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For obtaining optimal cross-sectional dimensions of rods for a 3-RRR planar parallel manipulator (PPM) to minimize energy
consumption, the inverse dynamics of the manipulator is modeled based on the Newton–Euler method, after which the coefficient
matrix of the inverse dynamics equation is decomposed based on matrix theory. Hence, the objective function, that is, the logical
relationship between the energy consumption of the manipulator and the cross-sectional dimension of each rod, is established.
However, in solving the multidimensional constrained single-object optimization problem, there are difficulties such as the
penalty function’s sensitivity to the penalty factors if the problem is transformed into the one of unconstrained multiobjective
optimization. (erefore, to properly handle the constraints, an improved butterfly optimization algorithm (IBOA) is presented to
ensure that the new iterated point always falls into the feasible region according to the butterfly optimization algorithm (BOA).
Finally, the comparisons among the IBOA, particle swarm optimization (PSO), and BOA and further experiments of the physical
prototype are implemented to validate the effectiveness of the proposed theoretical model and numerical algorithm. Results
indicate that the proposed IBOA is more suitable for solving the constrained single-object optimization problem with better
convergence speed and accuracy.

1. Introduction

A 3-RRR planar parallel manipulator (PPM) is a type of
manipulator with only three degrees of freedom, in which
the symbol 3-RRR expresses three branched chains and
includes three revolute (R) pairs in each branched chain,
which has the advantages of a simple structure, small ad-
ditional inertia of the driving motor, large stiffness, large
workspace, and small cumulative error. It has been widely
used in the fields of plane complex curve creation [1], micro-
nano-precision positioning, measurement, and
manufacturing [2, 3], pick and place operation robots [4, 5],
modular, detachable, and reconfigurable robots [6], tactile
perception [7, 8], and additive manufacturing equipment
[9, 10].

When the length of each rod is known, the shape, size
range, and singular point distribution of the workspace of

the 3-RRR PPM are determined by inverse kinematics and
workspace analysis [11]. However, the selection of the cross-
sectional dimension of each rod will inevitably affect its mass
distribution and the dynamic indexes, such as rotational
inertia and inertial force (moment) of each rod, which will
eventually affect the energy consumption of the
manipulator.

(e dynamics is the necessary foundation for energy
consumption research. (ere are some classical methods for
the dynamic modeling of parallel mechanisms based on
multirigid-body dynamics theory, such as the principle of
virtual work [12–14], Kane’s equations [15], Lagrange
method [5, 16–18], and Newton–Euler method [19–24].

Although the dynamic modeling of the 3-RRR PPM can
choose the methods of Kane or Lagrange, the Newton–Euler
method can not only establish its inverse dynamic model but
also obtain the relationship between the driving torque and
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the movement time, as well as the internal force of the hinge
and the movement time [24].

In general, after the usage of the manipulator is deter-
mined, its motion path in the workspace is determined. In
this situation, the optimal masses of each rod can be de-
termined by establishing an optimization model to optimize
the energy consumption [21]. For the 3-RRR PPM, the
masses of the connecting rods and moving platform were
selected as variables (seven variables in total), and the energy
consumption of the driving motor was considered as the
objective function. Finally, the optimization model is solved
using the particle swarm method. However, for the 3-RRR
PPM with asymmetric dimensional parameters, even for
similar energy consumption optimization problems, it will
face three challenges owing to the increase in rectangular
cross-sectional parameters: (1) calculation of the objective
function, that is, the relationship between the energy con-
sumption of the driving motor and the motion path of the
moving platform or the movement time; (2) selection of
numerical method, that is, how to seek numerical methods
to meet the requirements of the speed and accuracy of
convergence and global optimization; (3) handling of
constraints.

As aforementioned, once the inverse dynamics model of
the 3-RRR PPM is established based on the Newton–Euler
method, its inverse dynamics solution can be expressed as a
matrix equation. It can be seen from thematrix equation that
the inverse dynamic solution, such as the driving torque of
the active motor, is closely related to the cross-sectional
dimension of each rod. However, the coefficient matrix is
only related to the length of each rod, position and orien-
tation of the moving platform, and dynamic displacement of
each rod but is not related to the cross-sectional dimension
of each rod. (is property means that, through the QR
decomposition of the coefficient matrix [25], a logical re-
lationship can be established between the energy con-
sumption of the manipulator and the cross-sectional
dimension of each rod.

