667
[11, 9] 3.1697 3.2563
[12, 10] 3.2605 3.3574
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check the structural complexity. However, the entropy ap-
proach is considered to be the most significant approach to
discriminate the structural information of the complex
networks. Besides, degree-based indices have theoretical role
on account of having the capability of computing

pharmaceutical properties. 'erefore, we have listed
mathematically some degree-based entropies for little
considerations of parameters u andx keeping v � 1 and w �

2 for C2[u, v, w, x] as depicted in Tables 6 and 7. Also, the
graphical comparison is depicted in Figures 7–9.
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Figure 4: Comparison of Randic entropies for α � 1 and for α � − 1.
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Figure 5: Comparison of Randic entropies for α � 1/2 and for α � − 1/2.
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Figure 6: Comparison of atom bond connectivity entropy and geometric arithmetic entropy.
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Table 6: Comparison of Randic entropies for C2[u, v, w, x].

[u, x] ENTR1
ENTR− 1

ENTR1/2
ENTR− 1/2

[3, 1] 1.8378 1.8380 1.8433 2.4669
[4, 2] 2.1715 2.2689 2.1791 2.5181
[5, 3] 2.4143 2.5208 2.4195 2.6359
[6, 4] 2.6032 2.7401 2.7070 2.7594
[7, 5] 2.7579 2.9152 2.7608 2.8754
[8, 6] 2.8890 3.0123 2.8912 2.9814
[9, 7] 3.0026 3.1307 3.0045 3.078
[10, 8] 3.1030 3.2114 3.1046 3.1661
[11, 9] 3.1930 3.2915 3.1943 3.2469
[12, 10] 3.2744 3.3732 3.2756 3.3213

Table 7: Comparison of ENTABC and ENTGA entropies for C2[u, v, w, x].

[u, x] ENTABC ENTGA

[3, 1] 1.7596 1.8451
[4, 2] 2.0944 2.1818
[5, 3] 2.3402 2.4216
[6, 4] 2.5347 2.6085
[7, 5] 2.7122 2.7819
[8, 6] 2.8249 2.8921
[9, 7] 2.9497 3.0052
[10, 8] 3.0583 3.1008
[11, 9] 3.1512 3.1912
[12, 10] 3.2531 3.2731
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Figure 7: Comparison of Randic entropies for α � 1 and for α � − 1 for the coronoid system C2[u, v, w, x].
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7. Conclusion

In this research, we have appropriated some degree-based
indices for the characterization of the unambiguous graph-
theoretical system of biochemical concern. We talked about
topological indices, for instance, general Randic

�
index,

atomic bond connectivity index, and geometric arithmetic
index for coronoid polycyclic aromatic hydrocarbons. Be-
sides, we enumerated the corresponding entropies. 'e
enumerated results link individual physico-chemical char-
acteristics like distortion, stability, melting points, and strain
energy of chemical compounds. 'e mathematical findings
for these coronoid systems are helpful for the chemist to
understand the biochemical applications of these coronoid
systems C1[u, v, w, x] and C2[u, v, w, x].
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