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Robotic mobile fulfillment system (RMFS) is a new type of parts-to-picker order picking system, where robots carry inventory
pods to stationary pickers. Because of the difference in working mode, traditional storage assignment methods are not suitable for
this new kind of picking system.)is paper studies the storage assignment optimization of RMFS, which is divided into products
assignment stage and pods assignment stage. In the products assignment stage, a mathematical model maximizing the total
correlation of products in the same pods is established to reduce the times of pod visits, and a scattered storage policy is adopted to
reduce system congestion. A heuristic algorithm is designed to solve the model. In the pods assignment stage, a model is
established minimizing the total picking distance of the mobile robots considering the turnover rate and the correlation of pods as
well as the workload balance among picking corridors. A two-stage hybrid algorithm combining greedy algorithm and improved
simulated annealing is designed to solve the model. Finally, a simulation experiment is carried out based on the historical order
data of an e-commerce company. Results show that the storage assignment method proposed in the paper significantly improves
the efficiency of order picking.

1. Introduction

E-commerce orders are generally large in quantity, small in
batch, and unstable, so e-commerce order fulfillment can be
quite challenging for warehouses. Robotic mobile fulfillment
system (RMFS) is a new type of parts-to-picker order picking
system, which was first brought to the market by Amazon in
2012. RMFS is particularly suited for e-commerce distri-
bution centres that handle strong demand fluctuations and
large assortments of small products, so it has become the
development trend of e-commerce picking system in recent
years [1]. In an RMFS, mobile robots are used to bring
movable shelves, also known as inventory pods, to picking
stations, where pickers take the required products off pods.
After that, the robots bring the pods back to the storage area
and continue to carry the next pods required. By eliminating
the need for the pickers to walk and search the inventory,
RMFS greatly improves the efficiency of order picking [2].
As a new picking mode, there are many optimization

problems to be studied in RMFS, such as storage assignment,
order batching [3], multirobot task allocation [4], and path
planning [5]. As an important optimization direction of
RMFS, storage assignment has a direct impact on the total
travel time/distance of robots, hence the efficiency of order
picking.

In a traditional picker-to-parts picking system, the sci-
entific storage assignment method can shorten the walking
distance, reduce the search time, and improve the efficiency
of order picking [6]. Hausman et al. [7] were the first to study
the storage assignment strategy of traditional picking sys-
tems, and the subsequent literature conducted more in-
depth research from demand correlation [8], COI (cube-per-
order index) [9], turnover rate [10], and demand and
structure correlation [11].

Unlike the traditional picker-to-parts picking system,
storage assignment in RMFS includes not only products
assignment (to decide which product to assign on which
pod) but also pods assignment (to decide where the pods are
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put in the storage areas) [12–14]. Because of the different
ways of working, the traditional storage allocation algorithm
cannot be directly applied to RMFS.

In recent years, the storage allocation problem in RMFS
has attracted scholars’ attention. Xi et al. [15] proposed a
collaborative optimization model on the products assign-
ment and order batching problem of RMFS considering the
relevance of products. Yuan et al. [16] studied the pods
assignment in RMFS, considering the random, class-based,
and turnover-based assignment strategies. )e research
shows that class-based storage with two or three classes can
achieve most of the potential benefits, and these benefits
increase with greater variation in the pod velocities. )en
Roy et al. [17] and Weidinger and Boysen [18] studied the
pods assignment and products assignment in RMFS using
random assignment policy and scattered assignment policy,
respectively. Based on this, Weidinger et al. [19] further
studied the reassignment of pods as a special interval
scheduling problem and designed an adaptive algorithm.
)e results show that the proposed adaptive assignment
rules are better than traditional assignment strategies.
Lamballais et al. [20] developed an analytical model to
optimize the inventory allocation across the pods. It is found
that spreading inventory units across multiple pods is a
better allocation strategy for e-commerce order fulfillment.

From the literature review, we can find that though the
research on storage assignment under traditional manual
picking mode is very rich, the research on that of the new
picking system RMFS has just begun with the following
shortcomings: (1) most of the research only focuses on the
products allocation or pods allocation, but few on the joint
optimization of the two stages; (2) the correlation between
products is considered to reduce the pod visits in previous
literature, but the correlation between pods is ignored. If we
assign the pods with a strong correlation close to each other,
it can effectively shorten the travel distance of robots during
pods switching; and (3) the optimization objective of most
existing literature is to minimize the travel distance of robots
but seldom consider system congestion caused by the un-
balanced workload among picking corridors, which affects
system efficiency even more than travel distance of robots.
)us, reducing system congestion can effectively improve
the picking efficiency of RMFS.