In recent years, the metaheuristic algorithms have been
widely used in solving different optimization problems. In
one study [26], summarizing the development history of the
metaheuristic or nature inspired algorithms for the last
thirty years, Mohamed et al. divided the metaheuristic al-
gorithms into four categories such as evolutionary tech-
niques enlightened by biology, swarm intelligence
techniques enlightened by the behavior of social insects or
animals, physics-based techniques enlightened by the rules
governing a natural phenomenon, and human-related
techniques enlightened by body activities or mind activities
of the human being. Furthermore, a novel creative algorithm
called gaining sharing knowledge-based algorithm (GSK)
was proposed to solve optimization problems [26]. In fact,
hybridizing different algorithms to benefit from each other is
an important method. In that respect, Deng et al. [27–29]
have made a fruitful contribution: on the basis of the
MSIQDE that is an improved quantum-inspired differential
evolution (QDE) with a multistrategy algorithm, an en-
hanced MSIQDE algorithm based on mixing multiple
strategies, namely, EMMSIQDE, was presented to address

the probable premature convergence, reduced searchability,
and trapping in local optima in the QDE [27]; an improved
quantum evolutionary algorithm (QEA) based on the niche
coevolution strategy and enhanced PSO, namely, IPOQEA,
was proposed to solve the three-objective gate allocation
model [28]; similarly, QEA and cooperative coevolution
evolutionary algorithm (CCEA) were combined to improve
the weakness of differential evolution algorithm (DEA)
during the solution of the large-scale complex optimization
problem. An effective HMCFQDE algorithm based on the
CC framework, QEA, and hybrid mutation strategy was
presented and established [29]. Besides, the butterfly opti-
mization algorithm (BOA) proposed by Arora and Singh
[30, 31] is also worth substantial attention. After 30 different
benchmark functions and 7 widely used metaheuristic al-
gorithms, which included artificial bee colony (ABC),
cuckoo search (CS), differential evolution (DE), firefly al-
gorithm (FA), genetic algorithm (GA), monarch butterfly
optimization (MBO), and PSO, being chosen and compared
from the view of the statistical assessment for benchmarking
the performance of BOA, 6 familiar engineering problems
were solved by BOA. (erefore, the conclusion that BOA
can become an effective tool to solve real-world optimization
problems was reached [31]. Nevertheless, the advantages of
BOA in solving engineering optimization problems are what
we are most interested in.

In addition, for the problem of constrained single-object
optimization, the handling of constraints is used by
changing the constrained single-object optimization to
unconstrained multiobjective optimization through the
introduction of the constraints in the objective function
[32–34]. However, there are also difficulties in imple-
mentation; for example, the main drawback of the intro-
duction of the penalty function in the objective function is
that the penalty function is exceedingly sensitive to the
penalty factors [33].(erefore, to address the problem of the
optimal cross-sectional dimension of rods for the 3-RRR
PPM to minimize energy consumption, an improved but-
terfly optimization algorithm (IBOA) is presented to
properly handle the constraints of the single-object opti-
mization problem by ensuring that the iteration point always
falls into the feasible region.

(e rest of the paper is organized as follows. In Section 2,
the inverse dynamic equations based on the Newton–Euler
method are derived, and the detailed process of QR de-
composition of the coefficient matrix of the equations is
provided. In Section 3, considering the length and width of
the rectangular cross-sectional dimension of each rod for the
3-RRR PPM as the variable, the energy consumption of the
driving motor as the objective function, and the upper and
lower limits of the cross-sectional dimension of each rod as
the constraint, the model of the optimal cross-sectional
dimension of rods to minimize energy consumption is
established. Meanwhile, after the objective function, that is,
the logical relationship between the energy consumption of
the manipulator and the cross-sectional dimension of each
rod is revealed, the algorithm and flowchart for solving the
problem of optimal cross-sectional dimension of the rod
based on IBOA are presented. In Section 4, the optimization
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results of an example are presented and verified experi-
mentally. Finally, the paper is concluded in Section 5.

2. Dynamics for the 3-RRR PPM

2.1.Modeling of Dynamics. As is shown in Figure 1(a), there
are three branched chains AiBiCi (i� 1, 2, 3 in this paper)
connected between the moving platform and the frame, each
of which has two rods, AiBi and BiCi, and three revolute
pairs, Ai, Bi, and Ci. One end of the three branched chains is
connected to the frame at point Ai, and the other end is
connected to the moving platform triangle C1C2C3 at point
Ci.

For the convenience of kinematics and dynamics anal-
ysis, as shown in Figures 1(a) and 1(b), the global coordinate
system oxy is established on the frame triangle A1A2A3, and
the center o of the circumscribed circle of triangle A1A2A3 is
considered as the coordinate origin, such that the x-axis is
parallel to A2A3 and the y-axis passes through point o. (e
positive direction is determined using the right-hand rule.
(e local coordinate system G7x′y′ is established on triangle
C1C2C3, and the center G7 of the circumscribed circle of
triangle C1C2C3 is considered as the coordinate origin, such
that the x′ axis is parallel to C2C3 and the y′ axis passes
through point G7. (e positive direction is determined by
the right-hand rule.

For easy reference, the meaning and symbol of di-
mension parameters, kinematics, and dynamics parameters
for the 3-RRR PPM are listed in Table 1 in Appendix A.

