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In order to overcome the limitation of manual visual inspection of surface defects of rare-earth magnetic materials and increase
production efficiency of traditional rare-earth enterprises, a detection method based on improved SSD (Single Shot Detector) is
proposed. The SSD model is improved from two aspects for better performance in the detection of small defects. First of all, the
multiscale receptive field module is embedded into the backbone network of the algorithm to improve the feature extraction ability of the
model. Secondly, the interlayer feature fusion strategy of bidirectional feature pyramid in PANet (path aggregation network) is integrated
into the model. In order to enhance the detection ability of the model, the high-level semantic information is strengthened by an efficient
channel attention mechanism. The detection speed of the improved SSD algorithm is 55FPS, and the mAP (mean Average Precision) is
up to 83.65%, which is 3.41% higher than of the original SSD algorithm, and the ability to identify small defects is significantly improved.

1. Introduction

Computer vision technology has very important application
and theoretical significance in defect detection of rare-earth
magnetic materials. At present, most magnetic material
manufacturers in China use the traditional method of
manual sorting to classify their products. It is not only time
consuming and laborious, but also increasing the cost of
products. At the same time, an overreliance on manual
sorting raises a problem that cannot be ignored: operators in
the sorting process will inevitably cause visual and physical
fatigue. Lack of attention for a long time will directly lead to
an increase in the rate of false and missed detection. With the
development of computer technology and image processing
technology, automatic detection based on image processing
technology is an inevitable trend. The visual-based surface
quality inspection method has very important research
value, for example, the steel surface damage detection [1],
the railway track defect detection [2], the wafer electron
microscope image defect detection [3], and a wide range of
applications in other fields [4, 5].

In previous studies, researchers usually use traditional
machine learning methods to carry out a series of studies in the

field of defect recognition. Chang et al. [6] proposed a defect
detection method based on LVQ neural network. Aiming at
recognizing the defects on the LED wafer, the geometric
features and texture features are extracted by analyzing each
ROI for detection. Yazdchi et al. [7] presented a texture seg-
mentation technology based on multifractal dimensions to
detect steel surface defects. Fourier analysis in the time domain
is utilized to detach the defective region from the image and
specify its position. The features of multifractal dimension,
mean and variance of column variance, and maximum value of
principal component vector are extracted as the input of the
three-layer and multilayer perceptron classifier. Demetgul et al.
introduced a KNN-based fabric defect classification algorithm,
which uses wavelet transform, threshold, and morphology for
image processing [8]. Jeon et al. proposed a method based on
wavelet reconstruction to detect cracks at the corners of billets
[9]. Sun et al. proposed a new single-shot target detection
network with a mask prediction branch. They proposed an
improved RFB module to increase the size of receptive field for
better performance on small object detection [10]. Although
these methods have achieved good results, they usually require
explicit feature extraction, which leads to unsatisfactory gen-
eralization of detection methods.
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In recent years, with the development of deep learning,
its outstanding performance in the field of image processing
has attracted people’s attention. Deep learning avoids the
manual extraction of features and realizes automatic feature
extraction. Combined with CNN (Convolutional Neural
Network), relevant researchers have carried out a series of
research work in the field of defect detection of motor
magnetic tiles [11-13]. Due to the various types of rare-earth
magnets, there is currently little work on the automatic
detection of rectangular rare-earth magnetic patches do-
mestically and overseas. Therefore, this research combines
machine vision and deep learning and other related theories
and adopts SSD (Single Shot Detector) [14] as the prototype
of defective target detection and improves it. The improved
SSD algorithm has a better recognition effect for small
defects, and the detection accuracy is significantly improved
compared with the original SSD algorithm.

2. SSD Target Detection Algorithm Model

The industrial defect detection task requires high detection
speed. Compared with two-stage model such as Faster
R-CNN [15], the one-stage target detection algorithm is
more suitable for actual production and practice. This re-
search selects SSD as the basic network and improves it. The
improved SSD can detect defects on the surface of the
magnet more accurately and has a higher recognition rate for
small targets. It provides a feasible method for the industrial
scene where defect detection is needed.

