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(e purpose of this paper is to investigate a new family of distributions based on an inverse trigonometric function known as the
arctangent function. In the context of actuarial science, heavy-tailed probability distributions are immensely beneficial and play an
important role in modelling data sets. Actuaries are committed to finding for such distributions in order to get an excellent fit to
complex economic and actuarial data sets. (e current research takes a look at a popular method for generating new distributions
which are excellent candidates for dealing with heavy-tailed data. (e proposed family of distributions is known as the Arctan-X
family of distributions and is introduced using an inverse trigonometric function. For the specific purpose of the show of strength,
we studied the Arctan-Weibull distribution as a special case of the developed family. To estimate the parameters of the Arctan-
Weibull distribution, the frequentist approach, i.e., maximum likelihood estimation, is used. A rigorous Monte Carlo simulation
analysis is used to determine the efficiency of the obtained estimators. (e Arctan-Weibull model is demonstrated using a real-
world insurance data set. (e Arctan-Weibull is compared to well-known two-, three-, and four-parameter competitors. Among
the competing distributions are Weibull, Kappa, Burr-XII, and beta-Weibull. For model comparison, we used the most precise
tests used to know whether the Arctan-Weibull distribution is more useful than competing models.

1. Introduction

Numerous disciplines of study have examined heavy-tailed
probability distributions, including actuarial science, bio-
medical sciences, engineering, risk management, and eco-
nomics. In recent years, some procedures have been
proposed to generate a new class of heavy-tailed probability
distributions with adequate description and a high degree of
flexibility. Among these techniques, the use of trigonometric
functions and their inverses has been at the forefront of the
development of new families of probability distributions.
One of the really essential functions of financial and actuarial
science is the accurate forecasting of large monetary fi-
nancial losses. Underestimation of such losses exposes the
company to serious operational risks, including such
bankruptcy and underestimating premium. Tomitigate such

circumstances and provide precise forecasts of actuarial
science losses, actuaries frequently propose flexible heavy-
tailed distributions.

Financial and actuarial data sets are generally heavy-
tailed, unimodal-shaped, right-handed, and positive [1, 2].
(e complex financial data sets can be better modelled by
developing new families of probability distributions [1–5].
(e suggested models significantly raise the effectiveness of
quantitative analysis methods, and substantial work has been
devoted establishing new statistical models. However, a
number of basic difficulties with actual data seem to exist
that do not really fit into most common statistical models. In
order to capture the real-world phenomena, statistical dis-
tributions are commonly used. (e theory of statistical
distributions is widely studied along with the new devel-
opments for their usefulness. To describe different real-
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world phenomena, several families of distributions are de-
veloped. Recent developments in distribution theory and its
uses have resulted in the emergence of a number of general
families of probability distributions that have successfully
been applied to a variety of statistical and probability
problems. For more details, see [6–10].

Constructing flexible parametric models for modelling
various types of data is a difficult task for applied statisti-
cians. In general, this allows for the discovery of new features
of real-world phenomena as well as the provision of advised
predictions. Several families of distributions have been
created in this regard using various techniques such as (i)
inducing shape, skewness, or kurtosis parameter [6]; (ii)
compounding of distributions [7]; transformation technique
[11–13]; (iv) finite mixture of distributions [14–16]; and (v)
composition of two or more distributions [17]. For more
information about these techniques, see [6–10].

Unfortunately, the abovementioned generalization tech-
niques for the classical probability distributions may face some
constraints, such as (i) Adding more parameters to the
probability model enhances its flexibility, and such methods
usually result in reparameterization problems. (ii) (ere is an
increase in the number of model parameters, which makes it
more difficult to examine the model parameters. (iii) (e
tractability of the cdf is reduced by several extending ap-
proaches, which makes manual calculation of statistical char-
acteristics more difficult to do. (iv) Other generalisation
approaches make the pdf more complicated, leading in com-
puting difficulties. (e addition of additional extra parameters
to existing models enhances the flexibility of the models, which
is a desired characteristic. On the other side, it makes it more
difficult to draw conclusions, for extra reading see [18, 19].

In order to make the model more flexible, most statistical
models proposed in the literature have a large number of
parameters. (ese estimators, according to some authors,
are difficult to obtain using numerical resources. However, it
is preferable to create models with a small number of pa-
rameters but a high degree of flexibility for modelling the
data. To achieve this goal, a small group of researchers
decided to look for new distributions using trigonometric
functions and their inverses (see [18–27]).