)is paper studies the storage assignment optimization
of RMFS and a joint optimization model of products as-
signment and pods assignment is built to improve the
overall picking efficiency. )e main innovations of this
paper are as follows: (1) in the modelling, on the basis of the
correlation and turnover rate of products, the correlation
between pods is also considered to shorten the travel
distance of robots during pods switching; (2) scattered
storage policy and workload balance among picking cor-
ridors are adopted to reduce system congestion. Scattering
products in different pods can increase the choice of pod
visits and balancing the workload can reduce the con-
gestion of some corridors; and (3) effective hybrid algo-
rithms, including heuristic algorithm, greedy algorithm,
and improved simulated annealing algorithm, are designed
to solve the models.

)e rest of the paper is organized as follows. In Section 2,
we describe the storage assignment problem in RMFS. In
Section 3, we build the mathematical models of products
assignment and pods assignment. In Section 4, we design
hybrid algorithms to solve the models. In Section 5, we verify
the proposed methods using the real data of an e-commerce
company. We finally conclude our study and discuss future
research opportunities in Section 6.

2. Problem Description

)e typical layout of an RMFS is shown in Figure 1, which is
adopted by Amazon Kiva Systems [2] and most RMFS
providers. )e picking system consists of pods, picking
stations, mobile robots, picking corridors, a conveyor belt,
and so on.)e storage area is composed of neatly distributed
pods, each of which can store different products. In order to
improve order picking efficiency, multiple orders arrived in
a certain period of time are usually combined into one batch
for picking, which is called wave picking. Orders in one wave
are allocated to picking stations, and the items to be picked
in the orders of each picking station are merged to generate a
picking list, which consists of many picking tasks. )ese
picking tasks are assigned to robots according to some rules,
and these robots cooperate to complete the tasks.

)e products picking process is as follows: A mobile
robot is sent to the pod containing the required products and
transports them to the picking station, where a picker picks
the products from the pod, and then the robot sends the pod
back to the storage areas (that is called one pod visit). After
putting the previous pod back, the robot travels to carry the
next pod (that is called pods switching) and so forth until all
of its tasks are finished.

)e optimization objective of RMFS is to minimize the
total travel distance of robots or the total picking time of
orders. )e storage assignment in RMFS refers to assigning
products to the appropriate pods (products assignment) and
pods to the appropriate location in the storage areas (pods
assignment), which obviously has a direct impact on the total
travel time/distance of robots, hence the efficiency of order
picking.

In most studies, storage assignment optimization is
usually achieved by putting the related products on the same
pods to reduce pod visits or by putting the pods with a high
turnover rate closer to the picking stations to reduce the
travel distance of robots. However, the picking corridors are
generally very narrow in RMFS to save storage space. If the
products with a high turnover rate are all placed in the zone
close to the picking stations, it is easy to cause road con-
gestion, and the robots have to queue and wait, which will
affect the picking efficiency more than the saved travel
distance. )erefore, system congestion factors should be
given enough consideration in the storage allocation of
RMFS.

In this paper, we study the joint optimization of products
assignment and pods assignment of RMFS considering the
correlation, turnover rate of products and pods, as well as
system congestion factors.)emain ideas of optimization in
each stage are discussed below.
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2.1. &e Products Assignment Stage. In the products as-
signment stage to decide which product to assign to which
pod, we take the following measures to improve efficiency:

(1) Store the products with strong correlation in the
same pods to reduce the times of pod visits. )e
stronger the correlation of products in one pod,
the more likely the products are required by the
same order so that more kinds of products can be
picked out by one pod visit, which obviously can
reduce the total number of pod visits to fulfill the
orders.

(2) Spread the same kind of products across multiple
pods other than just one pod to reduce the possibility
of system congestion. When the products are scat-
tered in different pods, it increases the choices of pod
visits. When one pod is not available or it is in a
congested area, there are still other pods can be
chosen to fulfill the order. )us, it can reduce system
congestion and improve picking efficiency.

2.2. &e Pods Assignment Stage. In the pods assignment
stage, to decide where the pods to put in the storage areas,
the following two aspects are considered:

(1) In order to shorten the travel distance of robots
during pods switching, the correlation between pods
is considered. After putting the previous pod back, a
robot has to travel to carry the next pod. If the next
pod is put close to the previous pod, it will shorten
the travel distance of pods switching and reduce the
total travel distance of all robots.

(2) While the pods with a high turnover rate are
placed near picking stations, the workload balance
among picking corridors is considered

simultaneously. )e pods that contain the best-
selling products have a high turnover rate and visit
frequency, so putting them close to the picking
stations can reduce the robots’ travel distance.
However, it can also cause congestion in hot areas.
In order to reduce the possibility of road con-
gestion, we balance the workload among corridors
by setting a maximum workload volume for each
corridor.

