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)e effective applications of Casson fluid in drilling processes, biological treatments, food processing, and bio-engineering
activities have caught the interest of a wide range of researchers. )e suitable knowledge of heat transfer via non-Newtonian fluid
is essential for the achievement of best quality products in industry. )us, the three-dimensional Casson nanofluid flow over a
stretching sheet with Arrhenius activation energy and exponential heat source effects is investigated in this paper using a
computational process based on iterative power series (IPS) method. To provide useful insights into the physical and dynamic
examinations of this topic, convective heat and convective mass boundary conditions are used.)e developed model of nonlinear
partial differential equations (PDEs) has been transformed into ordinary differential equations (ODEs) using similarity
transformations. )e numerical solution of the transformed ODEs is obtained by employing the IPS technique combined with
shooting iteration approach. )e results of this study are validated with the previous studies, and excellent agreements have been
obtained.)e behavior of various capable physical parameters is analyzed. It is observed that the thermal and concentration fields
show an enhancement with respect to the exponential heat source parameter and thermal and concentration Biot numbers.
Further, the Arrhenius activation energy parameter has shown a significant effect on the concentration field.

1. Introduction

A better understanding of engineering and industrial
technology difficulties requires taking into account the
boundary layer phenomenon of non-Newtonian liquids with
heat transport. Non-Newtonian physiological liquids are
used in various engineering processes such asmanufacturing
of fiberglass, paper, crystals and plastic sheets, food pro-
duction, petroleum drilling, and transportation of slurries.
Non-Newtonian fluids have a tendency to modify their
viscosity or flow behavior under stress. Under the influence
of an unexpected stress, certain non-Newtonian fluids such
as Casson fluids, micropolar fluids, Carreau fluids, power
law fluids, Prandtl fluids and Eyring–Powell fluids may
behave similar to a solid due to an increase in their viscosity.

However, some situations might result in a reverse action
where the fluid viscosity can decrease and fluids become
thinner under the application of an unexpected stress. On
the removal of these unexpected stresses, these liquids revert
to their original flow behavior. Casson liquids have inter-
esting properties and perform a significant part in non-
Newtonian fluid experimentation, and in past few years they
have gained the attention among researchers. )e Casson
fluid model was developed by Casson and Mill [1] for the
prevision of pigment–oil suspension stream conduction.
Shafiq et al. [2] analyzed the Darcy–Forchheimer Casson
water/glycerin rotating nanofluid flow with uniform mag-
netic field. Saeed et al. [3] considered three-dimensional
(3D) nano-Casson slender film stream created on a slanting
rotating plate. Reddy et al. [4] analyzed the Buongiorno
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model with respect to the rotating flow of Casson liquids on
an extended surface with thermophoresis and Brownian
motion. )e Casson nanofluid 3D stream over the perme-
able layers of a slender sheet in a graphene nanoparticulate
suspension was investigated by Durgaprasad et al. [5]. Later,
Durgaprasad et al. [6] studied the 3D slip stream of a
chemically reactive Casson liquid flowing over a thin pen-
etration layer with nonuniform heat source or sink. Raza [7]
contemplated the impacts of radiation and slip on the
magnetohydrodynamic stagnation point stream of Casson
liquids past a convective stretching sheet. )umma et al. [8]
considered the impacts of the viscous dissipation and heat
generation of nanofluid streams past an impermeable
extending sheet. Murthy et al. [9] investigated the ther-
mophoresis and Brownian movement effects in case of an
exponentially extended surface in a 3D magnetohydrody-
namic slip stream of the Casson nanofluid.