When the inverse displacements θi of the 3-RRR PPM
are solved, the known conditions are as follows: the global
coordinate (x, y) of the central point G7 of the moving
platform and orientation angle θ of the moving platform;
dimension parameters, including the lengths li of the active
rodsAiBi, lengths li+3 of the passive rod BiCi, lengths a, b, and
c of sides of frame triangle A1A2A3, and lengths d, e, and f of
the sides of the moving platform triangle C1C2C3, as shown
in Figure 1(a). Based on the theory of mechanism, the
angular displacements of the active parts can be calculated
[11]:

θi � 2 tan− 1Ni ±
������������

N
2
i + M

2
i − K

2
i

􏽱

Mi + Ki

, i � 1, 2, 3. (1)

Meanwhile, the condition that the solution of equation
(1) is a real number is

N
2
i + M

2
i ≥K

2
i , i � 1, 2, 3. (2)

Here,

Mi � x + xci
′ cos θ − yci

′ sin θ − xAi, i � 1, 2, 3,

Ni � y + xci
′ sin θ + yci

′ cos θ − yAi, i � 1, 2, 3,

Ki �
M

2
i + N

2
i + l

2
i − l

2
i+3

2li
, i � 1, 2, 3.

(3)

(e parameters that are not listed above are presented in
Appendix B, equations (B.1)–(B.6).

For the inverse dynamics modeling based on the
Newton–Euler method for the 3-RRR PPM, in addition to
the conditions given in the previous inverse displacement
solution, the remaining known conditions are as follows: the
masses mGi of the active rod AiBi, masses mG (i+3) of the
passive rod BiCi, mass mG7 of the moving platform, external
forces Fex and Fey of the moving platform, and external
moment Me of the moving platform. (e solving goal is as
follows: the internal forces FBix and FBiy at point Bi, internal
forces FCix and FCiy at point Ci, and the driving moment of
the active rod AiBi. As shown in Figure 1(b), the active rod
AiBi, passive rod BiCi, and moving platform triangle C1C2C3
are considered isolators. (e inverse dynamics modeling for
the 3-RRR PPM can be expressed as the following matrix
[24]:

Ax � B, (4)

where

x �

x1

x2

...

x15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

� FC1x FC2x FC3x FC1y FC2y FC3y FB1x FB2x FB3x FB1y FB2y FB3y τ1 τ2 τ3􏽨 􏽩
T
,

A �

a11 a12 ... a1,15

a21 a22 ... a2,15

... ... ... ...

a21,1 a21,2 ... a21,15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

B1

B2

...

B21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5)
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Here, A ∈R21×15 is a sparse matrix, and the nonzero
elements are [24] a11 � a12 � a13 � a24 � a25 � a26 � a47 � a58
� a69 � a7,10 � a8,11 � a9,12 � a13,7 � a14,8 � a15,9 � a16,10 � a
17,11 � a18,12 �1; a41 � a52 � a63 � a74 � a85 � a96 � a19,13 �

a20,14 � a20,15 � −1; a31 � −|y − yC1|, a32 � |y − yC2|, a33 � |
y − yC3|, a34 � |x − xC1|, a35 � −|x − xC2|, a36 � |x − xC3|;
a10,1 � −|yG4 − yC1|, a10,4 � −|xG4 − xC1|, a10,7 � −|yG4 − yB1|,
a10,10 � −|xG4 − xB1|; a11,2 � −|yG5 − yC2|, a11,5 � −|
xG5 − xC2|, a11,8 � −|yG5 − yB2|, a11,11 � −|xG5 − xB2|;
a12,3 � −|yG6 − yC3|, a12,6 � −|xG6 − xC3|, a12,9 � −|yG6 − yB3|,
a12,12 � −|xG6 − xB3|; a19,7 � l1sinθ1/2, a19,10 � −l1cosθ1/2;
a20,8 � l2sinθ2/2, a20,11 � −l2cosθ2/2; a21,9 � l3sinθ3/2,
a21,12 � −l3cosθ3/2.

(e remaining elements that are not listed above in
matrix A were 0.

Further, B ∈R21×1 is a column vector whose elements
include [24] B1 � FG7x − Fex; B2 � FG7y − Fey; B3 �MG7 −Me;
B4 � FG4x; B5 � FG5x; B6 � FG6x; B7 � FG4y; B8 � FG5y; B9 � FG6y;
B10 �MG4; B11 �MG5; B12 �MG6; B13 � −FG1x; B14 � −FG2x;
B15 � −FG3x; B16 � FG1y; B17 � FG2y; B18 � FG3y; B19 � −MG1;
B20 � −MG2; B21 � −MG3.

(e parameters that are not listed above are presented in
Appendix B, equations (B.7)–(B.25).

2.2.Numerical Solving forDynamicalModelof the3-RRRPPM
Based on QR Decomposition. Equation (4) can be solved
using the QR decomposition method [25], and for the sparse
matrix A ∈ R21×15, we can seek an invertible matrix R∈
R15×15, and matrix A can be decomposed as follows:

A � QR, (6)

where Q∈ R21×15.
For ease of expression, let al (l� 1, 2, 3, . . ., 15) be the

vector of the column elements in matrix A:

a1 � a11 a21 a31 ... a21,1􏼂 􏼃
T
,

a2 � a12 a22 a32 ... a21,2􏼂 􏼃
T
,

a3 � a13 a23 a33 ... a21,3􏼂 􏼃
T
,

a15 � a1,15 a2,15 a3,15 ... a21,15􏼂 􏼃
T

.

