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'is paper studies the complexity of the pricing system for the production of low-carbon and nonlow-carbon products in a market
composed of duopoly manufacturers under the cap-and-trade policies. 'rough nonlinear system theory and numerical der-
ivation and simulation, it considers the influence of different market power structures, carbon trading prices, consumer en-
vironmental awareness, and other factors on price decisions, carbon emission decisions, profits, and system stability.'e influence
of price adjustment parameters and unit product carbon emission decision adjustment parameters on the complexity of the
pricing system under different market power structures is analyzed. And, it was found that compared with the variable feedback
chaos control method, the parameter adjustment chaos control method is more effective in controlling the pricing system in this
paper. Our research provides management implications for market competition and operational decision-making for low-carbon
and nonlow-carbon products.

1. Introduction

In the past few decades, the impact of carbon emissions on
the environment has become increasingly severe. Humans
emit large amounts of carbon dioxide and other greenhouse
gases to nature, which exceed the carrying and regulation
capacity of the Earth, leading to an imbalance in the ocean-
land-atmosphere carbon cycle, the greenhouse gas con-
centration, and the Earth’s temperature “double rise.” For
instance, atmospheric carbon dioxide concentration reached
a record 415 ppm in 2019. 'is has led to a significant in-
crease in the frequency and intensity of extreme weather and
climate events such as droughts, floods, hurricanes, wildfires,
extreme heat, and severe cold in the atmosphere. To promote
sustainable development, the government and scientists are
committed to the coordinated development of the industrial
economy and environment. Governments of different
countries have promulgated various policies, including
carbon emissions trading mechanisms, carbon emissions

caps, carbon taxes, and so on [1, 2]. 'ese policies encourage
manufacturers to be sustainable in the context of carbon-
constrained policies and invest in low-carbon technologies
to reduce carbon emissions throughout their production and
operations [3].

'e carbon cap-and-trade policy with market attributes
is an efficient and sustainable development policy. 'e
carbon trading mechanism has covered more than 40
countries worldwide. At present, the EU’s carbon trading
market has become the world’s largest carbon trading
market. Although a unified global carbon trading market has
not yet been formed, different carbon trading markets have
begun to connect with each other. 'e government’s carbon
allowance and trading policy is that the government allocates
emission quotas or emission permits to pollutant-producing
companies based on the emission level within a certain
period of time. 'e government’s carbon cap-and-trade
policy is that the government allocates emission quotas or
emission permits to pollutant producers based on emission
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levels within a period of time. If the company still has the
remaining carbon allowance after the production is com-
pleted, it can be traded on the carbon trading market [4].

Government policies, corporate publicity, public envi-
ronmental awareness, and consumer perceptions have in-
creased the demand for low-carbon products. Consumers
can buy products based on their low-carbon preferences
[5, 6]. Many companies reduce carbon emissions by im-
proving internal operations, controlling the carbon footprint
of the supply chain, and investing in low-carbon technol-
ogies. For example, Lenovo uses quantitative statistics on the
carbon footprint of products to better optimize the envi-
ronmental performance of products from the industrial
chain. 'e chemical company, Huntsman is looking for
effective ways to reduce carbon emissions in all links of the
industrial chain, and empower the green and low-carbon
transformation of the chemical industry. In 2019, the APP
(China) launched a carbon inventory project for its forest
land. As of 2020, the APP (China) has absorbed approxi-
mately 42.395 million tons of carbon dioxide. And, the APP
(China) has sold a series of paper products related to carbon
neutrality.

'e pricing of low-carbon products is a significant issue
in enterprises. Enterprise managers price products
according to the factors such as the investment cost of
carbon emission reduction, market demand, and procure-
ment costs of the entire supply chain. Consumer environ-
mental awareness (CEA) is one of the factors to be
considered in product pricing. 'e meaning of CEA is
similar to consumer sensitivity to low-carbon products and
consumer low-carbon preference. CEA means that envi-
ronmentally conscious consumers are more willing to buy
low-carbon products (LP). 'e CEA first demonstrates in
literature [7,8] that consumers are more inclined to pay the
price higher than nonlow-carbon products (NLP) when the
product has low-carbon attributes. 'e technological in-
novation cost (TIC) is another major factor affecting the
price of low-carbon products. However, the manufacturers
of LP not only have to face TIC and CEA but also face the
market competition with NLP [9].

'e pricing of LP and NLP with alternative functions
affects the supply and demand relationship and demand of
all members in the supply chain. Pricing strategies in supply
chains have been studied extensively [10–13]. Related to this
research is mainly the product pricing problem under the
duopoly market structure. 'e following is a brief review of
relevant literature from the perspectives of static pricing and
dynamic pricing.

Firstly, review the literature from the perspective of one-
period static pricing. In reference [14], under the background of
the carbon tax, the price decision of two manufacturers with
different carbon emission reduction efficiencies was studied,
and the impact of carbon tax on equilibrium decision-making
was considered. 'e study found that in order to achieve a
certain percentage of the expected carbon emissions reduction,
the carbon tax imposed on efficiency manufacturers should be
greater than that imposed on inefficiency companies.'e study
is one of the earliest papers to include government carbon-
related policies in the decision-making model; however, it

ignores the impact of CEA on market demand. In reference
[15], under the background of the carbon tax and carbon cap-
and-trade policies, the authors compared the emission re-
duction decisions of the two manufacturers in the context of
competition and cooperation. 'e research results show that
under the carbon cap-and-trade policies, CEA affects manu-
facturers’ carbon emissions. 'e research on the significant
impact of CEA on the market can be found in references
[16–18]. 'erefore, the model established in this article con-
siders the impact of CEA on market demand.

Reference [19] studied the price competition and in-
ternal carbon trading cooperation between two manufac-
turers with different production capacities under carbon
emission constraints. Each manufacturer in the model has a
fixed amount of carbon emissions, but does not consider
carbon emission reduction. 'e results show that manu-
facturers with high production capacity have higher prices
than other manufacturers. Luo and Chen [20] studied the
optimal pricing and emission reduction policies of two
competing manufacturers with different emission reduction
efficiencies under the cap-and-trade policies. It has the same
research purpose as literature [19], but it considers the
market competition of manufacturers after carbon emission
reduction. Literature [21] studied the product price deci-
sions and low-carbon technology choices of two manufac-
turers with different carbon emissions under different
carbon prices.

'e above kinds of literature study the price competition
problem between two manufacturers with different pro-
duction efficiencies from the perspective of static game, but
they do not consider market power structures. Market
structure affects manufacturers’ dynamic decisions and
business strategies. Some previous studies on the power
structure of the low-carbon supply chainmarket are [22–24].

'e literature [25], under different market power
structures, studied the optimal low-carbon investment and
price decisions. It found that manufacturers who produce
green products with high-efficiency emission reductions
cannot guarantee high profits compared with inefficient
manufacturers. 'e profits of manufacturers in a balance
power market are not always lower than that of the leader in
the market. 'e results are similar to references [22, 24]. Lou
and Ma [26] studied the decisions of manufacturers and
retailers in price competition between two supply chains
with different low-carbon efforts. 'ey found that being the
leader of the Stackelberg game often leads to more profits.
'is result is similar to [23].

We can get to know from the previous studies that under
carbon-related policies, the influencing factors of manu-
facturers’ profits under different power structures are
complex, and market leaders may not be able to obtain more
profits.

Except for [26], the above-mentioned literature studies
are conducted from the perspective of static rational one-
cycle decision-making, while manufacturers cannot obtain
complete information in the market. So, manufacturers
change their pricing decisions based on changes in the
collected information. 'e pricing system under complete
information is unstable.'erefore, some researchers analyze
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the price game of duopoly manufacturers from the per-
spective of bounded rationality.