(e fundamental objective of this research is to present and
examine a new family of probability distributions with a small
number of parameters but a high degree of flexibility for data
modelling. To accomplish this, a group of researchers decided
to look for new distributions using trigonometric functions and
their inverses. Chesneau et al. [20] developed a new family of
distributions called the sine Kumaraswamy-G family of
probability distributions. Souza et al. [21] introduced a new
family of probability distributions using the sine function.
Souza et al. [22] proposed a new family of probability distri-
butions using the tangent function. Souza [28] introduced
other families of probability distributions using the cosine and
secant functions. Mahmood et al. [27] developed a new family
of probability distribution using the sine distribution. Ches-
neau et al. [23] developed a new family of probability distri-
butions based on sine and cosine functions.

On the other hand, other researchers developed a new
family of probability distributions using the inverse

trigonometric functions. Lung et al. [18] developed a new
family of probability distributions using the arcsine function.
Rahman et al. [29] developed a new family of distributions by
using the arcsine distribution. Chesneau et al. [24] developed a
new distribution based on the arccosine function. Chaudary
[26] introduced the Arctan Lomax distribution using the
arctangent distribution. Muse et al. [30] introduced a new
versatile log-logistic distribution using the tangent function.
Furthermore, other researchers discussed the application of
trigonometric functions and their inverses; for more infor-
mation, see [19, 24, 27, 31–33].

Given the preceding discussion, statisticians are willing to
propose new distributions or distribution families based on an
easily expressed pdf (probability density function) and a closed
and tractable form of cdf (cumulative distribution function). As
a result, an effort is being made in this paper to develop a new
distribution family that avoids the issues mentioned above
while also providing the best fit to financial data sets. (e
proposed family is known as the Arctan-X family of distri-
butions (abbreviated “AT-X”) and was developed using the
arctangent function.(e proposed family has a straightforward
pdf expression as well as a tractable and closed cdf form.

Here to authors’ knowledge, there is no published study
on its mathematical and practical characteristics based on
the arctangent function for the purpose of developing a new
family of distributions in its whole in the present literature.
One of the reasons for writing this paper is to address this
unexpected gap. We derive some of the fundamental
mathematical and statistical properties of the new family by
using the general setting of the Arctan-X class, such as
hazard rate function (hrf), survivor function (sf ), quantile
function (qf), moments and moment generating function
(mgf), skewness, kurtosis, and residual life function.

(e remainder of the article is arranged as follows: the
Arctan-X family and its main mathematical properties are
discussed in Section 2. Section 3 presents special cases of the
Arctan-X family. (e Arctan–Weibull distribution is in-
troduced in Section 4. (e Arctan–Weibull distribution
mathematical and statistical features are examined in Section
5. Section 6 is used to estimate the Arctan-X family pa-
rameters. Section 7outlines the suggested model's Monte
Carlo simulation. In Section 8, the suggested model's su-
periority is shown and explained using a real-world data
application.. Finally, Section 9 contains final findings and
major remarks and the whole work summary.

2. Arctan-X Family of Distributions

(e AT-X family is provided in detail in this part of the
paper.(e AT-X family has many merits; one of these merits
is that it has a very easily expressed pdf and a tractable and
closed cdf form. If we assume that X is a random variable
that belongs to the Arctan-X family, then its cdf can be
written as the following expression:

Farctan(x; θ) �
4
π
arctan( G(x; θ)), x ∈ R. (1)

Here, G(x; θ) is considered as the cdf of the baseline (or
parent) random variable depending on the parameter vector
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θ ∈ R, and if G(x) has pdf g(x), then the pdf of the class is
expressed as

farctan(x; θ) �
4
π

g(x; θ)

1 + G(x; θ)
2, x ∈ R. (2)

(e complementary cdf (or survival function) can be
written as below:

Sarctan(x; θ) � 1 −
4
π
arctan(G(x; θ)), x ∈ R. (3)

(e instantaneous failure rate (or hazard rate function
(hrf)) can be written as below:

harctan(x;θ) �
farctan(x;θ)

Sarctan(x;θ)

�
4g(x;θ)

π − 4 arctan(G(x;θ)) 1+ G(x;θ)
2

 
,x ∈R.

(4)

(e retro hazard (or reversed hazard rate function) may
be expressed in the following manner:

rarctan(x;θ) �
farctan(x;θ)

Farctan(xx;θ)
�

4g(x;θ)

arctan(G(x;θ)) 1+G(x;θ)
2

 
,

x∈R,

(5)

And, the integrated hazard rate (or cumulative hazard
rate function) is given by

Harctan(x; θ) � − log Sarctan(x; θ)

� − log 1 −
4
π
arctan(G(x; θ)) , x ∈ R.

(6)

2.1.Quantile Function. (e quantile function (also known as
the inverse cdf) of the Arctan-X family follows by inverting
the Arctan-X distribution function. It may be written as
follows in terms of the tangent trigonometric function:

x � QG(u) � F
− 1

(u) � G
− 1 tan

π
4

u  , (7)

where u ∈ (0, 1). (e quantile function expression may be
used to generate random numbers from AT-X distributions.