(7)

Let

Q � q1 q2 ... q15􏼂 􏼃. (8)

(e vector al (l� 1, 2, 3, . . ., 15) is orthogonalized based
on the Gram–Schmidt orthogonalization method; that is,
based on the 15 column vectors, the unit vectors that are
orthogonal to each other are generated according to the
following rules.

First, vector a1 is orthogonalized and denoted as q1:

R11 � a1
����

����,

q1 �
a1

R11
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

Second, the vector components parallel to a1 are re-
moved from a2, and q2 is orthogonalized.

R12 � qT
1 a2,

R22 � a2 − q1R12
����

����,

q2 �
a2 − q1R12

R22
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

(ird, the vector components parallel to a1 and a2 are
removed from a3, and q3 is orthogonalized.
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Figure 1: Schematic diagram of the 3-RRR PPM and dynamics modeling. (a) Schematic diagram of the 3-RRR PPM. (b) Process of the
dynamics modeling.

4 Complexity



R13 � qT
1 a3,

R23 � qT
2 a3,

R33 � a3 − q1R13 − q2R23
����

����,

q3 �
a3 − q1R13 − q2R23

R33
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Similarly, for qm (2≤m≤ 15), there are

Rj′m
� qT

j′ am, 1≤ j′ ≤m − 1,

Rmm � am − 􏽘
m−1

j′�1
qj′

Rj′m

������������

������������

,

qm �

am − 􏽐
m−1
j′�1qj′

Rj′m

Rmm

.

(12)

It can be proved that ql (1≤ l≤ 15) is a group of standard
orthogonal bases in the above transformation; that is,

qT
l ql′

�
1, l � l′ ,

0, l≠ l′,

⎧⎨

⎩ 1≤ l, l′ ≤ 15. (13)

(erefore,

QTQ � I15, (14)

where I15 ∈R15×15 is the unit matrix. (is is obtained from
equation (6):

R � QTA. (15)

Equation (4) can be reduced to a simple solution form:

Rx � QTB. (16)

(erefore,

x � R− 1QTB. (17)

Because matrices A and B are known, matrix Q can be
calculated using equations (9)–(12), and then x can be
calculated using equations (15) and (17).

3. ModelandSolvingofOptimalCross-Sectional
Dimension of Rods

3.1. Model of Optimal Cross-Sectional Dimension of Rods for
the 3-RRRPPM toMinimize EnergyConsumption. For the 3-
RRR PPM, the lengths and widths of the rectangular cross
section of the active rodAiBi are ui and vi; lengths and widths
of the rectangular cross section of the passive rod BiCi are
ui+3 and vi+3; lengths and widths of the rectangular cross
section of the three rods of the moving platform are u7 and
v7, respectively. (e mass of the active rod AiBi is as follows:

mGi � ρuivili. (18)

where ρ is the density of the material and the mass of the
passive rod BiCi is as follows:

mG(i+3) � ρui+3vi+3li+3. (19)

(e mass of the moving platform is as follows:

mG7 � ρu7v7(d + e + f). (20)

According to equations (B.23)–(B.25), the rotary inertia
JGi around the centroidal axis of the active rod AiBi, rotary
inertia JG (i+3) around the centroidal axis of the passive rod
BiCi, and rotary inertia JG7 around the centroidal axis of the
moving platform are related to the length and width of the
rectangular cross section of the rods. Furthermore,
according to equations (B.17)–(B.22), FGix, FGiy, FG (i+3)x, FG
(i+3)y, FG7x, FG7y, MGi, MG (i+3), and MG7 are related to the
length and width of the rectangular cross section of the rods.
(erefore, matrix B is related to u1–u7 and v1 − v7, but
matrix A is not.

When center G7 of the mass of the moving platform
moves with time t ∈ [t0, tn] during the running of the 3-RRR
PPM, the centroid trajectory is expressed as follows:

x � f1(t),

y � f2(t),
􏼨 t ∈ t0, tn􏼂 􏼃. (21)

(e energy consumption corresponding to the interval
[t0, tn] of the movement time satisfies [21, 24]

E(t) � 􏽚
t

t0

􏽘

3

i�1
τiωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt, t ∈ t0, tn􏼂 􏼃, (22)

where ωi is the angular velocity of the active rodAiBi and τi is
the driving moment of the active rod AiBi. According to
equation (17), τi can be obtained from the thirteenth,
fourteenth, and fifteenth row of the vector x; therefore, E (t)
in equation (22) is a function of u1–u7 and v1 − v7.

Let

w � u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7􏼂 􏼃
T
.

(23)

(erefore, the model of the optimal cross-sectional di-
mension of the rods for the 3-RRR PPM to minimize energy
consumption is

minE(w) � 􏽚
t

t0

􏽘

3

i�1
τiωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt, t ∈ t0, tn􏼂 􏼃. (24)

(e calculation process of the objective function (24) to
determine the optimal cross-sectional dimensions of the
rods for the 3-RRR PPM is shown in Figure 2.