'e dynamic game of bounded rational players has al-
ways been the focus of many types of research, focusing on
Bertrand’s duopoly game [27–29] and Cournot’s game
[30–32]. 'e literature [33] studied the dynamic price game
model of a dual-channel green supply chain, considering the
innovative investment of enterprises in green products and
channel services. Zhao and Zhang [34] studied the dynamics
pricing system involving two enterprises with heterogeneous
expectation rules participating in carbon emission trading.
'e study found that the higher the carbon price, the higher
the price for each enterprise. When the carbon price is too
high, the Nash equilibrium will become unstable, and the
system will enter a chaotic state through period-doubling
bifurcation. 'e weakness of this study is that it adopts a
linear emission reduction cost and does not consider the
impact of the change of low-carbon emission reduction cost
on the equilibrium decision.

Literature [35] considered government carbon taxes and
subsidies, the price competition and system stability of fuel
vehicles, and electric vehicles in different market power
structures. Study results suggested that whether electric
vehicles obtain the market’s price leadership advantage
depends on the cost difference between electric vehicles and
fuel vehicles.

Existing literatures have studied product pricing be-
tween duopoly manufacturers with varying carbon emission
reduction efficiencies, manufacturers with heterogeneous
expectations, and carbon emission policies and market
power structures between manufacturers with different
carbon emission efficiencies. 'ey provide a rich theoretical
and model basis for this article. 'e comparison of existing
models with this research is in Table 1.

Most of the above literatures consider the low-carbon
emission reduction of a manufacturer or the upstream and
downstream of the supply chain but seldom consider the
impact of the manufacturer’s low-carbon competitive envi-
ronment and market power structure on low-carbon emission
reduction and product price. Whether the vicious competition
(low-carbon product and nonlow-carbon product) in the
market will drive low-carbon manufacturers out of the market
is less considered. And, the existing literature seldom considers
the dynamic impact of government carbon allowances and
carbon prices on the profits of manufacturers. 'erefore, this
paper uses nonlinear dynamic analysis to study the price
competition of low-carbon products and nonlow-carbon
products between duopoly manufacturers with different
market power structures under the cap-and-trade policies. 'e
research background is similar to references [13, 15].

'e purpose of this study is to solve the following
problems:

(1 )What impact do different market power structures
have on the decisions and profits of low-carbon
product manufacturers and nonlow-carbon product
manufacturers?

(2) What is the difference between the stable region of
the system under different power structures? How do

parameter changes that affect decision-making affect
the size of the stability region of the system?

(3) How does the manufacturer’s profit change under
dynamic decision-making? What are the dynamic
effects of carbon prices on manufacturers’ profits?

(4) How to prevent the system from entering chaos?
When entering a state of chaos, what methods can
control the chaos?

So, our contribution in this paper can be concluded as
follows:

(i) In a market where low-carbon products and non-
low-carbon products compete, we analyze the in-
fluence of the power structure between
manufacturers on product prices, optimal carbon
emissions, profits, and system stability.

(ii) 'e complexity of the low-carbon and nonlow-
carbon product price competition system and the
influencing factors of the system stability domain
are analyzed.

(iii) We analyze the influence of changes in external
carbon trading prices on the complexity of system
profits.

(iv) We compared the two existing chaos control
methods and explore a method that can effectively
control the system’s chaos.

'e rest of the paper consists of the following parts:
Section 2 introduces the model framework and assumptions
with the interpretation of relevant symbols. We build the
static game model and the dynamic game model. Analyze
the optimal decision solution and the decision condition of
system stability under different power structures, respec-
tively. In Section 3, we explore the decision-making results
of the model in Section 2 through numerical simulation. In
Section 4, we analyze the complexity of the pricing system
under the two power structures. In Section 5, we analyze the
complexity of the impact of parameters on system profits.
Section 6 analyses the typical characteristics of the nonlinear
discrete system of pricing to better understand the com-
plexity of the system. Section 7 compares the two chaos
control methods and explores a chaos control method
suitable for controlling the pricing system of this paper.
Section 8 is the conclusion.

2. Model

2.1. Fundamental Assumptions and Notations. Under the
government’s carbon cap-and-trade policies, there are du-
opoly manufacturers producing similar functional products
on the market. Duopoly competition in the past provides the
theoretical basis for this paper [13, 34]. Among them,
manufacturer 1 (m1) invests in low-carbon technology to
produce low-carbon products (LP) and reduce carbon
emissions in response to low-carbon emission reduction. In
contrast, manufacturer 2 (m2) produces nonlow-carbon
(NLP) products and competes with m1 in price. 'ere was
little difference between the functions of LP and NLP, with
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packaging indicating the carbon footprint of each unit of
product produced or used. For example, in the Chinese
market, Coca-Cola and Pepsi present duopoly competition
in the cola market. If Coca-Cola revealed that producing a
bottle of Coke had a lower carbon footprint than PepsiCo,
they could enter a new round of price competition.

We make the following model assumptions to support
this study.

Assumptions 1. 'e price competition between them is a
long-term, repetitive, dynamic, and complex process.
'e information obtained by the manufacturer that af-
fects the product price is limited. 'e manufacturers have
bounded rationality and make the next decision rely on a
local estimate of marginal utility for the current period. If
the marginal utility is positive in this period, the selling
price will be raised in the next period. Otherwise, the
manufacturers will lower the selling price in the next
period [24].

Assumptions 2. Due to the maturity of technology, the
manufacturer’s cost per unit product is c; the cost of supply
chain emission reduction with the feature of convexity [26]
is c(e0 − e1)

2. Where it satisfies the qi > 0, pi > 0 condition,
then c> (((β + pc)(pc + pcα + 2β))/2(2 + α)), pc > β> 0.

Assumptions 3. Market demand is a function of the product
price and carbon emissions, following similar arguments in
studies [36]. Manufacturer 1 produces the low-carbon
product (LP). Manufacturer 2 produces the nonlow-carbon
product (NLP) and competes with manufacturer 1 on price.
'e optimal carbon emissions of unit LP is less than the
initial carbon emissions with the low-carbon technology
production, that is, 0< e1 < e0.'e parameters and meanings
used in this paper are shown in Table 2.

2.2. Model Construction. 'e relationship between the
manufacturers is not certain. We consider two kinds of
market power situations. One is that in the balance market,

Table 1: Comparison of existing models with this research.

Authors Background Member of the chain Decision variables Method
Zhao and
Zhang [34] Cap-and-trade Two heterogeneous players Retail price Game theory (Nash),

nonlinear dynamics

Chen and
Hao [14] Carbon tax

Two competing firms with
varying production

efficiencies
Retail price Game theory (Nash)

Luo et al.
[20] Cap-and-trade

Two competing firms with
varying production

efficiencies

Retail price, carbon emission index per
unit low-carbon product Game theory (Nash)

Chen et al.
[25]

Different market power
structures

Two manufacturers with
varying production

efficiencies

Retail price, carbon emission index per
unit low-carbon product

Game theory (Nash and
Stackelberg)

Lou and
Ma [26]

Cap-and-trade,
different market power

structures
Two-parallel supply chain

Retail price, manufacturers’ wholesale
price, the carbon reduction effort, the

sales effort

Game theory (Nash and
Stackelberg), nonlinear

dynamics

Jian et al.
[19] Carbon emissions cap

Two manufacturers with
varying production

efficiencies
Retail price Game theory (Nash)

Wang and
Hou [28] — A supplier (M) and a

retailer(S)
'e green level of M and S, the

advertisement cost of M, the retail price

Game theory
(Stackelberg), nonlinear

dynamics

Ma et al.
[35]

Different market power
structures, carbon tax

and subsidies

Two manufacturers (electric
vehicle and the fuel vehicle) Retail price

Game theory
(Stackelberg), nonlinear

dynamics

Sana [13] Tax and subsidies Two competing firms (green
and nongreen products)

Retail price, carbon emission index per
unit low-carbon product, level of

corporate social responsibility (CSR)
activities et al.