Investigations of non-Newtonian fluid flows created by a
stretching sheet for MHD flow and heat transfer find many
applications in engineering and industry such as melt
spinning, extrusion, glass fiber processing, heat rolling,
plastic wire drawing, rubber sheet manufacturing, and
cooling of a solid steel plate in a pool. Sometimes sheets are
continually stretched during manufacture to produce the
necessary thickness. It demonstrates that the final outcome is
determined by the sheet’s stretching and cooling rate. For
example, when molten polymers are extruded through a slit
die to make plastic sheets, the sheet is stretched. In such
operations, the pace of cooling determines the final prod-
uct’s qualities. When such a sheet is drawn in an electrically
conducting Casson fluid under the influence of a magnetic
field, the pace of cooling may be regulated, resulting in the
desired final product. Crane [10] examined a Newtonian
fluid boundary layer flow caused by the stretching elastic flat
plate. He focused on the case of linear stretching elastic flat
plate for discussing the heat conduction properties. Wang
[11] analyzed a 3D flow past a stretching sheet. Freidoo-
nimehr and Rahimi [12] studied the Brownian motion effect
on the heat transfer of a 3D nanofluid flow past a stretched
sheet with velocity slip. Hamid et al. [13] investigated the
effects of linear thermal radiation and presented a dual
solution for both steady and unsteady flows of the Casson
fluid over the stretching sheet. Aziz and Afify [14] analyzed
the Casson fluid flow and showed that the production of
entropy increased with increasing magnetization. In addi-
tion, a reverse behavior was observed with the Hall effect.
Shankar et al. [15] demonstrated the 3D flow in a Casson
fluid considering the Cattaneo–Christov heat flux and the
Joule effect at the boundary of the stretching sheet. Mahanta
et al. [16] discussed the Brownian and thermophoresis flow
effects on the Casson nanofluid over a stretching sheet in the
presence of magnetic field.

Activation energy is defined as the minimum needed
energy that reactants must receive to envision a chemical
reaction. )e activation energy has various focal points with
respect to the design of chemical production, manufacturing
of food items, geothermal repository, oil emulsion forma-
tion, etc. Activation energy investigations of a nano Casson
fluid flow were carried out by Gireesha et al. [17] with an

exponential spatial source of thermal energy and a binary
chemical reaction. Hayat et al. [18] detailed the Arrhenius
activation energy on the nanofluid 3D Darcy–Forchheimer
stream based on the impacts of the binary chemical reaction
in a rotating frame. Umar et al. [19] presented a numerical
treatment of the 3D Eyring–Powell liquid stream over an
expanding sheet with velocity slip and activation energy.
Hayat et al. [20] introduced the properties of activation
energy in the Carreau liquid stream with cross-dissemina-
tion and exponential heat source effects. Rashid et al. [21]
introduced a 3D rotating Darcy–Forchheimer stream with
activation energy. In the MHD third-grade nanofluid sys-
tem, Hayat et al. [22] developed a computational model for
studying the impact of the Arrhenius activation energy
through a nonlinear extending surface under convective
temperature and mass conditions. Rashid et al. [23] pro-
posed a similar work with activation energy on an Oldroyd-
B nanofluid. Rashid et al. [24] also used Arrhenius energy for
rotating the Maxwell nanomaterial. )e activation energy in
case of a squeezed liquid with a binary chemical reaction was
examined by Ahmad et al. [25].

Researchers recently expressed their enthusiasm in the
progress of methodologies, including heat generation/ab-
sorption due to its immense usage in the fields of infor-
mation science and mechanical engineering (Nadeem et al.
[26], Shehzad et al. [27], Mishra et al. [28], Rehman et al.
[29], and Ragupathi et al. [30]). Except for the traditional
component of the heat source, an irregular part of the heat
source (thermal and exponential space-based source) is
optimal for systems that require high-temperature distri-
bution mechanisms. Mahanthesh et al. [31] examined the
changes associated with radiative dusty nanofluid flow when
subjected to the heat sources (exponential space-based) and
Marangoni convection. Kumar et al. [32] considered ex-
ponential heat source effects on a fluid passing over a
melting surface. Similarly, Sandeep et al. [33], Krishna et al.
[34], Zia et al. [35], etc. contributed to establish the func-
tioning of the heat source which is exponential space-based.