(e constraint condition is

wlb ≤w ≤wub,

wlb � u1lb v1lb u2lb v2lb ... u7lb v7lb􏼂 􏼃
T
,

wub � u1ub v1ub u2ub v2ub ... u7ub v7ub􏼂 􏼃
T
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)
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where wlb and wub are the lower limit and the upper limit of
w, respectively.

3.2. Solving the Model of the Optimal Cross-Sectional Di-
mension of the Rods for the 3-RRR PPM Based on IBOA.
(e BOA, which was inspired by the foraging behavior of
butterflies, is a metaheuristic algorithm presented by Arora
and Singh in 2018; in particular, the BOA is more efficient
than other metaheuristic algorithms for solving engineering
problems [30, 31]. It is assumed that every butterfly can emit
fragrance and attract each other through fragrance; the
BOA’s key is the concept of fragrance and perception, which
is expressed through the power exponent of stimulus in-
tensity as follows [30, 31]:

fk � c′Ia′
k, (26)

where fk (k� 1, 2, . . ., n) is the fragrance of kth butterfly and
Ik, which is defined by the objective function (24) with
wk(uk, vk) representing the stimulus intensity; in addition,
the power exponent a′ and the sensory modality c′ are real
numbers in the range [0, 1].

(ere are two types of iterative patterns in seeking the
optimal objective function (24) in the BOA; that is, the global
or local search ensures that any butterfly canmove randomly

or toward the best butterfly that emits more fragrance. (e
iterative formula for the global search is [30, 31]

w
t+1
k � w

t
k + r

2
× w
∗

− w
t
k􏼐 􏼑 × fk, (27)

where w∗ is the current best solution among wk(uk, vk)

(k� 1, 2, . . ., n) in the current iteration, t is the number of
iterations, and r is a random number in [0, 1]. (e iterative
formula for the local search is [30, 31]

w
t+1
k � w

t
k + r

2
× w

t
j − w

t
k􏼐 􏼑 × fk, (28)

where j ∈ {1, 2, . . ., n}.
(e problem of the optimal cross-sectional dimension of

rods for the 3-RRR PPM in this study is a constrained single-
object optimization because there are difficulties in the
process of changing to unconstrained multiobjective opti-
mization; for example, the penalty function is exceedingly
sensitive to penalty factors [32, 33]. (erefore, to properly
handle the constraints of the single-object optimization
problem, the IBOA is presented. To ensure that the new
point iterated always falls into the feasible region, two
measures are used in the IBOA, as follows:

(1) When the initial population of n butterflies is gen-
erated, wk (k� 1, 2, . . ., n) is randomly determined in
the feasible region of equation (25):

Calculate masses and 
rotary inertia of rods, 

and matrix B.

Input dimensional parameters li,
li+3, a, b, c, d, e, f; orientation angle
θ of the moving platform; centroid 

trajectory of moving platform.

Inverse kinematics
Cross-section dimension 

w=[u1,v1,u2,v2,…u7,v7]T of rods

Calculate
θi, ωi

(i = 1, 2, 3).

Calculate matrix A;
QR decomposition

of matrix A.

Inverse dynamics.
Calculate x, τi

(i = 1, 2, 3)

Accumulate ωiτi;
Calculating E (w).

Figure 2: Calculation process of the objective function to determine the optimal cross-sectional dimension of the rods.
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wkl �
wlbl + λklwubl

1 + λkl

, (29)

where k� 1, 2, 3, . . ., n and l� 1, 2, 3, . . ., 14. wlbl and
wubl are lth components of wlb and wub, wkl is lth
component of wk, and λkl∈[0, 100] is the ratio (a
random number) when wk is calculated according to
the formula of definite proportional division point.
Meanwhile, the population size n was 50 in literature
[31], and the condition that n is greater than 100 is
also requested in this paper to ensure population
diversity.

(2) After the global or local iteration has been executed,
it is estimated whether the new point iterated falls
into the feasible region of equation (25) or not
through if-else control flow. (e subsequent oper-
ation is executed if the new point iterated falls into
the feasible region of equation (25), whereas the new
iterated point is replaced by the current best solution
w∗ if the new point iterated does not fall into the
feasible region of equation (25).

(e terminal condition of iteration is as follows:

t≤ tmax or E w∗( 􏼁
t

− E w∗( 􏼁
t− 1

�����

�����≤ 1e − 5. (30)

where tmax is the maximum number of iterations and E (w∗)t
is the value of the objective function corresponding to the
best solution w∗ in the tth iteration.

(e program flowchart of using IBOA to solve the
problem of optimal cross-sectional dimensions of rods for
the 3-RRR PPM is shown in Figure 3 (in which red lines are
added in the improved parts of BOA).