Game theory (Nash)

Pan et al.
[21]

Cap-and-trade,
subsidies

Two manufacturers (dirtier
and environmentally

friendly)

Retail price, a decision on whether to
implement green technology Game theory (Nash)

Sun and
yang [15]

Carbon tax, cap-and-
trade

Two manufacturers
producing low-carbon

products

Carbon tax rate, carbon emission,
reduction per unit of product, carbon cap

allocated by government
Game theory (Nash)

Present
paper

Cap-and-trade,
different market power

structures

Two manufacturers (low-
carbon product and nonlow-

carbon product)

Retail price, carbon emission index per
unit low-carbon product

Game theory (Nash and
Stackelberg), nonlinear

dynamics
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two manufacturers have the same market position. We
establish the Nash game model for price competition in the
balance market (nl). 'e other is that the m1 is the leader in
the unbalance market. So we establish a Stackelberg game
(m1l). 'en, we compare the results under the two kinds of
the market power structures.

2.2.1. Nash Game (nl). In the nl game, there is no leader in
the two manufacturers, and the decision order is that the
manufacturers decide product price pi and the optimal
carbon emission level at the same time.

Based on the assumption in Section 2.1, the market
demand is not only affected by the product price but also by
the carbon emission of the product and the consumers’
environmental awareness [37]. Taking the above factors into
consideration, the market demand of the product can be
depicted as follows [38]:

q1 � a − p1 + αp2 − β e1 − e0( ,

q2 � a − p2 + αp1 − β e0 − e1( .
 (1)

β denotes the parameter of CEA, similar to references
[16–18]. Equation (1) shows that the market demand for LP
increases with parameter β increasing and e0 − e1 is the
reduced carbon emissions of LP. With β constant, the
market demand for LP increases with m1 reducing carbon
emissions. 'is means that compared with NLP, the lower
the carbon emissions of LP, the easier it is to attract

consumers to buy them. Furthermore, the potential market
demand and cross-price sensitivity coefficient are, respec-
tively, a and α. 'e α is the interactive effect of prices be-
tween LP and NLP in the market. 'e interactive impact of
price is lower than the impact of the product’s price on
demand. 'erefore, we assume that the product’s price
sensitivity coefficient is 1 and 0< α< 1.

'erefore, the manufacturer’s profit expression is as
follows:


1

� p1 − c − pce1( q1 − c e0 − e1( 
2

+ pcE,


2

� p2 − c − pce0( q2 + pcE.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

In equation (2), 1 is the profit of the LP manufac-
turer. 2 is the profit of the NLP manufacturer. So 1 has
a low-carbon innovation cost, where c(e0 − e1)

2 c is the
cost coefficient for green technology to reduce carbon
emission compared to e0 [13]. And E is the maximum
carbon emission allocated by the government to the
manufacturers. If the manufacturer’s total carbon
emissions exceed the government’s carbon cap,
pcenqn (n � 0, 1)>pcE, the manufacturer needs to pur-
chase carbon emissions from the market. 'erefore, the
environmental cost of the product paid by the manu-
facturer is pcenqn − pcE (n � 0, 1). pcis the carbon price in
the carbon trading market.

'en, the first-order partial derivatives of 1 and 2
with respect to p1, e1 and p2, respectively, can be calculated:

Table 2: Parameters and variables.

Parameters
No Notation Definition
1 a Potential market size
2 α (0< α< 1) Cross-price sensitivity coefficient of two products
3 β (0< β< 1) 'e CEA parameter
4 c 'e TIC parameter (cost coefficient for green technology to reduce carbon emission compared to e0)
5 e0 Carbon emission index per unit nonlow-carbon product
6 c Manufacturing cost per unit of the product
7 pc Carbon emissions trading price
8 E Carbon caps
9 qi Market demands of the product i

10 u1 Manufacturer 1’s price adjustment speed
11 u2 Manufacturer 1’s carbon emissions adjustment speed
12 u and v 'e system’s adaptive parameters adjustment speed

Decision variables
1 p1 'e price of low-carbon product
2 p2 'e price of nonlow-carbon product
3 e1 (0< e1 < e0) Carbon emission index per unit low-carbon product

Other variables and abbreviations
1 nl Nash game (balance market)
2 m1l 'e Stackelberg game of manufacturer 1 is the leader (unbalance market)
3 i (i � 1, 2) 'e profit of manufacturer i

4 LP Low-carbon product
5 NLP Nonlow-carbon product
6 m1 Manufacturer 1 (produces LP)
7 m2 Manufacturer 2 (produces NLP)
8 CEA Consumer environmental awareness
9 TIC Technological innovation cost
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z1

zp1
� a + c − 2p1 + e1pc + p2α − β e1 − e0( ,

z1

ze1
� c − p1 + e1pc( β + 2 e0 − e1( c − pc a − p1 + p2α − β e1 − e0( ( ,

z2

zp2
� a + c − 2p2 + e0pc + p1α − β e0 − e1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In addition, according to the marginal profit of m2 in
equation (3), the optimal reaction function of m2 can be
obtained as follows:

p
∗
2(t) �

1
2

a + c + e0pc + p1α − e0β + e1β( . (4)

Taking the second-order derivatives of equation (3), we
can get the profit of m1’s Hessian matrix of p1 and e1 as
follows:

H 1(  �
− 2 pc − β

pc − β 2pcβ − 2c
 . (5)

Obviously, the value of principal minors of the Hessian
matrix, |H1(1)| � − 2 is negative and based on Assumption
2, c> (((β + pc)(pc + pcα + 2β))/2(2 + α)), then the
|H2(1)| � 4(c − pcβ) − (pc − β)2 > 0 H(1) is negative
definite. It assures 1 is concave. 'erefore, m1 can obtain
the optimal market price and carbon emissions that max-
imize profits.

Proposition 1. we get the optimal price p1, p2 and the
optimal carbon emission e1 by letting equation (3) equal to
zero. Solution can be obtained as follows:

p
∗
1(nl) �

− A
nl
1 + A

nl
2 + A

nl
3 − A

nl
4 

p
2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(α(α + 1) − 4)

,

e
∗
1(nl) �

B
nl
1 − B

nl
2

p
2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(α(α + 1) − 4)

,

p
∗
2(nl) �

C
nl
1 + C

nl
2 − aC

nl
3

p
2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(α(α + 1) − 4)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Please refer Anl
i , Bnl

i , and Cnl
i (i � 1, 2, . . . , 4) in

Appendix A.
'erefore, substituting equations (6) into (2), we can

obtain the optimal profits of m1 and m2 under the Nash
game as follows:


∗
1(nl) �

− (2 + α)
2

pc + β( 
2
cD

nl
1 + D

nl
2 + D

nl
3

p
2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(α(α + 1) − 4) 

2,


∗
2(nl) �

D
nl
1 C

nl
3 

2

p
2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(α(α + 1) − 4) 

2 + Epc.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Please refer Dnl
i (i � 1, 2, 3) in Appendix B

According to the assumptions: For the feasibility of the
model 0< e1 < e0 and the e∗1(nl) in equation (6), when there
is an optimal carbon emission reduction for m1, the range of
e0 can be obtained as follows:

(a + c(α − 1))(2 + α) pc + β( 

8c − α p
2
c − β2 + 2αc  − 2β pc + β( 

< e0 <
a + c(α − 1)

pc(1 − α)
. (8)

Now, we establish a dynamic game model. 'e game
between m1 and m2 is a long-term, repetitive, and complex
dynamic adjustment process [29]. 'us, decision-making
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based on bounded rationality is common in practice [34, 39].
So, we build the dynamic game model as follows:

p1(t + 1) � p1(t) + μ1p1(t)
zπ1(t)

zp1(t)
,

e1(t + 1) � e1(t) + μ2e1(t)
zπ1(t)

ze1(t)
,

p2(t + 1) � p
∗
2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where μ1 and μ2, respectively, represent the adjustment
speed of p1 and e1, which are affected by many factors, such
as the learning ability, decision-making ability, and man-
agement ability of the whole decision-making organization.
'e optimal reaction function in each decision period (t)

determines the variable decision in the next period (t + 1).
Combing equations (3), (4), and (9), we can obtain a

nonlinear discrete dynamic equation as follows:

p1(t + 1) � p1(t) + u1p1(t) a + c − 2p1(t) + e1pc + p2(t)α − β e1 − e0( ( ,

e1(t + 1) � e1(t) + u2e1(t) c − p1(t) + e1(t)pc( βt + n2q e0 − e1(t)( hc− xpc7 a − p1(t) + p2α − β e1(t) − e0( ( ( ,

p2(t + 1) �
1
2

a + c + e0pc + p1(t)α − e0β + e1(t)β( .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

m1 makes decisions for the next period according to the
current marginal profit situation. 'e decision of m2 differs
from that of m1, which makes decisions based on the
complete rationality of profit maximization.