2.1. SSD Algorithm Principle. SSD is a one-stage target de-
tection algorithm that borrows ideas from the anchors
mechanism in Faster R-CNN and uses multiscale feature
map for detection. The backbone feature extraction network
of the SSD algorithm is the classic VGG-16 [16] convolu-
tional neural network, which has been modified. The SSD
algorithm replaces fc6 and fc7 in the VGG-16 with a con-
volutional layer structure and, on this basis, adds four ad-
ditional convolutional layers to obtain more feature maps for
detection. The structure of the SSD network is shown in
Figure 1.

The feature extraction network uses feature maps of
different sizes output by the specific effective feature layers
for prediction and outputs the location information of the
target and the confidence of the category. Among them, the
output feature map scale of the Conv4_3 layer structure is
38 x38, the output feature map scale of the fc7 layer
structure is 19 x 19, and the output feature map scale of the
Conv6_2 layer structure is 10x10. The output sizes of
Conv7_2, Conv8_2, and Conv9_2 layers are 5x 5, 3 x 3, and
1 x 1, respectively. Six feature maps of different scales can
detect targets of different sizes. The front feature map has a
smaller receptive field and is mainly used to identify small
targets, while the back feature map has a larger receptive field
and is used to detect large targets. Each pixel of the feature
map has several default boxes, as shown in Figure 2. The
proportion between the size of the default box and the
picture can be expressed as follows:
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Among them, m is the number of valid feature map
(excluding Conv4_3). Spyax and S, represent maximum
and minimum proportions, with values of 0.9 and 0.2, re-
spectively. The default box scale of the first effective feature
layer is independently set to 0.1, and the scale is 30 on the
300 x 300 original image. The aspect ratio of the default box
is set as &, = {1, 2, 3, 1/2, 1/3}; then, the width and height of
the default box can be obtained by the following formula:

Wy = S0y
-y 2
NCs

It is special when «,=1. In addition to the default box
with the scale of s, there is another scale of s/, and its
calculation formula is as follows:

Sp = \/SkSka1- (3)

Since the feature map output by Conv4_3 is relatively
special, the default boxes with an aspect ratio of 3 and 1/3 are
not used. From this, the number of default boxes for each
pixel of the feature layer as the center is 4, and the remaining
layers are 6. So the number of SSD default boxes is 8732. Due
to the large number of default boxes obtained and the
limited number of GT (Ground Truth) matched by IOU
value, the SSD algorithm uses hard negative mining to
sample negative samples. Those with large errors are taken as
negative samples, while those with small errors are con-
sidered as positive samples. The final sample ratio of positive
and negative ones is controlled at about 1:3.

The bounding box of SSD algorithm is fine-tuned by the
default box, and its essence is a regression task. The offset
value of each bounding box to the default box is inferred,
and the final target position information is obtained through
a transformation. The transformation process consists of two
parts: encoding and decoding [14]. The position of the
default box is represented by d, = (d7*, dzy , dys dﬁ), which
respectively correspond to the coordinate of the center point
and the width and height of the default box. The position of
the bounding box is expressed as b,=(d5*, d;, d¥, d}),
which respectively correspond to the coordinates of the
center point and the width and height of the bounding box.

2.2. Problems with SSD Algorithm. Compared with Faster
R-CNN and YOLO [17] algorithm, SSD algorithm has
higher detection accuracy and detection speed, which
benefits from its good design ideas. The SSD algorithm
directly acts on the output information of the effective
feature layer at different scales on the detection layer to
generate the bounding box and the confidence of the de-
tection target. The small target is detected by the shallow
structure such as Conv4_3, and the large target is detected by
the top effective feature layer such as Conv8_2.

The SSD algorithm uses a pyramidal sampling structure to
express the semantic information of the image. The shallow
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F1GURrEe 2: Comparison of the default box and the real box under different scale feature graphs. (a) Image with GT boxes. (b) 8 x 8 feature

map. (c) 4 x4 feature map.

information has high pixels and has a strong ability to locate
targets. However, the small target features obtained by the
low-level convolutional layer lack semantic information. The
nonlinear degree of the features is insufficient, and the features
of their scales are not merged, resulting in the loss of part of the
detailed information of the model learning. This will not be
able to effectively use the contextual information related to the
model, which is not conducive to the detection of related
targets on the image. These deficiencies will lead to the failure
to identify small-size defects in the defect detection process of
rare-earth magnetic materials.