2.2. Moments. In the field of actuarial science and financial
science, moments are very important, particularly in ap-
plications. It gives the researcher a hand to get the key
properties and characteristics of the proposed distribution
under consideration. (e rth moments of the AT-X distri-
bution family are calculated as

μ/r � 
∞

− ∞
x

r
farctan(x; θ)dx. (8)

Using the pdf of the AT-X family in equation (8), we get

μ/r �
4
π


∞

− ∞
x

r g(x; θ)

1 + G(x; θ)
2 dx. (9)

Using the Taylor series, we have

1
1 + x

2 � 
∞

n�0

(− 1)
n

2n + 1
x
2n+1

. (10)

Let x � G(x; θ), in equation [10]; we get

1
1 + G(x; θ)

2 � 
∞

n�0

(− 1)
n

2n + 1
G(x; θ)

2n+1
. (11)

By the aid of equation (7) and substituting in equation
(9), we will have the following result:

μ/r �
4
π



∞

n�0

(− 1)
n

2n + 1
Ψr,2n+1, (12)

Such thatΨr,2n+1 � 
∞
− ∞ xrg(x; θ)G(x; θ)2n+1dx .

(e moment-generating function for the AT-X family
can be expressed in a general form as follows:

MX(t) �
4
π



∞

r,n�0

(− 1)
n

(2n + 1)r!
t
rΨr,2n1 . (13)

3. Special Cases of the Arctan-X Family

(is section discusses certain cases of the intended Arctan-X
family of distributions by using different base cumulative
distribution functions. In Table 1, we present fifteen special
cases of the proposed family including Weibull, Gompertz,
log-logistic, Lomax, Kumaraswamy, Pareto, normal, Dagum,
Burr-XII, Rayleigh, gamma, Lindley, exponential, Gumbel,
and uniform distributions.

As an example, in the case of alternative parametrization,
choose cdf G(x; θ) of theWeibull distribution and introduce
the Arctan-Weibull distribution as follows.

A random variable X is said to have a Weibull distribution
with shape parameter α> 0 and scale parameter λ> 0denoted
by X∼Wei (α, λ). Its cdf is defined by the following:

F(x; θ) � 1 − e
− αxλ

; x≥ 0, θ> 0. (14)

And, the pdf is given by

f(x; θ) � λα(αx)
λ− 1 exp − (αx)

λ
  ; x≥ 0, θ> 0. (15)

We can write the reliability (survival) function as below:

S(x; θ) � 1 − F(x; θ) � e
− αxλ

; x≥ 0, θ> 0. (16)
(e hrf is given by

h(x; θ) �
f(x; θ)

S(x; θ)
�

f(x; θ)

1 − F(x; θ)
� λα(αx)

λ− 1
;

x≥ 0, θ> 0.

(17)

(e retro hazard rate is given by
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r(x; θ) �
f(x; θ)

F(x; θ)
��

λα(αx)
λ− 1 exp − (αx)

λ
  

1 − e
− αxλ

 
;

x≥ 0, θ> 0.

(18)

(e integrated hazard rate function is given by

H(x) � − logS(x;θ) � − log e
− αxλ

  � e
− αxλ

; x≥0, θ>0,

(19)

where θ � (α, λ)′ is a vector of unknown parameters.

4. Arctan-Weibull Distribution

(eWeibull distribution has a straightforwardmathematical
definition. It is tractable mathematically. It is also a model
that can be used in a variety of situations. (e Weibull
distribution is regarded as a versatile model for loss mod-
elling in general insurance due to its ability to adequately
model data with a high degree of positive skewness, which is
a characteristic of claim amounts. Hence, this part of the

paper is devoted to introduce the new proposed distribution
which is the AT-W distribution and derive the basic
probability functions including the pdf, hrf, cdf, survivor
function, integrated hazard function, and the retro hazard.
Considering that G(x)is the cdf of the two-parameter
Weibull distribution. (e cdf of the AT-W distribution, for
x> 0, can be expressed as

FAT− W(x; θ) �
4
π
arctan 1 − e

− αxλ
 , x ∈ R. (20)

(e corresponding pdf to the above cdf is given by

fAT− W(x; θ) �
4
π

λα(αx)
λ− 1 exp − (αx)

λ
 

1 + 4/πarctan 1 − e
− αxλ

  
2, x ∈ R.