3. Model Formulation

3.1. Assumptions and Parameter definition. )e following
assumptions, which are reasonable in reality, are listed for
the mathematical model formulation:

(i) )e pods are empty at the beginning.
(ii) )e inventory of each kind of product is 4 times its

average demand. Yuan et al. [21] have proved that
when the inventory is 4 times the average demand,
there is little possibility of shortage.

(iii) One kind of product can be stored in different
pods.

(iv) )e number of pods is sufficient to store all
products.

(v) All pods have the same fixed layers (usually 6–8),
and each layer can only store one kind of product
in order to operate conveniently for the picker.

(vi) )e quantity of products stored on one pod can
satisfy the demand of the products in one order.

(vii) Only one pod can be allocated for each position in
the storage area.

(viii) A pod can only visit one picking station at one time
and then is returned to its original position.
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Figure 1: )e typical layout of an RMFS.
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3.2. Mathematical Model of Products Assignment. )is sec-
tion will formulate an optimization model for products
assignment with the objective of maximizing the total
correlation of products in the same pods to reduce the
number of pod visits. Meanwhile, scattered storage strategy
is adopted to avoid system congestion. Before describing the
model, the following parameters are given:

i, j represent product type, i, j � 1, 2, . . . , P, P is the
total number of product types
n represents order, n � 1, 2, . . . , N, N is the total
number of orders
m represents pod, m � 1, 2, . . . , M, M is the total
number of pods
q represents the total number of layers on one pod
l represents the maximum number of items stored in
each layer of a pod
ai represents the average demand of product i

di represents the total number of storage layers needed
of products i

di �

4ai

l
, 4ai can be divided by l,

4ai

l
  + 1, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Bn � b1n, b2n, . . . , bPn 
T represents products set in-

cluded in order n. If product i is included in order n, bin � 1;
otherwise, bin � 0.

R represents products correlation matrix:

R �

r11 r21 · · · rP1

r21 r22 · · · rP2

⋮ ⋮ ⋱ ⋮

rP1 rP2 . . . rPP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where rij is the correlation between products i and j.)emore
frequent the two kinds of products appear in the same order,
the stronger their correlation is. )e calculation method of the
correlation between products is shown in equation (3). When
i≠ j, the numerator is the number of orders both containing
products i and j. )e denominator is the number of orders
either containing product i or j. When i � j, rij is the cor-
relation of the same kind of product, in order to spread them
across multiple pods, set rij=0 in this case. rij can be obtained
from historical orders data using the following equation:

rij �


N
n�1binbjn


N
n�1bin + 

N
n�1bjn − 

N
n�1binbjn

, i≠ j,

0, i � j.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

xim represents the decision variable and can be expressed
as follows:

xim �
1, product i is assigned to podm,

0, otherwise.
 (4)

yim is an integer variable, which represents the number
of storage layers product i occupying on pod m.

)e objective is to maximize the total correlations be-
tween products on the same pods as follows:

max z1 � 
P

i�1


P

j> i



M

m�1

rijximxjm

M
. (5)

)e constraints are presented as follows:



P

i�1
yim ≤ q, m � 1, 2, 3, . . . , M, (6)



M

m�1
yim � di, i � 1, 2, 3, . . . , P, (7)

yim ≥ xim, i � 1, 2, 3, . . . , P, m � 1, 2, 3, . . . , M, (8)

xim � 0, 1, i � 1, 2, 3, . . . , P, m � 1, 2, 3, . . . , M, (9)

0≤yim ≤ q, i � 1, 2, 3, . . . , P, m � 1, 2, 3, . . . , M. (10)

Equation (6) stipulates that the number of storage layers
assigned to the products is no more than the maximum
layers of one pod. Equation (7) ensures that the total demand
number of storage layers for each type of product is satisfied.
Equations (8)–(10) are the basic constraints for the decision
variables.

3.3. Mathematical Model of Pods Assignment. )is section
will formulate an optimization model for pods assignment
with the objective of minimizing the total travel distance of
all robots, considering the turnover rate of the pods, the
correlation between the pods and the workload balance
among picking corridors. Based on Section 3.2, some ad-
ditional parameters are given.

t represents picking corridor, t � 1, 2, . . . , T, T is the
total number of picking corridors.

Each corridor contains K storage positions. ptk repre-
sents the k-th storage position of corridor t, where only one
pod can be placed, k � 1, 2, . . . , K, t � 1, 2, . . . , T.

wtk represents the shortest average distance between ptk

and the picking stations.
dkk′ represents the distance between the current position

k and the next position k′, where the next designated pod is
located.