After multiple convolutions, the high-level feature maps
for detecting large targets have larger receptive fields and the
learned information is more abstract, but its lower resolution
may still cause missed targets. The high-level semantic in-
formation in the SSD algorithm has not been enhanced, and
there is still room for improvement.

3. Defect Detection Method of Rare-Earth
Magnetic Patch Based on Improved SSD

3.1. PANet Bidirectional Feature Pyramid Structure. FPN
(Feature Pyramid Network) [18] is a network topology
structure that gathers high-level features and low-level
features. It is different from the pyramid hierarchical
sampling structure in SSD algorithm, so that the information
learned by the model not only retains the location infor-
mation but also contains stronger semantic information. Its
network topology is shown in Figure 3. According to the
topological structure, FPN performs upsampling (such as

bilinear interpolation and deconvolution) on the high-level
feature map and predicts the low-level semantic information
after horizontal superposition, so that the feature image has
strong semantic information and achieves the effect of
feature fusion.

Inspired by FPN, Shu Liu et al. proposed a path ag-
gregation network called PANet; it was first applied to in-
stance segmentation tasks and achieved excellent results
[19]. Its framework is shown in Figure 4. It can be seen from
the figure that PANet has improved the FPN structure,
adopting the structure of the top-down and bottom-up
bidirectional feature pyramid fusion and combining the
downsampling on the basis of the original top-down hori-
zontal superposition of FPN, adding the bottom-up path
enhancement strategy. Its purpose is to shorten the infor-
mation path and use the accurate positioning of the shallow
level. This effectively improve the utilization rate of the
underlying characteristics of the network.

3.2. Parallel Multiscale Convolutional Layer. At present,
most of the algorithms with excellent detection results rely
on backbone networks with strong feature extraction ca-
pabilities, such as the improved DSSD algorithm based on
SSD [14]. This network replaces the original VGG-16 feature
extraction network with a deeper network like ResNet101
and adds a DSSD network layer on this basis. These changes
significantly improve the accuracy of the model, but require
a lot of computational cost, and the detection speed is much
lower than that of SSD. Some SSD series detection algo-
rithms based on lightweight backbone networks, such as
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FIGURE 4: PANet structure.

MobileNet-SSD model [20], have relatively low detection
accuracy despite their fast computing speed.

In order to avoid a large number of operations caused by
deep convolutional neural network, Liu et al. [21] added a
receptive field module to the top of VGG-16 network of SSD
algorithm to obtain performance gains and control the
computational cost within a controllable range. The struc-
ture of the receptive field module is similar to that of
InceptionV4, and multiscale information is obtained by
using parallel convolution kernels with different receptive
fields. In the receptive field module, according to the size of
the receptive field, each convolution branch performs a
dilated convolution with different expansion coeflicients to
simulate the group receptive field mechanism in human
vision. It also uses the residual learning idea and adds jump
connections. This paper uses the receptive field module to
enhance the VGG-16 backbone network and replaces the
5x 5 convolutional layer in the receptive field module with
two consecutively stacked 3x3 convolutional layers to
achieve the same receptive field and reduce network pa-
rameters, as shown in Figure 5.

3.3. Efficient Channel Attention Mechanism. In the reasoning
process of the SSD algorithm, the identification of medium
and large targets is completed by the high-level feature map.
Due to its low output resolution, the target may also be
missed. In this paper, an efficient channel attention module
ECA [22] is introduced to optimize the high-level and low-

resolution semantic information graph output by SSD al-
gorithm. The obtained information graph with low reso-
lution and high-semantic features can better identify
medium and large defect targets, so as to achieve the purpose
of improving mAP (mean Average Precision).

The attention mechanism is to imitate the signal pro-
cessing mechanism of the human brain. This strategy has
good adaptability and enhancement for computer vision
tasks. ECA structure also obtains the importance degree of
different characteristic channels through supervised learn-
ing. The nonlinear full-connection layer in SENet [23] is
improved to avoid the impact of dimensionality reduction
on the attention of the learning channel and ensure the
efficiency and computing effect of the network. This module
can achieve cross-channel interaction without dimension-
ality reduction. That is, after global average pooling of the
output feature graph, each channel interacts with its K
neighbors through rapid one-dimensional convolution. The
topology of ECA module is shown in Figure 6.