(21)

(e sf is expressed as follows:

SAT− W(x; θ) � 1 −
4
π
arctan 1 − e

− αxλ
  . (22)

(e hrf is obtained by

hAT− W(x; θ) �
4 λα(αx)

λ− 1 exp − (αx)
λ

  

π − 4 arctan 4/π arctan 1 − e
− αxλ

   1 + 4/π arctan 1 − e
− αxλ

  
2

 

.
(23)

(e inverted hazard rate function is as follows:

rAT− W(x; θ) �
4 λα(αx)

λ− 1 exp − (αx)
λ

  

arctan 4/π arctan 1 − e
− αxλ

   1 + 4/π arctan 1 − e
− αxλ

  
2

 

.
(24)

Table 1: New contributed special cases of the Arctan-X family.

No. Baseline model cdf Generated model Support
1 Weibull 4/πarctan( 1 − e− αxλ

) AT-Weibull x ∈ R+

2 Log-logistic 4/πarctan( 1/1 + (x/α)− λ) AT-Log logistic x ∈ R+

3 Lomax 4/πarctan( 1 − (1 + αx)− λ) AT-Lomax x ∈ R+

4 Dagum 4/πarctan( (1 + (x/α)− λ
 

− p
) AT-Dagum x ∈ R+

5 Uniform 4/πarctan(x/ϑ) AT-Uniform 0<x< ϑ, ϑ> 0.

6 Burr-XII 4/πarctan( 1 − (1 + xλ)− α) AT-BXII x ∈ R+

7 Gamma 4/πarctan( (1/Γα)c(α, β)) AT-Gamma x ∈ R+

8 Gompertz 4/πarctan( 1 − e− λ(ebx − 1)) AT-Gompertz x ∈ R+

9 Gumbel 4/πarctan( e− e− (x− μ)/σ
) AT-Gumbel x ∈ R

10 Lindley 4/πarctan(1 − (e− λx(1 + λ + λx))/1 + λ) AT-Lindley x ∈ R+

11 Kumaraswamy 4/πarctan( 1 − (1 − xλ)α) AT-Kumaraswamy x ∈ [0, 1]

12 Pareto 4/πarctan( 1 − (m/x)λ) AT-Pareto x ∈ [m,∞)

13 Normal 4/πarctan(Φ(x − μ/σ)) AT-Normal x ∈ R
14 Rayleigh 4/πarctan( 1 − e− αx2

) AT-Rayleigh x ∈ R+

15 Exponential 4/πarctan( 1 − e− αx2
) AT-Exponential x ∈ R+
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(e cumulative hazard function may be denoted by the
following:

HAT− W(x; θ) � − log STan− LL(x; θ)

� − log 1 − 4/π arctan 1 − e
− αxλ

  ,
(25)

such that x≥ 0 and α, λ> 0θ � (α, λ)′ is the vector parameter
in all of the above equations, respectively.

Figures 1, 2, and 3 show some possible shapes of the AT-
W distribution’s pdf, cdf, and sf functions to explore the
behavioural patterns of its density, cdf, and sf functions for
different values of the model parameters.

5. Properties of the Proposed Model

(is section is devoted to use numerical examples to derive some
statistical and mathematical properties of the AT-W distribu-
tion, such as the quantile function, skewness and kurtosis,
moments, and residual and reverse residual life functions.

5.1. Quantile Function. (e inverse cdf function is mostly
employed in theoretical areas of distribution theory, such as
thesimulations and applicability. (e simulation software
uses a quantile function to create random samples. (e
quantile function of the AT-W distribution is denoted by

x � QG(u) � F
− 1

(u) � G
− 1 tan

π
4

u  , (26)

where u is uniformly distributed from zero to one.
(e quantile function of the AT-W model as follows:

QAT− W(p, α, λ) � −
1
α
log 1 − tan

π
4

u  
1/λ

  . (27)

(emedian, lower quartile, and upper quartile of AT-W
distribution can be obtained easily by using the quantile
function by setting u � 1/2, 1/4, and 3/4, respectively.

5.2. Skewness andKurtosis. Galton skewness (or asymmetry)
andMoors kurtosis of the AT-Wmodel with two parameters
have the following mathematical expression form:

SK �
Q (3/4) + Q(1/4) − 2Q(2/4)

Q(3/4) − Q(1/4)
,

KM �
Q(7/8) + Q(3/8) − Q(5/8) − Q(1/8)

Q(6/8) − Q(2/8)
.

(28)

Here, Q donates the value of the quartile.
(e preceding expressions can explicitly form as a

function of the AT-W quantile function. (ese measures
have many advantages [34].

5.3. Moments. Moments are essential in statistical model-
ling, particularly in applications. (e LLT distribution’s rth
moment is defined as

μ,
r � 
∞

− ∞
x

r
f(x; α, λ)dx . (29)

In fact, we have

μ,
r � 
∞

− ∞

4
π

λα(αx)
λ− 1 exp − (αx)

λ
 

1 + 4/π arctan 1 − e
− αxλ

  
2 dx. (30)

5.4. Residual Life and Reverse Residual Life. (is can be
widely used in actuarial science, survival analysis, and many
other fields such as the risk management; for more infor-
mation, see [35]. (e analysis of a device’s lifetime after
reaching age x is especially important in reliability and
survival analysis. (us, X is the original lifetime with sur-
vival function S(x) � P(X≥ x) and the random variable
Xx � (X − x|X> x) is the corresponding residual life after
age x [36].