)e nonlinear boundary value problems (BVPs) govern
various phenomena in science and engineering. Accord-
ingly, BVPs have therefore drawn great interest from re-
searchers and technologists in obtaining and evaluating their
solutions. BVPs are not trivial, and it is very difficult to find
empirical solutions to nonlinear BVPs. )e BVPs of real-life
problems (fluid flow problems) are typically nonlinear and
involve numerical and analytical algorithms with great ac-
curacy in their solutions. Several numerical methods have
been developed for solving such problems. )e power series
approach is perhaps the simplest and most effective ap-
proach compared with other nonlinear differential equation
approaches (Liao and Tan [36]). )is approach is frequently
used on many problems including chaotic processes as al-
most a suitable mathematical approach. )is approach has
led to the development of a number of numerical methods
and algorithms. An iterative method called the Iterative
Power Series (IPS), based on recursive power series ex-
pansions, provides such a highly accurate numerical scheme
(Burden and Faires [37]). )e IPS procedure aims to ensure
high precision by showing that the radius convergence of the
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solution can be altered to any major value by accuracy. In
theory, this value reaches infinity, which produces exact
solutions. )e IPS solutions to sech(x) and nonlinear dif-
ferential equations were presented by Al-Khawaja and Al-
Mdallal [38]. )e numerical IPS method was applied to
study the fluid stream past a shrinking infinite permeable
long cylinder by Al-Sakkaf et al. [39]. )eir observations
reported that the iterative numerical scheme obtained via
this process is more useful than conventional numerical
systems.

Based on the detailed literature survey, no study has
investigated the 3D convective Casson nanofluid flow with
Arrhenius activation energy and exponential heat source
effects past a stretching sheet. )is analysis therefore in-
corporates some new aspects, which are described
hereinafter.

(i) Convective heat and mass boundary conditions are
added to explore and enhance the dynamical
investigations.

(ii) A notable shooting procedure and IPS method are
employed to examine the influence of numerous
parameters (magnetic, exponential heat source, and
Arrhenius activation energy) on velocity, energy,
and concentration profiles.

(iii) Present numerical results are compared with those
obtained by Umar et al. [19], Freidoonimehr and
Rahimi [12], and Wang [11]. )ey observed the
movement of 3D fluid flow over a stretching layer,
which was observed herein to exhibit perfect
coordination.

(iv) )e appearance of capable physical quantities with
respect to standard profiles is visualized and
analyzed.

)e current study contributes to the literature by looking
into the factors that influence the flow, heat, and mass
transfer rate. Hence, the following research questions are
central to the empirical part:

(i) Does the magnetic field and the sheets stretching
rate increase the coefficient of skin friction?

(ii) Does the exponential heat source parameter influ-
ence the heat and mass transfer rate?

(iii) Does the thermal and concentration Biot numbers
support the thermal and concentration profiles?

(iv) Does the Arrhenius activation energy supports
thermal heat and mass transfer rate?

)e remaining of the manuscript is organized in the
following pattern. Section 2 gives the generalized formula-
tion Casson model. Section 3 holds the description on
Arrhenius activation equation and exponential heat source.
Section 4 deals with the problem formulation, corre-
sponding governing equations and boundary conditions. In

Section 5, the algorithm for IPS procedure and properties are
explained. Section 6 explains the numerical algorithm of the
IPS procedure followed by the validation of our numerical
scheme in Section 7. Results and discussions are presented in
Section 8, and finally the major conclusions are drawn in
Section 9.

2. Generalized Casson Fluid Model

)e rheological state for the Casson model is represented
as [33]

τ∗ � τ0 + μc
∗
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where Π � eijeij is the product of the component of the
deformation rate, eij is the (i, j)th component of deforma-
tion rate, Πc is the critical value of this product, μB is the
plastic dynamic viscosity of the fluid, and py � μB

���
2Π

√
/β is

the yield stress of the fluid. To retain a steady strain rate,
there are certain fluids that involve a progressive rise in shear
stress and are known as rheopectic fluid. In case of Casson
fluid where Π>Πc:

μ � μB +
py
���
2Π

√ , (3)

By substituting py in equation (3), we can observe the
dependency of kinematic viscosity ] of the Casson fluid on
plastic dynamic viscosity μB, density ρ, and Casson pa-
rameter β as follows:

] �
μB

ρ
1 +

1
β

 . (4)

3. Activation Energy and Exponential
Heat Source

3.1. 2e Arrhenius Equation. In 1889, Swedish scientist
Svante Arrhenius discovered the presence of activation
energy. To describe the relationship between temperature
and reaction rate, Arrhenius devised his eponymous
equation. )e Arrhenius equation is essential for deter-
mining chemical reaction rates and, more critically, the
amount of energy required to initiate them.