The correlation of feature channels can be expressed as
follows:

w =0(CID, (), (4)

where CID represents one-dimensional convolution oper-
ation, k represents the coverage of cross-channel interaction,
and its size is proportional to the number of channel di-
mensions. When the channel dimension C is constant, the
value of k can be determined by the following formula:
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Here, odd is the closest odd number and y and b are set
to 2 and 1, respectively.

k=y(C) = (5)

odd

3.4. Establishment of the Improved SSD Network Model.
In order to make the original SSD algorithm better solve the
problem of small-size defect identification and improve
recognition effect, the SSD algorithm is improved based on
the relevant theoretical basis analyzed in the above section.
The framework of the defect detection method for rare-earth
magnetic materials based on the improved SSD model is
shown in Figure 7.

It can be seen from the figure that the improved SSD
algorithm replaces the Conv6 and Conv7 convolutional
layers of the original backbone extraction network by em-
bedding multiscale receptive field modules Block 1,
Block_2, and Block_3, thereby improving the ability of the
VGG-16 backbone network to extract features and not af-
fecting the inference speed of the detection algorithm.
Conv8 and Conv9 layers are not modified. The effective
feature layer dimension information output by the em-
bedded Block 1 receptive field module is 19 x19 x 1024,

which has the same size as the output of the fc7 layer and can
extract more effective feature information. Therefore, this
study extracts the features of the convolutional layer to
replace the output of the fc7 layer and uses the PANet-based
bidirectional feature pyramid fusion with the Con4_3 and
Con3_1 layer structure to make full use of the context in-
formation between different levels. The final output is
38x38 and 19x19 effective feature layers. The network
structure of feature fusion between layers is shown in Fig-
ure 8. Among them, Block_1 adopts spatial pyramid pooling
to increase the receptive field. After the interlayer fusion
between the top-level feature layer and the low-level feature
layer, alternate convolution of 1 x 1 and 3 x 3 convolutional
layers is helpful to reduce the amount of parameters and
extract very effective features. The deep effective feature
layers Block_2, Block_3, Conv8_2, and Conv9_2 output four
sizes of low-resolution and high-semantic information maps
through the ECA channel attention mechanism network.

4. Rare-Earth Magnetic Patch Data Set and
Experimental Analysis

4.1. Data Set. The image data sets used in this paper were all
collected from Guangxi Jinyuan Rare Earth Co., Ltd.
(Guangxi Nonferrous Metals Group). The data sets were
manually classified with the assistance of sorting workers
and photographed on site with industrial cameras. The focus
of the research in this paper is four types of common defect
data samples with category and location information, in-
cluding unfilled corner, line mark, deformation, and crack,
as shown in Figure 9. The defect targets are marked using
LabelImg labeling software before the experiment. A total of
1534 data samples were labeled and divided into training set,
verification set, and test set in a ratio of 8:1:1. After image
annotation, XML files including image number, category,
location of target marker box, and other information will be
obtained for model training.

4.2. Network Model Training and Experimental Parameter
Setting. The loss function of the improved SSD algorithm
consists of two parts, namely the classification confidence
loss function (Conf) associated with the target category and
the location loss function (Loc) associated with the
bounding box regression, as shown in

1
L(x,cl,g) = N (Leont (%,€)) + aLyo. (%, 1, g). (6)

Among them, x represents the matching result; ¢ and /
respectively represent the confidence of the classification
and the position of the bounding box; « is the scale factor,
which is used to adjust the ratio of the bit loss function to the
confidence loss function; g is the true box label; N represents
the number of default boxes that match the actual box.

The confidence loss function can be expressed as follows:

N
Leons (x,¢) = — Z x{}log(?f) - Z log(??)- (7)
i€Pos i€Neg
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Among them, Pos represents the number of positive
samples in the bounding box, Neg represents the number of
negative samples in the bounding box, j represents the j-th
true box, i represents the i-th bounding box, and xg- rep-
resents whether it belongs to the p category. c!’ represents the
confidence of the corresponding category of the i-th
bounding box, and ¢ represents the confidence of the

background, which is calculated by the following formula:
p

o - exp(ci 2) .