(e distribution of Xx can be calculated using the
conditional probability definition in the following
expression:

R(t) (x) �
S(x + t + 1)

S(x + 1)
, x � 0, 1, 2, . . . . (31)

(e residual lifetime is calculated using the following
equation of the AT-W random variable (r.v.):

R(t) (x) �
S(x + t)

S(x)
,

R(t) (x) �
1 − 4/π arctan 1 − e

− α(x+t)λ

 

1 − 4/π arctan 1 − e
− αxλ

 

.

(32)

In addition, we can obtain the reverse residual life of the
LLT r.v. as follows:

R
∧

(t) (x) �
S(x + t)

S(x)
,

R
∧

(t) (x) �
1 − 4/π arctan 1 − e

− α(x+t)λ

 

1 − 4/π arctan 1 − e
− αxλ

 

.

(33)

6. Classical Method of Estimation

Using classical methods is very important in the estimation
process, so we devoted this section to maximum likelihood
technique for estimating the parameters of the AT-X family
of distributions from uncensored complete samples. Sup-
pose that we have a random sample denoted as
X1, X2, . . . , Xn that represents n independent random var-
iables drawn from the AT-X family that have the following
observations: x1, x2, . . . , xn, we can write the likelihood
function for the AT-X family is defined as follows:

L � 
n

i�1
f xi, θ(  ,

L(x; α, β) � 
n

i�1

4
π

g(x; θ)

1 + G(x; θ)
2 .

(34)
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We can express the log-likelihood function as below:

ℓ � nlog
4
π

  + 
n

i�1
logg xi; θ(  − 

n

i�1
log 1 + G xi; θ( 

2
  .

(35)

Obtaining the partial derivate of the log-likelihood
equation, we get

zℓ
zθ

� 
n

i�1

zg xi; θ( /zθ
g xi; θ( 

+ 
n

i�1

G xi; θ( 

1 + G xi; θ( 
2

 
zg xi; θ( /zθ.

(36)
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Figure 1: Visual representation of the cdf plots of the AT-W distribution for various parameter values.
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Figure 3: Visual representation of the cdf plots of the AT-W distribution for various parameter values.
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By equating the first derivative zℓ/zθ to zero and trying
to solve this equation numerically, we get the MLE estimator
of θ.Now it is very easy to get the values of the estimates of
the parameters by the aid of equation (35) for any subcase of
the proposed family with pdf and cdf given by g(x; θ) and
G(x; θ) respectively.

We can find the estimates by twomethods either by the R
program directly (Adequacy Model Package), the OX pro-
gram (subroutine MaxBFGS), or the SAS (PROX
NLMIXED) or indirectly by solving the nonlinear likelihood
equations.

7. Monte Carlo Simulation Study

We assess the effectiveness of the maximum likelihood es-
timation (MLE) method for estimating the Arctan-Weibull
distribution parameters using Monte Carlo simulation. A
numerical evaluation of the performance of MLE of the AT-
W model is performed using nlminb () R-function with the
argument method� “BFGS.” (e simulation study is con-
ducted to investigate the average bias (AB), root mean
square error (RMSE), and mean square error (MSE), for the
proposed model’s parameters, α and λ

We performed the simulation process by various samples
and different values for the parameters. We generated the
samples used in the simulation process from the quantile
function of the AT-Wdistribution. In order to generate accurate
samples and to get perfect estimates, we made 750 iterations
using sample sizes n � 25, 50, . . . , 750 and the parameter
scenarios α � 5.0 and λ � 4.0, in set I, α � 0.8 and β � 1.5 in
set II, and α � 2.0, and λ � 1.2, in set III.

(e MLEs are ascertained for each item of simulated
data, say (α

∧
, λ
∧
) for i � 1, 2, . . . , 750 and the AB, RMSEs, and

MSEs of the parameters were computed by

AB �
1
N



N

i�1
(θ
∧

− θ),

MSE �
1
N



N

i�1
(θ
∧

− θ)

2

,

RMSE �

�����������

1
N



N

i�1
(θ
∧

− θ)
2

,




(37)

where θ � α and β.