Let p1(t + 1) � p1(t), e1(t + 1) � e1(t) and
p2(t + 1) � p2(t); then, we could directly get four equilib-
rium solutions of mapping (10), described by

E1 � 0, 0,
1
2

a + c + e0pc − e0β(  ,

E2 � 0,
apc(2 + α) + c pcα − 2β(  + e0 p

2
cα + pc(2 − α)β + 4c 

pc(4 − α)β − 4c
,
a 2c − 3pcβ + 2c(  + c β2 − 2pcβ + 2c  + pce0 β2 − 2pcβ + 2c 

pc(α − 4)β + 4c
⎛⎝ ⎞⎠,

E3 �
e0pcα + a(2 + α) + c(2 + α) − e0(α − 2)β

4 − α2
, 0,

2e0pc + a(2 + α) + c(2 + α) + e0(α − 2)β
4 − α2

 ,

E
∗
(nl) � p

∗
1(nl), e

∗
1(nl), p

∗
2(nl)( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Notice that Ei (i � 1, 2, 3) are boundary instability
equilibrium solutions, while E∗(nl) is the only Nash equi-
librium solution [40]. Its expression is shown in equation
(6). In our model, we just consider two manufacturers, and
both carried on the competition. So, Ei (i � 1, 2, 3) is not
taken into consideration.

Based on the result, we can obtain the Jacobian matrix of
system (10) as follows:

J(nl) �

1 + u1h1 u1p1 pc − β(  p1u1α

e1u2 pc − β(  1 − u2h2 − e1u2pcα

α
2

β
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where

h1 � a + c − 4p1 + e1 pc − β(  + p2α + e0β,

h2 � pc a + p2α(  − p1 pc − β(  − β c + 4e1pc − e0pc( 

− 2c e0 + 2e1( .

(13)

Put E∗(nl) into the Jacobian matrix (12) to obtain the
Jacobian matrix to study the local stability of Nash
equilibrium. 'e characteristic equation of the Jacobian
matrix is

f(λ) � λ3 + Aλ2 + Bλ + C, (14)

where
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A � − 2 − u1h1 + u2h2,

B �
1
2

2 − 2h2u2 − 2h1u1 − 1 + h2u2(  − p1u1α
2

+ e1u2 − 2p1u1 pc − β( 
2

+ pcαβ  ,

C � −
1
2
α e1pc 1 + h1u1( u2β + p1u1 e1u2 pc − β( β + α − 1 + u2 h2 + e1pc − pc + β( ( ( ( ( .

(15)

'e stability of the system is based on the Jury stability
criterion [41], and the equation is as follows:

f(1) � A + B + C + 1> 0,

− f(− 1) � − A + B − C + 1> 0,

C
2

− 1< 0,

1 − C
2

 
2

− (B − AC)
2 > 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

According to condition (16), we can obtain the stable
region of the dynamic system (10) on adjustment parameters
μ1 and μ2. Due to the complexity of solving the stability
conditions of the system, it is impossible to accurately ex-
press the range of the stability region by mathematical
means. In the next section, we express the stability region
and the changes of related parameters by computer math-
ematical analysis.

2.2.2. Stackelberg Game (m1l). When m1 produces LP, it
may have a much stronger voice in the market under the
cap-and-trade policies and gain a leadership position in the
price competition [35]. Here, we also want to analyze this
situation.

In the m1l model, m1 is the leader, while m2 is the
follower. 'e decision order is that m1 determines the
product price p1 and optimal carbon emission e1 according
to the maximization of its profit, and then m2 determines the
product price p2.

According to the classic backward induction,
substituting the equations (4) into (2) and then taking the
first-order partial derivatives of 1 with respect to p1 and e1,
we can get

z1

zp1
� a − p1 −

1
2

c − p1 + e1pc(  − 2 + α2  − e1β + e0β +
1
2
α a + c + e0pc + p1α − e0β + e1β( ,

z1

ze1
� 2 e0 − e1( c −

1
2

c − p1 + e1pc( β(α − 2) − pc a − p1 − e1β + e0β +
1
2
α a + c + e0pc + p1α − e0β + e1β(  .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

Taking the second-order derivatives further, we can get
the Hessian matrix:

H 1(  �

− 2 + α2 − pc

α2

2
− 1  − β +

αβ
2

− pc

α2

2
− 1  − β +

αβ
2

− 2c − 2pc − β +
αβ
2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Obviously, the value of principal minors of the Hessian
matrix, |H1(1)| � − 2 + α2, is negative and based on

Assumption 2c> (((β + pc)(pc + pcα + 2β))/2(2 + α)), then
|H2(1)| � − (1/4)(pc(− 2 + α2) + (− 2 + α)β)2 − 2(− 2+ α2)
c> 0 H(1) is negative definite. It assures 1 is concave.
'en, m1 can obtain the optimal market price and carbon
emissions.

Proposition 2. We get the optimal price p1 and e1 by letting
equation (17) equal to zero. Furthermore, substituting the
optimal price p1 and e1into equation (4) for p2, we have the
optimal pricep∗1(m1l), p∗2(m1l), and optimal carbon emission
e∗1(m1l):

p
∗
1 m1l(  �

A
m1l
1 + A

m1l
2 + A

m1l
3

p
2
c α2 − 2 

2
+ 8 α2 − 2 c + 2pc α2 − 2 β(α − 2) + β2(α − 2)

2
 

,

e
∗
1 m1l(  �

B
m1l
1 − B

m1l
2 + B

m1l
3

p
2
c α2 − 2 

2
+ 8 α2 − 2 c + 2pc α2 − 2 β(α − 2) + β2(α − 2)

2
 

,

p
∗
2 m1l(  �

C
m1l
1 − aC

m1l
2 + C

m1l
3

p
2
c α2 − 2 

2
+ 8 α2 − 2 c + 2pc α2 − 2 β(α − 2) + β2(α − 2)

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)
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Please refer A
m1l
i , B

m1l
i , and C

m1l
i (i � 1, 2, . . . , 4) in

Appendix C.
Substituting equation (19) into equation (2), we can

obtain the optimal profit of m1 and m2 as follows:


∗
1 m1l(  � Epc −

(2 + α)
2
c a + c(α − 1) + e0pc(α − 1)( 

2

p
2
c α2 − 2 

2
+ 8 α2 − 2 c + 2pc α2 − 2 β(α − 2) + β2(α − 2)

2
 

2,


∗
2 m1l(  � Epc +

a + c(α − 1) + e0pc(α − 1)( 
2

C
m1l
2 

2

p
2
c α2 − 2 

2
+ 8 α2 − 2 c + 2pc α2 − 2 β(α − 2) + β2(α − 2)

2
 

2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

According to the assumption: 0< e1 < e0 and the e∗1(m1l)

in equation (19), when there is an optimal carbon emission
reduction for m1, the range of e0 can be obtained as follows:

(a + c(α − 1))(2 + α) pc α2 − 2  + β(α − 2) 

4β2 + pcβ α3 + 4 − 3α2  + α2 8c + β2  − p
2
cα α2 − 2  − 16c − 4αβ2

< e0 <
a + c(α − 1)

pc(1 − α)
. (21)

Similar to the model nl, we build a dynamic Stackelberg
game model as follows:

p1(t + 1) � p1(t) + u1p1(t)
z1(t)

zp1(t)
,

e1(t + 1) � e1(t) + u2e1(t)
z1(t)

ze1(t)
,

p2(t + 1) �
1
2

a + c + e0pc + p1(t)α − e0β + e1(t)β( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

System (22) gives the manufacturer’s dynamic price
decision. 'e decision variables directly relate to the positive
parameter μ1 and μ2 which represents the adjustment speed

of p1 and e1. (z1(t)/zp1(t)) and (z1(t)/ze1(t)) are the
marginal profit, which can be obtained by equation (17).