Hm � hm1, hm2, . . . , hmP  represents the relationship
vector between pod m and the products.

hmi �
1, if podm contains product i,

0, otherwise.
 (11)

H is the pod-product relation matrix, H � [H1, H2,

. . . , Hm]T.
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Cm � cm1, cm2, . . . , cmN  represents the relationship
vector between pod m and the orders.

cmn �
1, if pick order n need carry podm,

0, otherwise.
 (12)

C is the pod-order relation matrix,
C � [C1, C2, . . . , CM]T.

Decision variable:

pmtk �
1, if podm is allocated on position k in corridor t,

0, otherwise.


(13)

)e objective function is to minimize the total picking
distance :

min z2 � 
N

n�1


K

k�1


T

t�1


M

m�1
cmnpmtk 2wtk + dkk′( . (14)

2wtk is the distance a robot travels to carry the pod
located at ptk to the picking station and return the pod back.
dkk′ is the distance a robot travels to fetch the next pod.

)e constraints are presented as follows:



T

t�1


K

k�1
pmtk � 1, m � 1, 2, . . . , M, (15)



M

m�1
pmtk ≤ 1, t � 1, 2, · · · , T; k � 1, 2, . . . , K, (16)



M

m�1
hmicmn ≥ bin, i � 1, 2, . . . , P; n � 1, 2, . . . , N, (17)



N

n�1


M

m�1


K

k�1
cmnpmtk ≤


N
n�1 

M
m�1 cmn

Z
 , t � 1, 2, . . . , T;

Z � 1, 2, . . . , T,

(18)

cmn � 0, 1, n � 1, 2, . . . , N; m � 1, 2, . . . , M, (19)

pmtk � 0, 1, m � 1, 2, . . . , M; t � 1, 2, . . . ,

T; k � 1, 2, . . . , K.
(20)

Equation (15) stipulates that each podmust be placed at a
position in the storage area. Equation (16) denotes that each
storage position can only be placed by one pod at most.
Equation (17) ensures that each kind of product that is
contained in the order can be picked up from the pods that
are carried to the picking station. Equation (18) represents
the workload is balanced among picking corridors by setting
a threshold for the total visits times of pods placed in the
same corridor. Z can be any integer between 1 and T. When
Z � 1, the constraint condition is always satisfied, that is, the
threshold control does not work. When Z � T, the threshold
constraint control is the strongest; equations (19) and (20)
are the basic constraints of decision variables.

4. Algorithm Design

)e integer programming models built in the previous
section are nonlinear and have been proved to be NP-hard
problems. A large amount of data is also needed to solve the
models, so it is difficult to get the optimal solution.
)erefore, according to the characteristics of the problem,
this paper designs effective hybrid algorithms to solve the
optimization problem quickly.

4.1. Algorithm Design for Products Assignment Model. A
heuristic algorithm is designed to solve the products as-
signment model. )e steps are as follows:

(1) Step 1: Calculate the required storage layers of each
product. According to the historical order data and
equation (1), the average demand and the required
storage layers of each product are obtained.

(2) Step 2: Calculate the products information matrix
RA. According to the historical order data and
equation (3), the correlation between two products is
calculated, and the products correlation matrix R is
obtained. )e products information matrix RA is
formed by adding the required number of storage
layers of each product to the right side of R.

(3) Step 3: Find the maximum correlation value in the
products information matrix RA and assign the
two corresponding products to one pod. At the
same time, reassign the correlation value to 0,
update the required storage layers of the two
products, and get the updated RA. In the updated
RA, find the products most relevant to the above
two products, assign the products to the same pod,
and update RA. Repeat the process until all the
layers of the pod are occupied and then update H.
Notice that when the required storage layer of a
product is reduced to 0, all the correlation values
between the products and other products are
reassigned to 0.

(4) Step 4: Recover the correlation information of the
products in RA whose required storage layers are not
0. Repeat step 3 for other pods until the required
layers of all products are 0.

)e pseudo code of the heuristic Algorithm 1 is as
follows:

4.2.AlgorithmicDesign for PodsAssignmentModel. )e pods
assignment problem is similar to the knapsack problem,
which can be solved by a simulated annealing algorithm. In
order to adapt to the nature of the problem and improve the
search efficiency, the simulated annealing algorithm is im-
proved from three aspects: (1) a greedy algorithm based on
pods correlation is used to generate the initial solution; (2)
the principle of pods with high turnover rate placed near
picking stations is used to generate the new solution; and (3)
at the same time, the workload among corridors is balanced
to reduce system congestion.
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4.2.1. Data Preparation. Firstly, we prepare the data needed.
According to the pod-product relation matrix H obtained in
products assignment stage, the pod-order relation matrix C

is constructed based on the principle of maximum set
coverage. )en the pods correlation matrix E is constructed,
and the pod turnover rate is calculated.