Zpexp(e/)

The location loss function can be expressed as follows:

(8)

N
Ly (x1,9) = Z Z xfjsmoothm(l:” - g;") (9)
«Pos me{cx,cy,w,h}

Among them, k represents the category and smooth;;(x)
represents the smooth L; norm,
0.5x2, |x| <1,
smooth;; (x) = (10)

|x| — 0.5, otherwise.

All experiments in this paper are based on the Ubuntu
18.04 operating system and the NVIDIA high-speed hard-
ware computing platform with 1x GeForce RTX 2080TI
graphics card. The improved SSD target detection algorithm
is implemented by the deep learning framework PyTorch
1.5.1 and python 3.6. The image data are all downsampled to
300 x 300 resolution as the input of the network. The pa-
rameters of this model are set as follows: the batch size of one
training sample is 24, and the data set is iterated for 80,000
times in total. The stochastic gradient descent method is
used as the network optimizer. The learning rate is initialized
to 1E-3 and set to 1E-4 and 1E-5 respectively when the
iteration reaches 60,000 and 70,000 times. Momentum is set
to 0.9. In order to make the training process of the model
more stable, the training of the model adopts the strategy of
warm up learning rate automatic adjustment [24]. At the
same time, the idea of transfer learning was introduced to
load the weight parameters before the Conv4_3 layer which

had been trained in the VGG-16 network to accelerate the
training of the network. The curve of the loss function is
shown in Figure 10.

4.3. Analysis of Experimental Results. In target detection,
mAP index is usually used to evaluate the comprehensive
detection performance of a model, and the calculation of
map value is related to the special-recall carve for each
detection category. The abscissa and ordinate of the curve
represent the recall rate and accuracy, respectively, and the
area enclosed below is the average precision (AP). mAP is
calculated by adding the AP values of each category and
averaging them. Different from the classification task, the
IOU values of the bounding box and the real box are used as
the boundary to define the positive and negative samples in
target detection. Values greater than the IOU are called
positive samples, values less than the IOU are called negative
samples, and the IOU value is usually set to 0.5. The test
results of the test set in the rare-earth magnetic patch data set
and the performance parameters before and after im-
provement are shown in Table 1.

According to the test results, the improved SSD algo-
rithm in this paper has a 3.41% improvement in mAP
compared with the original version of the SSD algorithm.
This is mainly because the algorithm in this paper improves
the ability of defect feature extraction and adopts the strategy
of feature fusion between layers. The full use of contextual
semantic information makes the rate of missed detection
lower for small defects such as unfilled corners, which makes
up for the deficiency of SSD algorithm in small target
recognition ability to a certain extent. In addition to the
enhancement of the backbone network embedded receptive
field module, this algorithm also introduces the ECA net-
work module to the low-resolution effective feature map of
the top layer to obtain more effective features, which makes
the detection rate of nonobvious defect targets such as line
marks higher. The experiment found that using Mobile-
NetV2 [20] as the backbone feature extraction network to
detect the data of rare-earth magnetic patches can make the
network have a high degree of lightweight and a fast
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TaBLE 1: Comparison of performance indexes between the improved SSD algorithm and other algorithms.
) Detection accuracy (AP)/%
Algorithm mAP/% . .
Unfilled corner Crack Deformation Line mark
Faster R-CNN 77.48 69.86 85.11 63.51 91.45
YOLO-V3 81.88 86.58 84.63 66.25 90.06
MobileNetV2-SSD 73.83 62.66 79.74 67.50 85.43
SSD (original) 80.24 80.28 82.42 70.57 87.69
SSD (improvement) 83.65 86.37 85.31 70.89 92.02

detection speed, making it easy to deploy the device, but its
detection accuracy is not reliable. Compared with the Faster
R-CNN two-stage model that only uses the top layer to learn
features, the improved algorithm in this paper has greater
advantages. At the same time, compared with the more
advanced one-stage model YOLO-V3 [24], defect recogni-
tion accuracy is slightly lower, but the comprehensive de-
tection effect is better.