Combining equations (17) and (22), a nonlinear discrete
dynamic equation of the system is obtained as

p1(t + 1) � p1(t) + u1p1(t) a − p1 −
1
2

c − p1 + e1pc(  − 2 + α2  − e1β + e0β +
1
2
α a + c + e0pc + p1α − e0β + e1β(  ,

e1(t + 1) � e1(t) + u2e1(t) 2 e0 − e1( c −
1
2

c − p1 + e1pc( β(α − 2) − pc a − p1 − e1β + e0β +
1
2
α a + c + e0pc + p1α − e0β + e1β(   ,

p2(t + 1) �
1
2

a + c + e0pc + p1(t)α − e0β + e1(t)β( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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'erefore, let p1(t + 1) � p1(t), e1(t + 1) � e1(t) and
p2(t + 1) � p2(t); then, we could directly get four equilib-
rium solutions of mapping (23), described by

E1 � 0, 0,
1
2

a + c + e0pc − e0β(  ,

E2 � 0,
apc(2 + α) + c pcα +(α − 2)β(  + e0 p

2
cα + pc(2 − α)β − 4c 

2pc(2 − α)β − 4c
,
a pc(α − 6)β + 4c(  + c + e0pc(  pc(− 4 + α)β − (α − 2)β2 + 4c 

4pc(α − 2)β + 8c
⎛⎝ ⎞⎠,

E3 �
e0pc α2 − 4  + a α2 − 2α − 4  + c α3 + α2 − 2α − 4  − e0 α2 + 2α − 4 β

4 α2 − 2 
, 0,

2e0pc + a(2 + α) + c(2 + α) + e0(α − 2)β
4 − α2

⎛⎝ ⎞⎠,

E
∗

m1l(  � p
∗
1 m1l( , e

∗
1 m1l( , p

∗
2 m1l( ( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Notice that Ei (i � 1, 2, 3) are boundary equilibrium
solutions, while E∗(m1l) is the solution that meets the

purpose of this article with economic significance. Its ex-
pression is shown in (19)

'e Jacobian matrix of system (23) is given by

J m1l(  �

1 + p1u1 α2 − 2  + u1h3 −
1
2
p1u1 pc α2 − 2  + β(2 − α) 

−
1
2
e1u2 pc α2 − 2  + β(2 − α)  1 −

1
2
u2h4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where

h3 � a − p1 −
1
2

c − p1 + e1pc(  α2 − 2  + β e0 − e1(  +
1
2
α a + c + e0 pc − β(  + p1α + e1β( ,

h4 � cpc + e0p
2
c α + apc(2 + α) + 2β e0pc − c − 4e1pc(  + β cα + pc 4e1α − e0( (  − p1 (α − 2)β − pc α2 − 2   − 4c e0 − 2e1( .

(26)

We can determine the stability of the equilibrium by the
Jacobian matrix at the equilibrium point. Put E∗(m1l) into
equation (25) to obtain the Jacobian matrix of the discrete
dynamic system. 'e characteristic equation of the Jacobian
matrix is

f(λ) � λ2 − Tr(J)λ + Det(J), (27)

where

Tr(J) � 2 + h3u1 −
h4u2

2
+ p1u1 − 2 + α2 ,

Det(J) �
1
4

4 − 2h4u2 − 2h3u1 − 2 + h4u2(  − p1u1 8 − 4α2 + 2h4u2 − 2 + α2  + e1u2 pc − 2 + α2  − (− 2 + α)β 
2

  .

(28)
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According to the Jury stability criterion [41], the Jury
stability criterion of the system (23) at E∗(m1l) can be
expressed as follows:

1 + Tr(J) + Det(J)> 0,

1 − Tr(J) + Det(J)> 0,

1 − Det(J)> 0.

⎧⎪⎪⎨

⎪⎪⎩
(29)

Based on eigenvalues of the Jacobian matrix, the stability
and bifurcation of the system (23) will be studied in detail in
the next section by numerical simulation.

2.3. Influence of Different Market Power Structures on Deci-
sion-Making. 'is section compares optimal product price,
profit, and carbon emissions per unit product under dif-
ferent market power structures.

Table 3 compares the optimal decisions and profits of m1
and m2 under the two market power structures. In m1l, the
equilibrium price of the product is greater than that in game
nl, and the optimal carbon emission per unit product by m1
in m1l is higher than that in nl. Manufacturer’s profits in
game m1l is greater than that in game nl. However, com-
paring demand under the two market power structures, m1
and m2 are opposite in market demand.

We can find that a balanced market power structure is
more conducive to the spread of low-carbon products and
the development of low-carbon technology. Still, it is not
conducive to the profit of low-carbon manufacturers.

'e profit under the unbalanced market is greater than
the profit under the balanced market is the same as that in
reference [25] but contrary to the conclusion of reference [26].
'is article believes that in single-cycle decision-making, the
influence of market power structure on the profits of market
participants is complicated.'e profits need to be determined
according to models established in different environments.

'e price, demand, and profit of m2 in unbalanced
market are higher than those in balanced market power
structure. In the duopoly game where LP and NLP compete,
for m2, who produce the NLP, the best strategy is to be a
follower of the market.

Under the balanced market structure, the comparison of
the equilibrium prices of LP and NLP is related to the carbon
price in the market. 'is result is the same as [14]. However,
under the unbalanced market, comparison of LP and NLP
prices is affected by the pc, α, and β parameter, and the result
is more complicated and cannot be deduced.

3. Static Numerical Simulation Analysis

In Sections 2 and 3, we build and figure out the model. 'is
section analyzes the correlation between CEA and TIC
parameters and decision variables through numerical
simulation.

Parameter values are set as follows: pc � 1, α � 0.5, β �

0.5, c � 3, c � 5, a � 10, e0 � 8, E � 11. 'e parameter value
satisfies the assumptions. We use numerical simulation
analysis methods to study the complex effects of related
parameters on system decision-making.

We can observe from Figure 1(a) that the optimal de-
cision price p1 when m1 as leader in the unbalance market is
greater than that in the balance market. An increase in the
parameter c leads to an increase inp1 and c affects the size of
the correlation between p1 and β. From Figure 1(b), we can
get that the optimal decision price of m2 as a follower in the
unbalance market is greater than that in the balance market
and c is negatively correlated with p2. c affects the corre-
lation between p2 and β. As c increases, the sensitivity of p2
to β decreases and p2 is always negatively correlated with β.
However, p1 is not always positively correlated with β.

From Figure 1(c), carbon emissions per unit in a bal-
anced market are lower than that in an unbalanced market. β
and e1 are negatively correlated, and c affects the magnitude
of the correlation between β and e1.

From the above numerical simulation, we can get that
when CEA changes, leading to m1 adjustment of the LP
price, the current innovation cost TIC must be considered.
'e price of LP does not necessarily increase with the in-
crease of CEA. But, the price of NLP decreases with the
increase of CEA. LP’s carbon emissions decrease with the
increase of CEA. 'e numerical simulation results are the
same as the numerical comparison results in Section 2.3.

From Figures 2(a) and 2(b), we get that the profits of the
manufacturers in the unbalanced market are higher than
that in the balanced market. Low-carbon m1’s profit is
positively correlated with β and negatively correlated with c,
and m2’s profit is just the opposite. When c decreases, the
price of LP decreases, and the increase in market demand
brings increased profits to m1. At the same time, it affects the
reduction of m2’s profit.

4. Dynamic Game Complexity Analysis

From the simulation in the third section, we know the
correlation between the relevant parameters of the system
and the decision variables. In Section 4, through the bi-
furcation diagram, largest Lyapunov exponents (LLEs), we
analyze the influence of parameters and adjustment speed of
decision variables on the dynamic system. Study the complex
behaviour of the pricing system to better understand the
dynamic characteristics of market competition.