4. Example, Solving, Experimental Verification,
and Discussion

4.1. Example and Solving. As shown in Figure 1(a), the
dimension parameters for the 3-RRR PPM were
Σ� a+ b+ c� 0.2533m, a/Σ� 0.2096, b/Σ� 0.3628, c/
Σ� 0.4276, l1/Σ� 0.0750, l2/Σ� 0.0553, l3/Σ� 0.0632, l4/
Σ� 0.1382, l5/Σ� 0.1342, l6/Σ� 0.2132, d/Σ� 0.1733, e/
Σ� 0.1899, and f/Σ� 0.1141. (e material density of the rods
was ρ� 2700 kg/m3.

A spring was used to connect the central point G7 of the
moving platform and another point with coordinates (0.09,
0.09) (unit: m) on the frame, and the elastic coefficient and
free length of the spring were K� 20 and l0 � 0.015m. (e
external moment Me of the moving platform was zero, and
the external force Fe via the center of mass of the moving
platform was

Fe �

Fex

Fey

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

K

�����������������

q1 − x( 􏼁
2

+ q2 − y( 􏼁
2

􏽱

− l0􏼒 􏼓
������������������

q1 − x( 􏼁
2

+ q2 − y( 􏼁
2

􏽱
q1 − x

q2 − y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(31)

where the units of x and y are meters.

(e working mode was “--+” for the 3-RRR PPM, ori-
entation angle θ of the moving platform was 0 rad, which is
not singular [11], and global coordinates of the central point
G7 of the moving platform were as follows [11, 21]:

x � 0.010 1 −
t

15
􏼒 􏼓cos(ωπt),

y � 0.025 + 0.010 1 −
t

15
􏼒 􏼓sin(ωπt),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t ∈ [0, T].

(32)

Here, T�15 s. (e workspace of the 3-RRR PPM and the
spiral trajectory of central point G7 of the moving platform
under “--+” working mode and θ� 0 rad are shown in
Figure 4.

Let p� 0.5, c′� 0.2, tmax � 350, wlb � 10−3 [15, 5, 15, 5, 15,
5, 15, 5, 15, 5, 15, 5, 15, 5]T (unit: m), and wub � 10−3 [30, 10,
30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10]T (unit: m). In the
initial population of n butterflies, n� 110, a′, and r ∈ [0, 1]
were updated by a random number according to Figure 3
during the running of the program. (e program based on
Figure 3 was run, and the minimum of the objective function
E (w) was 0.0764 J when the number of iterations was 107,
and the best solution corresponding to the minimum of the
objective function w∗best � [0.015, 0.005, 0.015, 0.005, 0.015,
0.005, 0.03, 0.01, 0.03, 0.01, 0.03, 0.01, 0.015, 0.005]T (unit:
m).

As is shown in Figure 3, the algorithmic complexity of
the proposed IBOA in comparison with the BOA is ap-
proximately equal to that of the BOA for the following
reasons. Double loops in which the number of outer loops is
n and the number of inner loops is 14 can be used during
generating the initial population of n butterflies according to
equation (29), and this operation has little influence on time
and space complexity. In addition, after the global or local
iteration has been executed in the BOA, an if-else control
flow was added to estimate whether the new point iterated
falls into the feasible region of equation (25) or not, and this
operation does not add space complexity and has little in-
fluence on time complexity. In view of the fact that the BOA
has been benchmarked [31], combining the algorithmic
complexity analysis of the IBOA, the IBOA will be verified
through comparing the IBOA with PSO [21] and BOA
[30, 31] and through further experimental verification of
physical prototype.

(e reason why the PSO and BOA were chosen as
benchmarking algorithms is that PSO was used to optimize
the link and platform masses for minimizing the electrical
energy consumption [21] and BOA was also applied to solve
6 familiar engineering problems [31]. (e comparisons
among the IBOA, PSO, and BOA were implemented in
order to obtain fair results under the following conditions:
the population sizes of the IBOA, PSO, and BOA were set as
110, and all initial population was randomly generated
according to equation (29); the parameters of the PSO such
as the constriction factor, inertia weight, and positive ac-
celeration constants were set according to literature [21], and

Complexity 7



the parameters of BOA and IBOA were the same as those
previously mentioned.

(e convergence curves of the three algorithms are
shown in Figure 5. (e total number of iterations of the
IBOA, PSO, and BOA is 107, 90, and 128, respectively; the
value of the objective function at the end of the iteration is
0.0764 J, 0.1070 J, and 0.0766 J. And the IBOA is 40 percent
more accurate than the PSO and 0.29 percent more accurate
than the BOA. Although the IBOA is a little more accurate
than the BOA, the former is smaller in the total number of
iterations. (erefore, the IBOA is more suitable than the
PSO and BOA for solving the engineering optimization
problems in this paper.

4.2. Experimental Verification and Discussion. (e experi-
mental verification system is shown in Figure 6, where the
mechanical, control, and test systems of the 3-RRR PPM
include a 3-RRR PPM, a personal computer (PC), three
servomotors, three matched servomotor drivers of the type
TSC06401C2NL/TSTA20C, and three torque/speed sensors
of the type PPCI-L112/JN338-2VE. According to the RS-485
serial bus standard, the 3-RRR PPM is operated by Visual
C++ programming [11, 24].