7.1. Simulation Results. We explore the MLE method's
performance in estimating the AT-W parameters using an
MC simulation study with 750 repetitions.We determine the
mean of the estimated parameters, the absolute bias, the
mean square error (MSE), and the root mean square error
(RMSE), and the following steps were followed:

(i) We generated the samples by inverting the cdf given
in [20]

(ii) (ree different sets are taken for different true
values of the parameters

(iii) We used different sample sizes as mentioned in the
simulation table

Tables 2–4 summarize the numerical findings of the MC
simulation study. (e average of the estimated parameters,
as well as the AB, MSE, and RMSEs, is evaluated. Based on
the results in the simulation tables, it is self-evident that
MLEs is effective in estimating unknown parameters and
that the resulting estimates are relatively stable and close to
actual real values. Furthermore, as the sample size increases,
the AB, MSE, and RMSEs decrease and so do the biases,
MSE, and RMSE. For visual representation, the MC simu-
lation outcomes are depicted in Figures 4–6. (ese graphs
indicate that increasing the sample size n results in a de-
crease in the estimated value of AB, MSEs and RMSEs, and
the average MLEs close to their true values.

8. Practical Illustration Using the Insurance
Data Set

(is section will examine a highly correlated real-world data
set from the insurance business in order to show the AT-W
distribution's value.We compare the proposed distribution’s
goodness-of-fit test results and some information criterion
measures to those of some other well-known competing
distributions, such as the Weibull, Kappa, Burr-XII, and
beta-Weibull distributions.

(e primary attractiveness of the AT-W distribution
derivation is its applicability to data analysis problems,
which makes it useful in a variety of fields, particularly those
concerned with insurance data analysis. Lately, a number of
potential distribution families for insurance data sets have
been offered. For more information on these, see
[4, 5, 18, 19, 34, 35, 38–40].

(e cdf of the fitted models is as follows:

(1) Weibull distribution is

F(x, α, λ, ) � 1 − e
− αxλ

. (38)

(2) Burr-XII distribution is

F(x; c, k, s) � 1 − 1 +(xk)
s

 
− k

. (39)

(3) Beta-Weibull distribution is

F(x; α, β, λ, κ) � I 1− e− αxλ( 
(β, k), x≥ 0. (40)

(4) Kappa distribution is

F(x, α, λ, ) � 1 − α(1 − λx)
1/λ

 
1/α

. (41)

Certain analytical measures are used to identify the best
fitting functionalities of the competitive distributions. In this
regard, the Akaike Information Criterion (AIC), Han-
nan–Quinn Information Criterion (HQIC), Corrected
Akaike Information Criterion (CAIC), and Bayesian In-
formation Criterion (BIC) values were used to select the
most appropriate ones. Apart from discriminating tests,
additional goodness-of-fit includes testing, like the
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Anderson–Darling (A∗ ) statistic, the Cramer–von Mises
(W∗ ) distance value test, and the Kolmogorov–Smirnov
(K-S) statistic with associating p values, as well as the log-
likelihood function, are also recorded.

(e best model has the lowest values of AIC, BIC, CAIC,
and HQIC, as well as the A∗ , W∗ , and K-S tests. Fur-
thermore, the model with the greatest log-likelihood func-
tion value is selected as the best model and p values for the
K-S statistics are applied to compare the competitive dis-
tributions. We observed that when compared to other
distributions, the AT-W model provided the greatest match
and fitting because it has the smallest values of the measured
analytical tools.

(e AIC is

AIC � 2k − 2l. (42)

(e BIC is

BIC � kln(n) − 2l. (43)

(e CAIC is

CAIC �
2nk

n − k − 1
− 2l. (44)

(e HQIC is

HQIC � 2kln(ln(n)) − 2l. (45)

Here, l is the value of the likelihood function after taking
the log for it and by substituting it with the estimates of the
MLE, n is the size of the sample taken in the experiment, and
kis the parameter number in the distribution. (e following
goodness-of-fit measurements are considered.

We can compute the value of the Anderson–Darling
(A∗) test statistic by using the following equation:

A
∗

� − n −
1
n



n

i�1
(2l − 1) × ln G Xi(  + ln 1 − G Xn− i+1(   .

(46)

We can compute the value of the Cramer–von Mises
(W∗) test statistics by using the following equation:

W
∗

�
1
12n

+ 

n

i�1

2i − 1
2n

+ G Xi(  
2
. (47)

Here, xi is the output number i in the vector of the data.When
the data is sorted in ascending order, this xi is calculated.

8.1. Data I: Insurance Data Set. (is data set includes 58
observations and represents monthly unemployment

Table 4: Monte Carlo simulation results for the AT-W distribution
using Set III values (α� 2.0 and λ� 1.2).