4.1. Influence of Parameters on the Stability Region. In this
section, according to equations (29) and (16), we get the
influence of CEA and TIC on the stability region of the
system. In the stable region, no matter what the initial price
is, after a finite number of games, the product’s price will
stabilize at Nash equilibrium. When the manufacturers

Table 3: Comparison of optimal decisions and profits of the two
models.

m1 m2

pi

p∗1(m1l)>p∗1(nl) p∗2(m1l)>p∗2(nl)

p∗1(nl)>p∗2(nl) (β<pc < 2β) —
i 

∗
1(m1l)> 

∗
1(nl) 

∗
2(m1l)> 

∗
2(nl)

e1 e∗1(m1l)> e∗1(nl) —
qi q∗1(nl)> q∗1(m1l) q∗2(m1l)> q∗2(nl)
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adjust parameters beyond the stable region, the stability of
the Nash equilibrium point will change, and the phenom-
enon of bifurcation and chaos will appear.

Figures 3(a) and 3(b) show the stable region of system p1
and e1 adjustment speed under different β and c parameters.
'e price adjustment speed parameter u1 stability range in
m1l is larger than that in nl. But the carbon emission ad-
justment speed parameter’s u2 stability range in nl is larger
than that in m1l. 'is is different from the literature [42] that
the Stackelberg game’s parameter stability region is greater
than that in the Nash game. With β increased, the u2 ad-
justment stability range increased. And, the stability region
of the system decreases with the c increasing. 'e stability
range of u2 is more sensitive to the c changing than that of

u1. When c decreases, the stability range of u2 increases
more than the stability range of u1.

From the comprehensive analysis of Figures 1–3, we can
get that when the TIC remains unchanged and the CEA
increases, the unit carbon emissions of LP decrease. At this
time, the carbon emission adjustment speed stability region
increases, and manufacturers can quickly adjust carbon
emissions per unit LP according to the increase in CEA. CEA
increase is beneficial to m1’s profit. But, it should be noted
that the increase in CEA does not significantly increase the
stability range of u1, so the price adjustment speed cannot
exceed the range of the stability range. And, if the CEA
increases, whether the LP price increases or decreases de-
pends on the size of the cost of low-carbon innovation.

0 0.2 0.4 0.6 0.8 1
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Figure 1: 'e impact of β and c on price and e1. (a) 'e impact of β and c on p1. (b) 'e impact of β and c on p2. (c) 'e impact of β
and c on e1.
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4.2. System Complexity Analysis. 'is section analyzes the
complexity of the system through bifurcation diagrams and
Lyapunov exponents. We give the bifurcation diagram to
analyze the bifurcation types of the system, the periodic
properties of the solutions, and the path leading to chaos
[43]. Figure 4 presents the dynamic evolution process of the
dynamic system (10) with u2 � 0.02. From Figure 4(a), we
can see that when u1is in the stability range, the system (10)
is in a stable state. With increasing u1, the dynamic system
(10) has the first bifurcation and then falls into the chaos
through a series of period-doubling bifurcations.

Figure 4(b) is the diagram of the largest Lyapunov expo-
nent (LLE), which indicates the system’s state. When the
maximum Lyapunov index is less than zero, the system is
stable. When the maximum Lyapunov index equals zero,
the system begins to bifurcate. When the maximum Lya-
punov is greater than zero, the system is in chaotic [44].
When the Lyapunov exponent of Figure 4(b) u1 in the
range of 0.08–0.09 has some points close to zero,
Figure 4(a) has periodic windows in chaos. Figures 5(a) and
5(b), respectively, show the bifurcation diagram and the
LLE of the system (23) with u1 increasing.
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Figure 2: 'e impact of β and c on profit. (a) 'e impact of β and c on 1. (b) 'e impact of β and c on 2.
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Figure 3: 'e influence of parameters on the stability region of the system. (a) nl system. (b) m1lsystem.
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So, we can see that when both systems are in chaos, it is
more difficult for low-carbon m1 to control the price of LP.
In the chaotic state, the optimal price fluctuation range of
m1 is greater than that of m2. 'erefore, in the chaotic state,
m1 is more difficult to control prices than m2. When
systems are in chaos, the optimal carbon emissions of LP
are still less than the initial carbon emissions of the
product. 'e stable range of u1 in system (23) is greater
than that in the system (10).

Figure 6 is the 2D bifurcation diagram of the system
(10) regarding the adjusted speeds of u1 and u2. Different
colours in a 2D bifurcation diagram indicate that the
system is in different periods (the colour displayed by the
colour bar on the right side of the bifurcation diagram).'e
grey represents quasiperiodic or chaotic, and the white
represents the escape state, the three states that cannot be
calculated. We can get from the figure that the system has
two paths into chaos. 'e first is through the green region
(1-period)⟶ the purple region (2-period)⟶ the yellow
region (4-period)⟶ the crimson region (8-period) and
finally enters the grey region losing stability through pe-
riodic bifurcation. 'ere is a special periodic bifurcation

phenomenon in Figure 6(c) that the system will fall into 6-
period orbits (dark blue) after 4-period state and then after
that, the system falls into chaos.'e second is that enter the
grey region through the green region (1-period) and the
purple region (2-period) system loses stability through N–S
bifurcation and then enters chaos through periodic bi-
furcation. After entering the N–S bifurcation, the system
may enter 6-period (dark blue) and 10-period orbits (light
pink), and finally enter chaos.

Figures 6(a) and 6(b) compare, as the parameter α
increases, the stable region of u2 increases, and the stable
region of u1 decreases. 'e path of the system into the
chaotic state has not changed. Figures 6(b) and 6(c)
compare, with the increase of the parameter pc, the sta-
bility region of u2 increases, and the stability region of u1
decreases. 'e 10-period (light pink) orbit in Figure 6(b)
disappears in Figure 6(c), and when u1 is small, increasing
u2 will make p1 stay on the 2-period orbit instead of
entering chaos. Figures 6(b) and 6(d) compare, with the
increase of parameter β, the stable region of u2 increases,
and the stable region of u1 is almost unchanged, which is
the same as the conclusion in Figure 3. System (23) has the
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same path into chaos as the system (10), and changes in
the stability region of the system under the influence of
parameters α, β, and c are the same. 'e analysis is
omitted here.

From the above analysis, we get that, first, under the
slight changes of different parameters, the path of the system
into chaos may undergo complex changes. Secondly, the
increase of parameters α, β, and pc is conducive to the stable
region of u2, but not conducive to the stable region of u1.
Finally, in price and carbon emissions management, when
the cross-price sensitivity and carbon prices increase,
manufacturers should reduce the speed of price adjustments
and pay attention to the stable region of carbon emissions
adjustment speed. When consumers’ environmental
awareness increases, it can be observed from Figure 2(a) that
the marginal profit of m1 is greater than zero, and m1 is
facing an increase in price. It should be noted that the
stability region of price adjustment speed does not change
with the change of β.

5. Influence of Parameters on the Profits

Under the carbon cap-and-trade policies, the profits of
manufacturers are affected by carbon prices. So, this section
considers the impact of parameters u1, u2 , and pc on profits.

5.1. Impact of u1 and u2 on Profit. In this section, we get the
simulation analysis of the influence of u1 and u2 on profit.
Figures 7(a) and 7(b), respectively, show the average profit of
the manufacturer under the changes of the parameters u1 and
u2.We can observe that the average profit in the chaotic state is
less than the profit in the stable state. As the price adjustment
speed parameter u1 increases, the average profit of m1 in the
chaotic state decreases significantly (black and green lines in
the figure). In the chaotic state, the influence of u1on profit is
greater than the influence of u2 on profit. 'e profit of NLP
manufacturers with rational expectations is more stable than
that of LP manufacturers with bounded rational expectations.
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Figure 6: 'e 2-D bifurcation diagram of system (10). (a) α � 0.3, pc � 1, β � 0.5, (b) α � 0.5, pc � 1, β � 0.5, (c) α � 0.5, pc � 1.5, β � 0.5,
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Figures 8(a) and 8(b) are the one-dimensional bifurca-
tion diagrams of themanufacturer’s profit. From Figure 8(a),
it can be observed that the profit of m1 in the chaotic state is
less than or equal to the profit in the stable state. And, there
are more profits at a negative value. However, we can get
from Figure 8(b) that in the chaotic state, the profit of m2 is
partly greater than the profit in the stable state of the system
and the negative profit is less.