According to the optimal section dimensions of the rods,
w∗best � [0.015, 0.005, 0.015, 0.005, 0.015, 0.005, 0.03, 0.01,
0.03, 0.01, 0.03, 0.01, 0.015, 0.005]T (unit: m). First, the 3-
RRR PPM was assembled, and the test was then conducted.

Start

Determine the best w* among wk;
t=0.

(29); calculate E (wk) based on Figure 2; input a′, c′, p.

Generate random number r∈[0,1]; k=1.

r≤p

Calculate fk based on Equation (26);
global search based on Equation (27).

Calculate fk; local search 
based on Equation (28).

Is Equation (25) true?

wk
t+1=w*.

k≤n Update r, w*; 
k=k+1.

Is terminal condition (30) true?

Output best solution w*.

End

YesNo

No

Yes

No

Yes

t=t+1; update a′.

Yes No

Generate wk (k=1,2, …, n) based on Equations (25) and 

Figure 3: Program flowchart of using IBOA to solve the problem of optimal cross-sectional dimension of rods for the 3-RRR PPM.
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After the torque/speed sensor data are obtained, the com-
parative results of the simulation and experiment for the
angular velocities of the active rod AiBi are shown in
Figure 7(a), and the comparative results of the simulation
and experiment for the driving moment of the active rod
AiBi are shown in Figure 7(b).(e comparative results of the
simulation and experiment for the energy consumption of
the 3-RRR PPM are shown in Figure 8.

Employing numerical integration, the total simulation
energy consumption was 0.0764 J, and the total experi-
mental energy consumption was 0.0794 J. (e latter is
slightly larger than the former, and the error is 0.0030 J
mainly because the friction dissipation energy of the hinges

is not included in the energy consumption model of
equation (24). (erefore, the error between the total ex-
perimental energy consumption and the total simulation
energy consumption based on the optimal solution by the
IBOA is within the expected range. (e results show that
the dynamics model based on the Newton–Euler method,
numerical solving for the dynamical model of the 3-RRR
PPM based on QR decomposition, and numerical solving
for optimal cross-sectional dimension of rods to minimize
energy consumption based on the IBOA are reasonable and
in accordance with the engineering practice. Furthermore,
the comparison among the IBOA, PSO, and BOA and
experiment results of the physical prototype for the 3-RRR
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Figure 7: (a) Comparison of the simulation and experiment for the angular velocities of the active rodAiBi; (b) comparison of the simulation
and experiment for the driving moment of the active rod AiBi.
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Figure 8: Comparison of the simulation and experiment for the energy consumption of the 3-RRR PPM.
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PPM indicate that the IBOA is suitable for solving the
constrained single-object optimization problem and has
great potential in solving the optimization problems in
engineering practice.

5. Conclusions

(e comparisons between the simulation energy consumption
based on the optimal solution by the IBOA and the experi-
mental energy consumption from physical prototype of the 3-
RRR PPM show that the dynamics model based on the

Newton–Euler method, numerical solving for the dynamical
model of the 3-RRR PPM based on QR decomposition, and
numerical solving for optimal cross-sectional dimension of
rods to minimize energy consumption based on the IBOA are
reasonable and in accordance with the engineering practice.

(e proposed IBOA abandons the constraints processing
scheme of transforming constrained single-objective optimi-
zation problems into unconstrained multiobjective optimiza-
tion problems. In the IBOA, the initial population is randomly
generated. More importantly, after the global or local search in
the BOA, the newly generated iteration point is immediately

Table 1: Parameters of dimension, kinematics, and dynamics for the 3-RRR PPM (where i� 1, 2, 3).