We perform ablation study to explore the effects of
PANET bidirectional feature pyramid structure, parallel
Multiscale Convolutional Layer, and eflicient channel at-
tention mechanism on detection accuracy. Here we in-
vestigate four models SSD, SSD + multiscale receptive field
layer, SSD + multiscale receptive field layer + PANet, and
SSD + multiscale receptive field layer + PANet+ ECA. It
can be seen from Table 2. After the enhancement of the
backbone network embedded receptive field module and
integration of the bidirectional feature pyramid in PANET
for interlayer feature fusion, the accuracy of mAP was
significantly improved to 81.37% and 83.24%. When
combining the ECA module, we observed our best per-
formance (83.65%).

In order to more intuitively evaluate the effect of SSD
algorithm on defect detection before and after improvement,
some experimental results are shown in Figures 11 and 12.

As shown in Figure 11, in addition to the improved SSD
algorithm in this paper, the SSD algorithm with the light-
weight MobileNetV2 convolutional neural network as the
backbone feature extraction network and the original SSD
algorithm can both locate and identify defects. The improved

SSD algorithm in this paper is more accurate in the
bounding box (the detection results of line marks and de-
formation are shown in the figure).

In actual manufacturing, unfilled corner type defects are
very common. The size of such defects is different, and
small-sized unfilled corner defects often appear. The im-
proved SSD defect detection algorithm shows stronger
recognition ability for this type of defect, the algorithm has a
lower rate of missed detection, and the recognition rate is
significantly improved. At the same time, its recognition
ability is also improved for defects with larger size but
nonobvious features, as shown in Figure 12.

This paper compares the detection speed of SSD before
and after improvement, which is 108 frames per second and
55 frames per second, respectively, on GeForceRTX2080T1
high-performance graphics card, as shown in Table 3. Be-
cause the original SSD algorithm integrates the bidirectional
feature pyramid structure and channel attention mechanism
and enhances the trunk extraction network, the number of
parameters is more than the original algorithm. Compared
with the original algorithm, the proposed algorithm inte-
grates the bidirectional feature pyramid in PANET for in-
terlayer feature fusion. The algorithm has a large amount of
computation, which improves the overall mAP and increases
the inference time of the model. In the application of in-
dustrial video analysis and processing, the speed of reading
image data from the camera is about 25 frames per second.
The improved SSD target detection algorithm in this paper
meets the requirements of real-time online detection while
maintaining good detection performance.
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TaBLE 2: Ablation study: mAPs of different modules.

Structure mAP/%

SSD 80.24

SSD + multiscale receptive field layer 81.37

SSD + multiscale receptive field layer + PANet 83.24

SSD + multiscale receptive field layer + PANet + ECA 83.65

()

FiGURE 11: The detection effect of SSD algorithm on large-size defects before and after improvement. (a) Detection effect of MobileNetV2-
SSD. (b) Detection effect of original SSD. (c) Detection effect of improved SSD.

F1GURE 12: The detection effect of SSD algorithm on unfilled corners and line marks before and after improvement. (a) The detection effect of
MobileNetV2-SSD. (b) The detection effect of original SSD. (c) The detection effect of improved SSD.

TaBLE 3: Parameter comparison before and after improvement of SSD algorithm.

Algorithm Parameter (M) Computation (GMac) mAP (%) ?g;(;()i
SSD (original) 24.15 30.64 80.24 108
SSD (improvement) 71.09 57.63 83.65 55

5. Conclusion

This paper presented a defect detection method of rare-
earth magnetic patch based on improved SSD. The SSD
algorithm with a relatively balanced detection accuracy and
inference speed was selected to detect magnetic patch
defects and analyze the detection results. It was observed
that SSD had a good identification effect for obvious defects
with large size, but for defects with obscure features and
small size, there was often a situation of missing inspection.

In order to further improve the detection accuracy of SSD
algorithm, this paper embedded multiscale receptive field
module into the backbone network of SSD algorithm to
improve the feature extraction ability of the model, using a
bidirectional feature pyramid idea to integrate high-level
features and low-level features, combined with efficient
channel attention mechanism to enhance the detection
ability of the network. Experiments have proved that,
compared with the original algorithm, the improved al-
gorithm in this paper has a significant improvement in the
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recognition ability of small-size defects, with mAP reaching
83.65%. And the recognition ability of large-size defects
with nonobvious features has also been enhanced. The
detection speed can reach 55FPS on the experimental
platform, which meets the requirements of online auto-
matic detection.
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