From the above analysis, we can get that, first of all,
bifurcation and chaos means that there is vicious compe-
tition in the system, which will have a bad impact on the
entire market. Secondly, when the system is in a state of
chaos, it is even more unfavorable for m1 who carry out low-
carbon production innovation. In the chaotic state, profits
are more sensitive to changes in u1 than to changes in u2.
Finally, for managers, they should avoid losing profits when
the system enters a state of chaos. In order to keep the system
stable, m1 price adjustment speed is slower than carbon
emission adjustment speed.

5.2. Impact of pc on Profit. In this section, we get the
simulation analysis of the influence of u1 and pc on profit.
Figures 9(a) and 9(b) show that the profit of m1 is affected
by the parameters pc and u1 in the two market power
structures. Figures 9(c) and 9(d) show that the profit of m2
is affected by the parameters pc and u1 in the two market
power structures. We can observe from Figure 9 that as the
parameter pc increases, the stability region of profit de-
creases. 'e analysis results are the same as in Figure 6. 'e
change of pc will not make the system enter chaos. 'e
value of pc satisfies the assumptions of the model. In the
stable state, with the increase of pc, manufacturers’ profit
increases. In the chaotic state, with the increase of pc, the
profit of m2 has an increasing trend from negative to
positive. 'e profit of m1 is more complicatedly affected by
pc. With the growth of pc, it may fluctuate in a positive
direction or a negative direction.

From Figure 10, when the market is in the stable state, the
total carbon emissions of manufacturers are greater than the
government’s carbon allowances. When market competition
enters chaos, we can observe from Figure 4(a) that the price
fluctuations of LP are greater than that of NLP. LP’s low prices
lead to increased sales, resulting in an increase in the total
carbon emissions ofm1.'e increase in demand for LP affects
the decrease in market demand for NLP and ultimately leads
tom2 carbon emission less thanm1. 'erefore, in Figure 9, in
the chaotic state, as the carbon price increases, it is more
beneficial to m2. However, m1 may eventually withdraw from
the market due to vicious competition. 'e government
should reduce carbon cap for nonlow-carbon product
manufacturers and increase carbon cap for low-carbon
manufacturers. And, to avoid the occurrence of similar
electric vehicle fraud, the government needs to confirm the
company’s product production and low-carbon technology.

6. Initial Sensitivity Analysis and
Singular Attractors

Singular attractors are the result of the interaction between
global stability and local instability. It is another characteristic
of system chaos. It has a self-similarity and a fractal structure
[45]. Figure 11 shows the formation of a singular attractor for
nl systems. 'e attractor forming process of the m1l system is
the same as that of the nl system, so we only analyze the
attractor forming process of the nl system. 'e number and
structure of attractors will change with the change of pa-
rameters u1. 'ere are two attractors in Figure 11(a), and the
system is in a 2-period orbit. From Figures 11(a) to 11(b), we
found that when u1 increases, the attractor becomes larger. At
this time, the system is in a state of chaos. From (b) to (c), the
attractor is forced to become some small attractors as u1
increases, which is a phase-locking process. Figure 11(d)
shows the final chaotic attractor. It means that the manu-
facturers in the system enter into the chaotic competition.
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Figure 7: Change of average profit with respect to ui (i � 1, 2). (a) u2 � 0.02 and (b) u1 � 0.02.
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'rough the attractor evolution process, we can observe
the influence of the change of u1 parameter on the final
behaviour of the system. When one of the manufacturers
increases the adjustment speed of the equilibrium decision,
it causes the whole system to change in equilibrium. Due to
the sensitivity of the dynamical system, small changes in

parameters will be amplified, leading to the chaotic state of
the system.

Figure 12 is a time series diagram of system state var-
iables changing with time in a chaotic state. From Figures 11
and 12, we can observe the chaotic characteristics of the
system-boundedness and ergodicity.'at is, the trajectory of
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Figure 9: Change of profits with respect to u1 and pc when u2 � 0.02 (a–d).
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Figure 8: Bifurcation diagram of the profit with varying u1 when u2 � 0.02.
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the system variable is always limited to the chaotic attraction
region. No matter how unstable the chaotic system is, it can
traverse the entire value area with time, but the system
variable trajectory will not go out of the attracting region.

Combining Figures 12(a) and 4(a), we can find that the price
of LP (the blue line in the figure) fluctuates between [2, 20] in
the chaotic state. 'e time series of other variables have the
same state. In a finite time, the chaotic trajectory passes
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Figure 11: nl singular attractors with u2 � 0.02. (a) u1 � 0.0772, (b) u1 � 0.087, (c) u1 � 0.089, and (d) u1 � 0.094.
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Figure 10: Change of carbon emission with varying u1 when u2 � 0.02 (a, b).
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through every state point in the chaotic zone, reflecting the
ergodicity of chaos.

When the system is in a chaotic state, any slight change
in the initial value of the decision variable will have a sig-
nificant impact on the decision result. 'e evolution of the
system is extremely sensitive to the dependence of initial
values. It is clear that when the system is in a chaotic state,
pricing decisions become uncertain, disordered, and un-
predictable, compared to the pricing of the system in a stable
condition. From Figure 13, we can get the difference between
the decision variables when p1 � 12 and 12.001 after the two
initial conditions. When the initial decision variable changes
slightly, it affects the decision variables at each moment of
subsequent decision-making.

7. Chaos Control

When the system is in chaos, the profit of the manufacturer
will be less than that in the stable state, and it is tough for the

manufacturer to decide the price of the product. 'e
manufacturer may even be forced to withdraw from the
market, affecting the development of low-carbon technol-
ogy. 'erefore, market participants hope to control the
market as soon as possible and achieve their profit goals. It is
necessary to take some measures to delay or eliminate chaos
and benefit the whole system. 'ere are many methods to
control chaos, namely, delayed feedback control [34, 46],
variable feedback control [47, 48], and parameter adjust-
ment [49]. In this section, the parameter adjustment method
and delay control method are adopted to control the market
prices of participants.

Firstly, use the parameter adjustment method to control
the system. Set parameter u to control the system. Under
parameter adjustment control, we get the decision system as

p1(t + 1) � (1 − u) p1(t) + u1p1(t)
z1(t)

zp1(t)
  + up1(t),

e1(t + 1) � (1 − u) e1(t) + u2e1(t)
z1(t)

ze1(t)
  + ue1(t),

p2(t + 1) � (1 − u)
1
2

a + c + e0pc + p1(t)α − e0β + e1(t)β(  + up2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

'e control parameters can also be regarded as the
manufacturer’s learning ability and adaptive ability.
When manufacturers meet the chaotic state of the market,
they will take the initiative to adjust the price according to
the market information [50]. It is crucial to select the

proper control parameter u for delaying bifurcation and
restoring the system to a stable state. Next, we get the
influence of parameter u on system stability. In the nl

system, u1 � 0.09 and u2 � 0.02 are set. We can observe
from Figure 14(a) that with the increase of u, the
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Figure 12: 'e time series of p1, p2, and e1 when u2 � 0.02 (a, b).
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controlled system changes from chaos to a stable state. In
the m1l system, u1 � 0.1 and u2 � 0.02 are set. Figure 14(b)
is the control diagram of m1l system. Similarly, with the
increase of u, the controlled system changes from chaos to
a stable state.

From Figure 14(a), we can observe when u � 0.2, the nl

system is controlled in the 2-period orbit. At this time, the
price time series diagram of the system is shown in
Figure 15(a). When u> 0.3, the system enters a stable state.
Figure 15(b) is the time series diagram of the nl system when
u � 0.35.We can get that the system is controlled in 1-period

orbit with u � 0.35. 'e simulation results show that the
parameter adjustment method can effectively control the
system.