(1) Pod-Order RelationMatrix C.)emaximum set coverage
strategy is adopted to decide which pod to carry, that is,
when one order needs to be picked, the robot carries the
pods containing the most types of products in the order to
fulfill it. cmn is set to 0 at the beginning. For each order,
repeat the following steps to update the pod-order relation
matrix C.

Step 1: For the current order n, retrieve the types of
unpicked products in the order.
Step 2: Search for the pod that contains the most types
of the above products and choose the pod to serve the
order.
Step 3: Check whether all the products in order n

have been picked, if so, update c1n, c2n, . . . , cMn in the
pod-order relation matrix C and change the corre-
sponding data from 0 to 1. For example, if pod m is
selected to serve order n, cmn is updated to 1; oth-
erwise, return to step 1.

(2) Pods Correlation Matrix E. )e correlation between two
pods relates with the proportion of the common orders they
can fulfill, which is measured by cosine correlation as shown
in equation (21). Cm is the relationship vector between pod
m and the orders, and Cg is the relationship vector between
pod g and the orders. Cm · Cg represents the number of the
common orders pod m and g can fulfill, respectively, and
|Cm| and |Cg| is the number of the orders pod m and g can
fulfill, respectively.

emg � cos Cm, Cg  �
Cm · Cg

Cm


 · Cg




. (21)

(3) Pod Turnover Rate Frem. )e pod turnover rate Frem is
calculated using the historical order information and pod-
order relation matrix C.

Frem �


N
n�1 cmn


N
n�1 

M
m�1 cmn

. (22)

4.2.2. Two-Stage Hybrid Algorithm. A two-stage hybrid
algorithm combining greedy algorithm and simulated
annealing is designed to solve the pods assignment
model.

Input: Historical order data
Output: )e pod-product relation matrix H

(1) #Calculate products correlation matrix R

(2) for (i� 1; i≤P; i++) do
(3) for (j� 1; j≤P; j++) do
(4) r (i, j) ← Calculate the correlation between products i and j
(5) end
(6) end
(7) #Calculate products information matrix RA

(8) for (i� 1; i≤P; i++) do
(9) RA (i, P+1) ← Calculate the required storage layers for product i
(10) end
(11) #Calculate which product to put on which pod
(12) for (m� 1; m≤M; m++) do
(13) r←1
(14) product i, j← find (A� �max(max(RA))), then update RA

(15) r←3
(16) while r≤ q do
(17) Find the most relevant product u in RA and update RA

(18) update Hm

(19) if RA (u, P+1)� � 0 then
(20) RA (u, :) ←0
(21) RA (:,u) ←0
(22) end
(23) if sum (RA (:, P+1))� � 0 then
(24) end calculation
(25) end
(26) r←r + 1
(27) end
(28) end

ALGORITHM 1: )e heuristic algorithm of products assignment.
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Stage I: according to the pods correlation matrix, a
greedy algorithm is designed to generate the initial solution
of pods assignment.

Stage II: the simulated annealing algorithm is improved
to optimize the solution and get the final pods assignment
results.

)e steps of each stage are as follows:

(1) Stage I. Generate initial solution: )e purpose of this
stage is to generate the initial solution of the subsequent
simulated annealing algorithm considering the correlation
of pods. )e specific steps of the algorithm are as follows:

Step 1: According to the pods correlation matrix E,
select a pair of pods with the maximum correlation.
Step 2: Select a pair of positions with the minimum
distance in the position distance matrix D. If there are
more than one pair of positions with minimum dis-
tance, choose the pair closer to the picking stations.
Step 3: Check whether the total pod turnover rate in the
corridor will exceed the threshold value after the two
pods in step 1 are placed in the two positions in step 2.
If not, put the pods there. )en update the pods cor-
relation matrix and distance matrix by reassigning the
values corresponding to the selected pods and positions
to −1. Otherwise, select the next position pair with a
smaller distance.
Step 4: Repeat steps 1 to 3 until each pod is assigned to a
storage position and the initial solution is obtained.

(2) Stage II. Optimize the initial solution: In this stage, the
simulated annealing algorithm is improved to optimize the
initial solution considering pod turnover rate and the bal-
ance among corridors.