Meaning Symbol
Distance between hinge axes A1 and A2 a
Distance between hinge axes A2 and A3 b
Distance between hinge axes A3 and A1 c
Distance between hinge axes C1 and C2 d
Distance between hinge axes C2 and C3 e
Distance between hinge axes C3 and C1 f
Lengths of the active rods AiBi li
Length of the passive rod BiCi li+3
Global coordinates of the points Ai (xAi, yAi)
Global coordinates of the points Bi (xBi, yBi)
Global coordinates of the points Ci (xCi, yCi)
Local coordinates of the points Ci (xCi′, yCi′)
Global coordinate of the central point G7 of the moving platform (x, y)
Global coordinates of the points Gi (xGi, yGi)
Global coordinates of the points G (i+3) (xG(i+3), yG (i+3))
Orientation angle of the moving platform Θ
Rotation angle of the active rod AiBi θi
Angular velocities of the active rod AiBi ωi
Rotation angle of the passive rod BiCi θi+3
Angular acceleration of the active rod AiBi αGi
Angular acceleration of the passive rod BiCi αG (i+3)
Angular acceleration of the moving platform αG7
Acceleration of the central points Gi of the active rod AiBi aGi
Acceleration of the central points G (i+3) of the passive rod BiCi aG(i+3)
Acceleration of the central point G7 of the moving platform aG7
Masses of the active rod AiBi mGi
Masses of the passive rod BiCi mG(i+3)
Masses of the moving platform mG7
(e x-direction inertia forces of the active rod AiBi FGix
(e y-direction inertia forces of the active rod AiBi FGiy
(e x-direction inertia forces of the passive rod BiCi FG(i+3)x
(e y-direction inertia forces of the passive rod BiCi FG(i+3)y
(e x-direction inertia forces of the moving platform FG7x
(e y-direction inertia forces of the moving platform FG7y
Rotary inertia round the centroidal axis of the active rod AiBi JGi
Rotary inertia round the centroidal axis of the passive rod BiCi JG (i+3)
Rotary inertia round the centroidal axis of the moving platform JG7
Moment of inertia of the active rod AiBi MGi
Moment of inertia of the passive rod BiCi MG(i+3)
Moment of inertia of the moving platform MG7
(e x-direction external force of the moving platform Fex
(e y-direction external force of the moving platform Fey
External moment of the moving platform Me
(e x-direction internal forces at the point Bi FBix
(e y-direction internal forces at the point Bi FBiy
(e x-direction internal forces at the point Ci FCix
(e y-direction internal forces at the point Ci FCiy
Driving moments of the active rod AiBi τi
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judged: whether it falls into the feasible region or not.(en, the
newly generated iteration points out of the feasible region are
replaced by the current optimal points. (e results of com-
parison among the IBOA, PSO, and BOA and experiment
results of the physical prototype for the 3-RRR PPM show that
the IBOA is suitable for solving the constrained single-object
optimization problems and has great potential in the con-
vergence speed and accuracy to solve the optimization prob-
lems in engineering practice.

Appendix

A. Meaning and Symbols of Parameters

Parameters of dimension, kinematics, and dynamics for the
3-RRR PPM are shown in Table 1.

B. Formulae of Geometry, Kinematics, and
Dynamics for 3-RRR PPM

Computational formulae related to the parameters of di-
mension, kinematics, and dynamics (where, i� 1, 2, 3)
[11, 24] are as follows:

(1) (e parameters of dimension and the coordinate of
the points

xAi �

a
2

− c
2

3b
, i � 1,

−
3b

2
+ a

2
− c

2

6b
, i � 2,

3b
2

+ c
2

− a
2

6b
, i � 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.1)

yAi �

2
3
h2, i � 1,

−
1
3
h2, i � 2, 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.2)

where h2 is the height on the side A2A3 of triangle
A1A2A3.

xCi
′ �

d
2

− f
2

3e
, i � 1,

−
3e

2
+ d

2
− f

2

6e
, i � 2,

3e
2

+ f
2

− d
2

6e
, i � 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.3)

yCi
′ �

2
3
h2′, i � 1,

−
1
3
h2′, i � 2, 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.4)

where h2′ is the height on the side C2C3 of triangle
C1C2C3.

xBi

yBi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

xAi + li cos θi

yAi + li sin θi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (B.5)

xCi

yCi

􏼢 􏼣 �
x

y
􏼢 􏼣 +

cos θ −sin θ
sin θ cos θ

􏼢 􏼣
xCi
′

yCi
′

􏼢 􏼣, (B.6)

xGix

xGiy

􏼢 􏼣 �
1
2

xAi + xBi

yAi + yBi

􏼢 􏼣, (B.7)

xG(i+3)x

xG(i+3)y

􏼢 􏼣 �
1
2

xCi + xBi

yCi + yBi

􏼢 􏼣. (B.8)

(2) (e parameters of kinematics

ωi � θi

·

, (B.9)

θi+3 � arccos
BiCi · (1, 0)

li+3
, (B.10)

αGi � θi

··

, (B.11)

αG(i+3) � θ
··

i+3, (B.12)

αG7 � θ
··

, (B.13)

aGi �
aGix

aGiy

􏼢 􏼣 �
xGi

··

yGi

··􏼢 􏼣, (B.14)

aG(i+3) �
aG(i+3)x

aG(i+3)y

􏼢 􏼣 �
xG(i+3)

··

yG(i+3)

··
⎡⎢⎣ ⎤⎥⎦, (B.15)

aG7 �
x
··

y
··􏼢 􏼣. (B.16)

(3) (e parameters of dynamics

FGix

FGiy

⎡⎣ ⎤⎦ � −mGi

aGix

aGiy

⎡⎣ ⎤⎦, (B.17)

FG(i+3)x

FG(i+3)y

􏼢 􏼣 � −mG(i+3)

aG(i+3)x

aG((i+3)y

􏼢 􏼣, (B.18)

FG7x

FG7y

􏼢 􏼣 � −mG7
aG7x

aG7y

􏼢 􏼣, (B.19)

MGi � −JGiαi, (B.20)

MG(i+3) � −JG(i+3)αG(i+3), (B.21)
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MG7 � −JG7αG7, (B.22)

where

JGi �
mGil

2
i

12
, (B.23)

JG(i+3) �
mG(i+3)l

2
i+3

12
, (B.24)

JG7 �
mG7

2
d
3

+ e
3

+ f
3

+ 3def
d + e + f

. (B.25)
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