K � Ae
− Ea/RT, (5)
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where K is the reaction rate coefficient (the rate of reaction),
A is the frequency factor (how often molecules collide), R is
the universal gas constant, T represents the absolute tem-
perature, and Ea is the activation energy.

3.2. ExponentialHeat Source. Chemical or nuclear processes
produce heat energy within a body as an interior energy
source/sink. Its importance can be seen in combustion re-
search, nuclear reactors, heat exchangers, plastic, paper, and
steel production, thermal insulation, and fusion reactors, etc.
)e effects of an internal heat source/sink can be studied
using two models. )e first is a uniform temperature-de-
pendent internal heat source/sink process (Q0(T − T∞)),
and the second is a nonuniform space and a thermal based
heat source in which two dimensionless parameters appear
in the energy equation, one for thermal based heat source
analysis and the other for space-based heat source analysis.
)ese two models may not be able to achieve more heat
transmission in the fluid boundary layer, according to sci-
ence. An exponential heat source effect (Q0(T − T∞)

e− m
��
a/]

√
z) has been developed as a new model for intensive

heating processes in light of these findings.

4. Modeling and Description

We consider the steady, laminar, and incompressible 3D flow
of the Casson fluid past over a stretching sheet. )e sheet is
positioned at z � 0, and the flow is assumed to occur in the
domain z> 0. Let the sheet’s stretching velocity in x-direction
be u � Uw(x) � ax and the y-direction stretching velocity be
v � Vw(y) � by. Convective heat (Tf) and mass (Cf) con-
ditions are imposed at the bottom of the sheet surface with
coefficients hf and hs. )e schematic diagram of the physical
domain of the problem is presented in Figure 1.)emagnetic
field is uniformly distributed with an impact force B0 in a
direction normal to the fluid flow.)e induced magnetic field
is neglected because of the small magnetic Reynolds number.
)e impacts of viscous dissipation are also neglected because
the magnetic field is not considerably high. Attention is
devoted to the novel Arrhenius activation energy and ex-
ponential heat source effects, which are comprehensively
examined.

Based on all the above-stated assumptions, the following
sequence of equations governing the flow is obtained.
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where u, v, and w are the x, y, and z components of velocity,
] is the kinematic viscosity of the nanofluid, β is the Casson
parameter, ρ is the density of the nanofluid, T is the tem-
perature of the fluid, Q0 is the heat generation/absorption
variable, and DB and DT represent the coefficient of

Brownian and thermophoresis diffusions, Ks is the reaction
rate, Ea is the activation energy, and k1 is the Boltzmann
constant, respectively.

)e corresponding boundary conditions are as follows:

u � Uw(x), v � Vw(y), w � 0,

zT

zz
� −

hf

kf

Tf − T ,
zC

zz
� −

hs

DB

Cf − C 

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at z � 0,

such that u⟶ 0, v⟶ 0, w⟶ 0, T⟶ T∞, C⟶ C∞ as z⟶∞.

(11)
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)e variables for the similarity solution are given as
follows:

η � z

��
a

]



, u � axf′(η), v � ayg′(η), w

� −
��
a]

√
(f(η) + g(η)),

θ(η) �
T − T∞

Tf − T∞
, ϕ(η) �

C − C∞
Cf − C∞

.

(12)

By substituting the similarity variables from equation
(12) into Equations (6)–(10), the transformed dimensionless
equations can be written as

β− 1
+ 1 f

‴
+(f + g)f″ − f′

2
− Mf′ � 0, (13)

β− 1
+ 1 g‴ +(f + g)g″ − g′

2
− Mg′ � 0, (14)

θ″ + Pr(f + g)θ′ + PrNbθ′ϕ′ + PrNtθ′2 + PrQθe
− mη

� 0,

(15)

ϕ″ + Le(f + g)ϕ′ +
Nt

Nb
θ″ − LeΛ(1 + Γθ)

r
e

(− E/1+Γθ)
� 0.