Parameters n
Set III

MLE AB MSE RMSE

α

25 2.1311 0.1311 0.1438 0.3792
50 2.0523 0.0523 0.0523 0.2286
100 2.0230 0.0230 0.0236 0.1536
200 2.0092 0.0092 0.0120 0.1095
300 2.0088 0.0088 0.0086 0.0927
400 2.0076 0.0076 0.0063 0.0794
500 2.0048 0.0048 0.0049 0.0700
600 2.0038 00038 0.0042 0.0648
700 2.0022 0.0022 0.0030 0.0548

λ

25 1.2255 0.0255 0.0198 0.1407
50 1.2082 0.0082 0.0086 0.0927
100 1.2056 0.0056 0.0041 0.0640
200 1.2046 0.0046 0.0022 0.0469
300 1.2030 0.0030 0.0013 0.0361
400 1.2015 0.0015 0.0011 0.0332
500 1.2005 0.0005 0.0008 0.0283
600 1.2004 0.0004 0.0006 0.0245
700 1.2003 0.0003 0.0005 0.0223

Table 3: Monte Carlo (MC) simulation results for the AT-W
distribution using Set II values (α� 0.8 and λ� 1.5).

Parameters n
Set I

MLE AB MSE RMSE

α

25 0.8540 0.0540 0.0242 0.1556
50 0.8231 0.0231 0.0084 0.0916
100 0.8147 0.0147 0.0040 0.0632
200 0.8072 0.0072 0.0019 0.0436
300 0.8034 0.0034 0.0013 0.0361
400 0.8026 0.0026 0.0007 0.0265
500 0.8023 0.0023 0.0006 0.0245
600 0.8020 0.0020 0.0005 0.0223
700 0.8018 0.0018 0.0004 0.0200

λ

25 1.6155 0.1155 0.2185 0.4674
50 1.5485 0.0485 0.0912 0.3020
100 1.5333 0.0333 0.0450 0.2121
200 1.5130 0.0130 0.0180 0.1342
300 1.5081 0.0081 0.0150 0.1225
400 1.5044 0.0044 0.0084 0.0916
500 1.5040 0.0040 0.0072 0.0848
600 1.5037 0.0037 0.0058 0.0762
700 1.5021 0.0021 0.0042 0.0648

Table 2: Monte Carlo simulation results for the AT-W distribution
using Set I values (α� 5.0 and λ� 4.0).

Parameters n
Set I

MLE AB MSE RMSE

α

25 5.2646 0.2646 0.7854 0.8862
50 5.1632 0.1632 0.4005 0.6328
100 5.0704 0.0704 0.1196 0.3458
200 5.0280 0.0280 0.0701 0.2648
300 5.0196 0.0196 0.0515 0.2269
400 5.0145 0.0145 0.0351 0.1873
500 5.0122 0.0122 0.0285 0.1688
600 5.0091 0.0091 0.0252 0.1587
700 5.0072 0.0072 0.0221 0.1487

λ

25 4.0193 0.0193 0.0329 0.1813
50 4.0101 0.0101 0.0150 0.1225
100 4.0069 0.0069 0.0072 0.0848
200 4.0039 0.0039 0.0038 0.0616
300 4.0026 0.0026 0.0023 0.0480
400 4.0017 0.0017 0.0020 0.0447
500 4.0015 0.0015 0.0015 0.0387
600 4.0013 0.0012 0.0012 0.0346
700 4.0011 0.0011 0.0011 0.0332
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insurance metrics from July 2008 to April 2013. It was re-
ported by the Maryland state, USA, Department of Labour,
Licensing, and Regulation.(e data set contains 21 variables,
of which variable number 12 is of particular interest and it is
studied by using alpha power-exponentiated exponential
distribution to analyse [40]. (e data can be found at:/
catalog.data.gov/dataset/unemployment-insurance-data-
july-2008-to-april-2013. (e data frame contains the fol-
lowing58 observations:Table5

8.2. Analyses of Exploratory Data. (e basic objective of
research is to get information from large amounts of data. In

this paper, we employed four distinct strategies to do ex-
ploratory study: (1) descriptive statistics for the data set,
particularly our variable of interest; (2) box plot; (3) TTT
plot; and (4) histogram.

(e total-time-on-test (TTT) plot is a graphical rep-
resentation of the form of the failure rate curve. Quali-
tative information regarding the shape of the failure rate
function may help in the selection of a specific distribution
in a variety of real-world application. (e TTTplot for our
data set used in this study exists in Figure 7, and it has a
form indicative of a rising failure rate that is recom-
mended for using Weibull distribution or its
modifications.

Plot of Estimated Parameters vs n Plot of MSE vs n

Plot of Bias vs n Plot of RMSE vs n
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Figure 4: Visual representation of the MC simulation outcomes given in Table 2.
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Figure 5: Visual representation of the MC simulation outcomes given in Table 3.
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Table 6 shows us the descriptive statistics of the insur-
ance data set by computing specific aspects of the data
(central tendency and spread).