'en, we use the delayed feedback control method to
control the system. Compare the control efficiency of
delayed feedback and parameter adjustment methods. It is
the same as the comparison of chaos control research
methods in [49] literature. Set the v as the control parameter
and consider the output signal of the system when making
decisions in the next period of the system. 'e decision
system can be expressed as

0 20 40 60 80 100
t (nl)

-15

-10

-5

0

5

10

15

∆p1
∆p2
∆e1

(a)

0 20 40 60 80 100

∆p1
∆p2
∆e1

t (m1l)

-20

-15

-10

-5

0

5

10

15

(b)

Figure 13: 'e sensitivity to initial value when (p1 � 12, p2 � 16, e1 � 7) and (p1 � 12.001, p2 � 16, e1 � 7) with (a) u1 � 0.088 and (b)
u1 � 0.104.
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p1(t + 1) � p1(t) + u1p1(t)
z1(t)

zp1(t)
+ v p1(t + 1) − p1(t)( ,

e1(t + 1) � e1(t) + u2e1(t)
z1(t)

ze1(t)
+ v e1(t + 1) − e1(t)( ,

p2(t + 1) �
1
2

a + c + e0pc + p1(t)α − e0β + e1(t)β(  + v p2(t + 1) − p2(t)( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

We show the simulation analysis of the system (30) in
Figure 16, and the parameter settings are the same as the
simulation parameters of the system (30). We can get from
Figure 16 that the delayed feedback method can not effec-
tively control the two nonlinear systems in this paper. 'is is
contrary to the research results of chaos control in [49],
which means that we cannot consider that the efficiency of
the delayed feedback control method is higher than that of
the parameter adjustment control method.

8. Results and Discussion

'is study investigated the dynamic evolution of pricing deci-
sions for low-carbon and nonlow-carbon products with different
market power structures under the influence of government
carbon trading. At the same time, we analyzed the effects of
changes in decision-making adjustment factors, consumer en-
vironmental awareness, and low-carbon innovation cost.

'rough the solution and simulation analysis of the
model, we can obtain the following:

(1) When low-carbon products compete with nonlow-
carbon products, low-carbon product manufacturers,
as market pricing leaders, are not conducive to the
proliferation of low-carbon products and the pro-
motion of low-carbon technologies. At the same time,
in the unbalanced market, the low-carbon product’s

carbon emission decision-making adjustment stability
range is smaller than that of the balanced market.-
When market competition enters chaos, the price
fluctuation range and the average profit of low-carbon
products are greater than that of nonlow-carbon
products, which is even more detrimental to the
development of low-carbon industries.
Faced with the pressure of government policies and
the environment, competition amongmanufacturers
has emerged on a new track and divided in new
market areas. For example, TCL became China’s first
electrical product (liquid crystal TV) carbon label
evaluation certification manufacturer. Having a
leading position in the pricing of low-carbon
products is conducive to the profits of low-carbon
manufacturer. However, the government andmarket
participants may overlook that in the price com-
petition between low-carbon products and nonlow-
carbon products, and the leading position of low-
carbon companies in pricing is not conducive for the
proliferation of low-carbon products and the de-
velopment of low-carbon technologies.

(2) Increasing carbon prices and increasing consumer
environmental awareness are more conducive to the
stability of carbon emissions from low-carbon
products. But it is not conducive for the stability of
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Figure 15: Price and carbon emission wave plot with the change of time when u1 � 0.09 and u2 � 0.02: (a) u � 0.2 and (b) u � 0.35.
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low-carbon product prices. 'e increase in the cost
of low-carbon technology reduces the stability range
of decision-making speed for low-carbon product
prices and carbon emissions. 'e speed stability
range of carbon emissions decision-making is more
sensitive to changes in the cost of low-carbon
technologies. Controlling the speed of price ad-
justment and carbon emission adjustment within a
stable range can ensure healthy market competition
and avoid chaos and economic loses.
During the transition period of low-carbon
technology, enterprises are likely to face a funding
gap due to turbulent market demand and com-
petition in the industry. Sufficient market com-
petition and establishing a complete low-carbon
technology financing guarantee system are es-
sential methods to promote the sustainable and
stable development of low-carbon technology and
products.

(3) Finally, we find that for the discrete system in this
paper, the parameter adjustment control method can
effectively control the system, but the variable
feedback control method cannot realize the effective
control of the system.

'e model in this paper lacks consideration of the in-
fluence of the existence of retailers on prices, and the in-
fluence of direct sales and distribution channels on prices. In
addition, due to the consideration of duopoly manufacturers
of the same strength, the government’s carbon cap is set as a
unified carbon quota and the different manufacturing
strengths of enterprises are ignored. Our paper presents
certain limitations that provide directions for future
research.

Appendix

A. Details of Complex Equation (6)

'e unspecified equation in equation (6) is equal to

A
nl
1 � a(2 + α) pc pc + β(  − 2c( ,

A
nl
2 � e0 pc − β(  pcα pc + β(  − 2(2 + α)c( ,

A
nl
3 � 2e0β pc pc + β(  − (2 + α)c( ,

A
nl
4 � c 2(2 + α)c − pc + β(  pcα + 2β(  + αβ pc + β( ( ,

B
nl
1 � e0 8c + α − p

2
c + β2 − 2αc  − 2β pc + β(  ,

B
nl
2 � a(2 + α) pc + β(  + c α + α2 − 2  pc + β( ,

C
nl
1 � c 2(2 + α)c + β pc + β(  − pc + β(  pc + β + αβ( ( ,

C
nl
2 � e0 pc − β(  2(2 + α)c − pc + β( 

2
  − β pcα pc + β(  − 2(2 + α)c(  − β2 pc + β(  ,

C
nl
3 � p

2
c(1 + α) − 2(2 + α)c + 2β2 + pcβ(2 + α + 1).

(A.1)
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Figure 16: Bifurcation diagram with v increasing.
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B. Details of Complex Equation (7)

'e unspecified equation in equation (7) is equal to

D
nl
1 � a + c(α − 1) + e0pc(α − 1)( 

2
,

D
nl
2 � 4(2 + α)

2
c
2

a + c(α − 1) + e0pc(α − 1)( 
2
,

D
nl
3 � Epc p

2
c α2 − 2  − 2 α2 − 4 c + β2(α − 2) + pcβ(− 4 + α(α + 1)) 

2
.

(B.1)

C. Details of complex equation (19)

'e unspecified equation in equation (19) is equal to

A
m1l
1 � − a(2 + α) p

2
c α2 − 2  + 4c + pcβ(α − 2) ,

A
m1l
2 � c − p

2
cα α2 − 2  + 4(α − 2)(1 + α)c + pc(α − 2)(1 + α)β(α − 2) + β2(α − 2)

2
 ,

A
m1l
3 � e0 − p

3
cα α2 − 2  + p

2
cβ α3 + 4 − 3α2  + pc − 2αβ2 + 4(α − 2)(1 + α)c + 4 + α2 β2 − 2αβ2  ,

B
m1l
1 � − a(2 + α) pc − 2 + α2  + β(α − 2) ,

B
m1l
2 � c α2 + α − 2  pc 2 − α2  + β(α − 2) ,

B
m1l
3 � e0 − p

2
cα α2 − 2  + pcβ α3 + 4 − 3α2  + 4 β2 − 4c  + α2 8c + β2  − 4αβ2 ,

C
m1l
1 � c − p

2
c α2 − 2  + 2 − 2 + α α2 + α − 2  c − pcβ((α − 1)α(2 + α − 1) − 2) − β2(1 + α − 1)(α − 2) ,

C
m1l
2 � p

2
c(1 + α) − 2 + α2  + 8c − 2(α − 2)αc − 6pcβ + 2β2(α − 2) + pcαβ(− 1 + α + +2α) ,

C
m1l
3 � e0 − p

3
c − 2 + α2  + p

2
cβ 2 + α − α3 .

(C.1)
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