Step 1. Initialization: Generate initial solutions P � P0
from the previous stage and set the initial temperature
T0, which is big enough. Set T � T0 and determine the
number of iterations, which is metropolis chain
length L.
Step 2: For current temperature T, switch the positions
of pods to get new solution P′ according to pod
turnover rate and workload balance among corridors.
Select some pairs of pods with a higher turnover rate
and switch their positions with the pods with a lower
turnover rate but closer to the picking stations. )e
purpose is to move the pods with a high turnover rate
closer to the picking stations to reduce travel distance.
)en check whether the workload balance constraint
(equation (18)) is still satisfied after the pods movement
to avoid congestion. If it is satisfied, a new solution P′ is
generated; otherwise, select other pods to switch po-
sitions to get a new solution P′.
Step 3: Compute the increment of
P′: Δf � f(P′) − f(P). f(P) is the cost function of P.
If Δf < 0, accept P′ as a new current solution, set
P � P′, l � l + 1. If Δf ≥ 0, calculate acceptance

probability exp(−Δf/T ) of P′. )at is, generate a
random number rand with uniform distribution in
(0,1) intervals; if exp(−Δf/T )> rand, P′ is accepted as
a new current solution and set P � P′ and l � l + 1.
Check if l reach the maximum number of iteration, if
so, go to step 4; otherwise, return to step 2.
Step 4: According to the attenuation function, set T �

T∗ΔT (ΔT is generally 0.95∼0.99) to reduce tempera-
ture. Check if the minimum temperature Tmin is reached,
if so, output the current solution P as the best solution,
and end the program; otherwise, return to step 2.

5. Simulation Analysis

)e storage assignment models and algorithms proposed in
this paper are verified by the data of an e-commerce
company. )e company sells 250 kinds of products online
and uses RMFS for order picking.)e products are stored on
mobile pods, each of which is divided into 8 layers and the
maximum capacity of each layer is 70 units. )ere are 10
mobile robots and 6 picking workstations in the warehouse.
Suppose the travel speed of robots is 1m/s and the picking
time of one item is 5 s. We compare our proposed method
with other methods in products assignment, pods assign-
ment, and the overall picking efficiency.

5.1. Simulation Results of Products Assignment. )e simu-
lation program of the storage assignment method proposed
in this paper is constructed using MATLAB. )e optimal
result for product assignment is obtained using the data of
2,000 history orders of the e-commerce company. )e result
for the products assignment is shown in Table 1.

We can see from Table 1 that one kind of product is
assigned to different pods; for example, product 131 is al-
located to pods 8 and 9, that is, when product 131 needs to be
picked, there are two choices of pod visits, which can reduce
system congestion and improve the efficiency of order
picking.

)e heuristic algorithm proposed in the paper is com-
pared with the random assignment method and the Apriori
algorithm. Random assignment is to store the products on
the pods randomly without considering the correlation of
products. Apriori algorithm was first proposed by Agrawal
and Shafer [22] and has been widely used in storage as-
signments [23]. )e basic idea is to count the frequency of
multiple products in the same order and put the products
with high frequency on the same pod. )e methods were
compared under different order size (n� 500, 1,000, 1,500,
and 2,000) in the number of pod visits.)e results are shown
in Figure 2.

It can be found from Figure 2 that the times of pod visits
of the heuristic algorithm are the smallest among the three
methods under different order sizes, 32.7%∼36.6% less than
random algorithm and 16.9%∼18.6% less than the Apriori
algorithm. Besides, with the increase of order size, the
growth rate of pod visits in the proposed heuristic algorithm
slows down, which means that the bigger the order size is,
the greater the possibility of the correlation between
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Table 1: Products assignment result.

Pod number Product number
1 26 203 100 103 137 96 247 238
2 175 41 165 250 33 50 185 25
3 8 208 49 14 189 112 19 153
4 142 62 159 58 128 36 60 237
5 121 139 155 111 148 221 141 100
6 144 236 195 107 232 135 197 45
7 43 82 93 102 66 50 232 219
8 63 35 7 187 5 45 193 131
9 213 150 95 125 79 149 131 16
. . .

164 202 180 187 34 1 144 99 250
165 161 190 55 208 118 7 — —
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Figure 2: Times of pod visits using different algorithms.

(a) (b)

Figure 3: Comparison of workload balance using different pods assignment methods: (a) pods assignment using the proposed method and
(b) pods assignment using ABC classification method.
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products, so the advantage of the heuristic algorithm is more
obvious. )e result shows that maximizing the correlations
of the products in one pod can effectively reduce the times of
pod visits and improve the picking efficiency.

5.2. Simulation Results of Pods Assignment. In order to al-
leviate system congestion, the method of balancing the
workload among corridors is adopted, and the pod as-
signment result is shown in Figure 3(a). )e typical pod
layout using the traditional ABC classificationmethod [11] is
shown in Figure 3(b). In the figures, the red ones represent
pods with a high turnover rate, accounting for about 25% of
the total number of pods; the yellow ones represent pods
with a medium turnover rate, accounting for about 30% of
the total number of pods; and the green ones represent pods
with a low turnover rate, accounting for about 45% of the
total number of pods.