8.3. Analysis of Data Set I. Table 5 contains descriptive
statistics for data set I. (e subjacent distribution of Data Set
I, in particular, is highly skewed data (skewness estimated to

be 2.436) with a heavier tail (kurtosis estimated to be 7.622).
(e proposed AT-W distribution has the lowest AIC, CAIC,
BIC, and HQIC values and the highest log-likelihood values
as shown in Table 7, As a result, it is chosen as the best
appropriate model among the alternatives evaluated in this
paper.

Table 8 shows the parameter estimate and p value for the
Cramer–von Mises (W∗), Anderson–Darling (A∗), and

Plot of Estimated Parameters vs n Plot of MSE vs n
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Figure 6: Visual representation of the MC simulation outcomes given in Table 4.

Table 5
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Figure 7: TTT plot, histogram, and box plots for the insurance data set.
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Table 6: Descriptive measures of the Data Set I.

N Min. Median Mode Variance Asymmetry Kurtosis Mean Max. CV Geo. mean
58 29 63.50 52 1065.698 2.436 7.622 70.67 222 0.462 65.43

Table 7: (e AIC, BIC, CAIC, HQIC, and likelihood values for the insurance data.

Distribution
ℓ AIC BIC CAIC HQIC

AT-W −277.467 558.934 563.054 559.152 560.539
Weibull − 279.439 562.878 566.483 563.096 564.483
Burr-XII − 278.724 563.449 569.630 563.893 565.856
Beta-W − 282.961 573.922 582.164 574.677 577.132
Kappa − 289.477 582.955 587.076 583.955 584.560
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Figure 8: Visual display for the estimated cdf of the competing
models.

Table 8: MLEs of the proposed model parameters, the goodness-of-fit tests, and the p values (in parenthesis) for Data Set I.

Distributions
Estimates (SEs) W∗ A∗ K − S (P value)

AT-W (α, λ) α� 2.383 (0.204) 0.475 2.595 0.187 (0.035)λ � 0.011 (0.001)

Weibull (α, λ) α � 2.268(0.196) 0.548 2.987 0.184 (0.039β � 0.012(0.001)

Burr-XII (α, β, λ)
α � 7.151(1.485)

0.228 1.328 0.295 (0.0001)β � 0.225(0.062)
λ � 36.285(3.870)

Beta-Weibull (α, β, λ, κ)
α� 6.754(2.562)

0.273 1.467 0.293 (0.0001)β � 0.128(0.024)
β � 1.164(0.058)

Kappa (α, β)
β � 10.050(1.051)

0.503 2.754 0.353 (0.032)α� 5.745(48.933)
β � 77.672(0.584)
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Figure 9: Visual display for the estimated pdf of the competing
models.
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Kolmogorov–Smirnov (K-S) tests for all competing distri-
butions using the above Data Set I. According to Table 8, the
proposed LLT distribution has the lowest values in A∗, W∗,
and K-S tests, as well as the highest p value. As a conse-
quence, the suggested AT-W distribution is selected as the
best acceptable model among the competing distributions
studied in this research. Also, plots of fitted cdf and pdfs with
histogram of the observed data are shown in Figures 8 and 9.
In addition, the visual representation of the estimated cdf,
pdf, and PP plot in Figure 10 shows Kaplan–Meier plotting
of the AT-W distribution fordata set I.

9. Conclusion

Distribution theory takes uncertainties into account and
provides a set of regulations for discussing financial and
economic taking decision difficulties. Due to the importance
of distribution theory, we were motivated to introduce a new
distribution family based on the inverse trigonometric
function. We introduced a new superior family which better
fits many kinds of data. (e AT-X is very intriguing and
offers better fit to many kinds of data such as actuarial data
financial data and many other related data in such fields.(e
Arctan-Weibull (AT-W) distribution is defined as a subset of
the family. (e study developed the fundamental probability
functions as well as some statistical properties of the sub-
model. (e parameters of the AT-W model are estimated
using classical inference by the maximum likelihood esti-
mation technique. (e proposed distribution is applied to

insurance data set with a high degree of granularity.(e AT-
W distribution was compared to some well-known com-
petitors, including Weibull, Kappa, Burr-XII, and beta-
Weibull distributions. Four information criterion measures
(AIC, BIC, CAIC, and HQIC) were used to make com-
parisons, as well as three goodness-of-fit measures (A∗, W∗,
and KS test statistics with corresponding p values) and the
likelihood function. Using these metrics, it is discovered that
the AT-W model could be a good fit for analyzing high-
dimensional financial data.

(is study has a plethora of potential extensions. In
practice, the special submodels of Table 1may be in-
vestigated in the future study, for instance. Additionally,
a variety of frequentist and Bayesian techniques may be
employed to estimate the parameters of these particular
submodels. (e proposed family could also be extended
to study regression analysis as a generalized linear re-
gression model [41] (GLRM).
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