We can see from Figure 3(b) that all the pods with the
high turnover rate (the red ones) are assigned to the storage
positions in the first row, which is closest to the picking
stations, and most pods with the medium turnover rate (the
yellow ones) are assigned to the storage positions in the
second row. )is will lead to a high total access rate of pods
in this area, resulting in congestion of picking robots in the
corridors nearby. In Figure 3(a), the red and yellow pods are
properly scattered in different areas. We can see that the red
pods account for only about 48% of the total positions in the
first row. In this way, the workload of corridors can be
effectively balanced, and system congestion can be alleviated.

5.3. Comparative Analysis of the Overall Picking Efficiency.
In order to validate the efficiency of the storage assignment
models and algorithm proposed in this paper, it is compared
with other storage assignment methods commonly used
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Figure 4: Total piking distance of different methods.
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Figure 5: Total picking time of different methods.
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(COI algorithm in reference [24] and the algorithm just
based on turnover and product correlation in reference [21])
from total picking distance and picking time.

)e COI algorithm is also called the cube-per-order
index algorithm, which considers the volume and the
turnover rate of products [24]. )e method used in ref-
erence [21] is mainly considered the correlation and
turnover rate of products but does not consider the cor-
relation between pods. )e method proposed in this paper
considers the correlation of products, the turnover rate,
and the correlation of pods, as well as the workload balance
of corridors. )e experimental results of the total picking
distance and picking time using the three methods are
shown in Figures 4 and 5, respectively.

Figure 4 shows that the total picking distance using the
method proposed in this paper is much shorter than that of
the COI algorithm and the method, only considering the
correlation and the turnover rate of products. And with the
increase of order size, the growth rate of picking distance in
our proposed method slows down, while the growth rate of
other methods shows a linear growth.

Figure 5 shows that the total picking time using the
storage assignment method proposed in this paper is much
lower than that of the COI algorithm and methods based on
correlation and turnover rate of products. And with the
increase of order size, the gap of the picking time among
methods increases.

Simulation results above show that the storage assign-
ment method proposed in this paper can significantly im-
prove the order picking efficiency by alleviating system
congestion and reducing picking distance. Besides, with the
increase of order size, the improvement of this method is
more obvious.

6. Conclusions and Prospects

)is paper studies the joint optimization of products as-
signment and pods assignment in RMFS. A two-stage
mathematical model is established considering the corre-
lation, turnover rate of products and pods, as well as system
congestion factors. Hybrid algorithms, including heuristic
algorithm, greedy algorithm, and improved simulated
annealing algorithm, are designed to solve the models.
Simulation experiments are carried out based on the his-
torical data of an e-commerce company. )e method pro-
posed in this paper is verified by comparing with other
commonly used storage assignment methods from times of
pod visits, system congestion situation, total picking dis-
tance, and time. Experimental results show that the storage
assignment method proposed in the paper significantly
improves the efficiency of order picking.

)e paper mainly solves the static storage assignment
problem considering the characteristics of the operation
process of RMFS. However, due to the complexity and
dynamics of system scheduling, there are still some problems
that need to be further studied. For example, in practical
application, the characteristics of orders will change over
time, so it is necessary to adjust the storage allocation dy-
namically according to the changes. )us, the dynamic

storage assignment optimization can further improve the
picking efficiency and is a very promising research direction.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

)e paper was funded by National Natural Science Foun-
dation of China (72101033 and 71831001), Beijing Key
Laboratory of Intelligent Logistics Systems (BZ0211), Canal
Plan-Youth Top-notch Talent Project of Beijing Tongzhou
District (YHQN2017014), Ningxia Science and Technology
Key Research and Development Project (2018BEG03003),
and Scientific Research Program of Beijing Municipal
Commission of Education (KM202110037003).

References

[1] T. Lamballais, D. Roy, and M. B. M. De Koster, “Estimating
performance in a robotic mobile fulfillment system,” Euro-
pean Journal of Operational Research, vol. 256, no. 3,
pp. 976–990, 2017.

[2] N. Boysen, R. De Koster, and F. Weidinger, “Warehousing in
the E-commerce era: a survey,” European Journal of Opera-
tional Research, vol. 277, no. 2, pp. 396–411, 2019.

[3] X. M. Luo, X. Y. Xia, and J. B. Li, “Study on the batch of
warehouse orders of FMCG E-commerce,” Journal of Systems
Science andMathematical Sciences, vol. 36, no. 6, pp. 847–859,
2016.

[4] R. P. Yuan, H. L. Wang, L. R. Sun, and J. T. Li, “Research on
the task scheduling of part-to-picker order picking system
based on logistics AGV,” Operations Research and Manage-
ment Science, vol. 27, no. 10, pp. 133–138, 2018.

[5] Z. Zheng, Q. Guo, J. Chen, and P. J. Yuan, “Collision-free
route planning for multiple AGVs in automated warehouse
based on collision classification,” IEEE Access, vol. 6,
pp. 2602-2603, 2018.

[6] R. de Koster, T. Le-Duc, and K. J. Roodbergen, “Design and
control of warehouse order picking: a literature review,”
European Journal of Operational Research, vol. 182, no. 2,
pp. 481–501, 2007.

[7] W. H. Hausman, L. B. Schwarz, and S. C. Graves, “Optimal
storage assignment in automatic warehousing systems,”
Management Science, vol. 22, no. 6, pp. 629–638, 1976.

[8] Y. D. Li, “Model and algorithm for cartonization and slotting
optimization simultaneously in wave-picking zone-based
system,” Systems Engineering-&eory & Practice, vol. 33, no. 5,
pp. 1269–1276, 2013.

[9] F. Caron, G. Marchet, and A. Perego, “Routing policies and
COI-based storage policies in picker-to-part systems,” In-
ternational Journal of Production Research, vol. 36, no. 3,
pp. 713–732, 1998.

[10] J. B. Li, G. Y. Yang, and F. Chen, “Retail warehouse center
storage location assignment research for E-commerce,”

10 Complexity



Industrial Engineering and Management, vol. 18, no. 4,
pp. 102–108, 2013.

[11] J. Li, M. Moghaddam, and S. Y. Nof, “Dynamic storage as-
signment with product affinity and ABC classification—a case
study,” International Journal of Advanced Manufacturing
Technology, vol. 84, no. 9, pp. 1–16, 2016.

[12] X. B. Xu and Z. Q. Ma, “Robotic mobile fulfillment systems:
state-of-the-art and prospects,” Acta Automatica Sinica,
vol. 46, no. 9, pp. 1–25, 2020.

[13] N. Boysen, D. Briskorn, and S. Emde, “Parts-to-picker based
order processing in a rack-moving mobile robots environ-
ment,” European Journal of Operational Research, vol. 262,
no. 2, pp. 550–562, 2017.

[14] R. Yuan, H. Wang, and J. Li, “)e pod assignment model and
algorithm in robotic mobile fulfillment systems,” in Pro-
ceedings of the 2019 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), pp. 99–103,
Zhengzhou, China, November 2019.

[15] X Xi, C. Liu, and L. Miao, “Storage assignment and order
batching problem in Kiva mobile fulfilment system,” Engi-
neering Optimization, vol. 50, no. 11, pp. 1941–1962, 2018.

[16] R. Yuan, S. C. Graves, and T. Cezik, “Velocity-based storage
assignment in semi-automated storage systems,” Production
and OperationsManagement, vol. 28, no. 2, pp. 354–373, 2019.

[17] D. Roy, S. Nigam, R. De Koster, I. Adan, and J. Resing,
“Robot-storage zone assignment strategies in mobile fulfill-
ment systems,” Transportation Research Part E: Logistics and
Transportation Review, vol. 122, pp. 119–142, 2019.

[18] F. Weidinger and N. Boysen, “Scattered storage: how to
distribute stock keeping units all around a mixed-shelves
warehouse,” Transportation Science, vol. 52, no. 6,
pp. 1412–1427, 2018.

[19] F. Weidinger, N. Boysen, and D. Briskorn, “Storage assign-
ment with rack-moving mobile robots in KIVA warehouses,”
Transportation Science, vol. 52, no. 6, pp. 1479–1495, 2018.

[20] T. Lamballais, D. Roy, and R. B. M. De Koster, “Inventory
allocation in robotic mobile fulfillment systems,” IISE
Transactions, vol. 52, no. 1, pp. 1–17, 2020.

[21] R. Yuan, T. Cezik, and S. C. Graves, “Stowage decisions in
multi-zone storage systems,” International Journal of Pro-
duction Research, vol. 56, no. 1-2, pp. 333–343, 2018.

[22] R. Agrawal and J. C. Shafer, “Parallel mining of association
rules,” IEEE Transactions on Knowledge and Data Engineering,
vol. 8, no. 6, pp. 962–969, 1996.

[23] D. Ming-Huang Chiang, C.-P. Lin, and M.-C. Chen, “Data
mining based storage assignment heuristics for travel distance
reduction,” Expert Systems, vol. 31, no. 1, pp. 81–90, 2014.

[24] M. Li and Y. Zhang, “A study of workload distribution and
COI-based storage policies,” Industrial Engineering, vol. 18,
no. 1, pp. 37–41, 2015.

Complexity 11