(16)

After modifications, the boundary condition can be
represented as follows:

f � 0, g � 0, f′ � 1, g′ � α,

θ′ � −Bi1(1 − θ(0)),ϕ′ � −Bi2(1 − ϕ(0))

⎫⎬

⎭ at η � 0,

f′ ⟶ 0, g′ ⟶ 0, θ⟶ 0,ϕ⟶ 0, as η⟶∞.

(17)

)e nondimensional parameters used in equations
(13)–(17) and their corresponding expressions are repre-
sented in Table 1.

)e local skin friction coefficients, Cfx and Cfy, the local
Nusselt number, Nusx, and the local Sherwood number, Shx,
are given as

Cfx �
τwx

ρU
2
w

,

Cfy �
τwy

ρV
2
w

,

Nusx �
xqw

k Tf − T∞ 
,

Shx �
xqm

DB Cf − C∞ 
,

(18)

where τwx � μ(zu/zz)z�0 and τwy � μ(zv/zz)z�0 are the
shear stress values along the surface of the sheet,
qw � −k(zT/zz)z�0 is the heat flux, and
qm � −DB(zC/zz)z�0 is the mass flux.

)e dimensionless form of equation (18) can be written
as:

Re1/2x Cfx � β− 1
+ 1 f″(0),

α3/2Re1/2y Cfy � β− 1
+ 1 g″(0),

Re−1/2
x Nusx � −θ′(0),

Re−1/2
x Shx � −ϕ′(0).

(19)

In the above expressions, both Rex � Uwx/] and Rey �

Vwy/] are the local Reynolds numbers.

5. Generalized Algorithm for IPS Method

)is section explains the algorithm to generate a convergent
power series for a function in general and its properties.

Properties

(1) Around η � 0, the function f(η) is expanded in a
Taylor series. )e infinite Taylor series is an exact
representation of f(η) for η<R, where R is the
radius of convergence. )is Taylor series diverges
when η≥R.

u = Uw(x) = ax,

Casson Fluid Flow

o y - axis

z -
 ax

is

x -
 ax

is

B0

Uniform Magnetic Field

v =
 V

w
(y

) =
 b

y

=дT (Tf – T),дz
hf
k– =дC (Cf – C)дz

hs
DB

–

Figure 1: Schematic model of the physical coordinate system of the
problem.

Table 1: Nondimensional parameters and their expression.

Expression Names
α � b/a Stretching ratio parameter
M � σB2

0/ρa Magnetic parameter
Pr � ]/α Prandtl number
Nb � τDB/](Cf − C∞) Brownian motion parameter
Nt � τDT/]T∞(Tf − T∞) )ermophoresis parameter
Q � Q0/aρCp Exponential heat source parameter
Le � ]/DB Lewis number
Λ � K2

s /c Reaction rate constant
Γ � (Tf − T∞)/T∞ Nondimensional fluid parameter

E � Ea/k1T∞
Arrhenius activation energy

parameter
Bi1 � hf/kf

���
]/a

√
)ermal biot number

Bi2 � hs/DB

���
]/a

√
Concentration biot number
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(2) Truncating the Taylor series at kmax introduces an
error of order hkmax+1. )is error will be magnified N

times due the recursive substitutions. )e total error
is then estimated by

Error �
η
N

 
kmax+1

N. (20)

For more details, the reader is referred to the reference
Al-Khawaja and Al-Mdallal [38]).

6. Numerical Method for the Solution

)is section discusses briefly the numerical algorithm used
to resolve the equation (13)–(16) with the boundary con-
ditions given by equation (17). )e IPS method given by Al-
Khawaja and Al-Mdallal [38] and Al-Sakkaf et al. [39] will be
followed. However, the shooting iteration approach for the
equations (13)–(16) needs to be characterized. Hence,
equations (13)–(16) are converted to IVPs of the following
form:

f
‴

� Ff η, f, f′, f″, g, g′, g″( , 0≤ η≤∞, f(0) � 0, f′(0) � 1, f″(0) � χ, (21)

g‴ � Fg η, f, f′, f″, g, g′, g″( , 0≤ η≤∞, g(0) � 0, g′(0) � α, g″(0) � ζ, (22)

θ″ � Fθ η, f, g, θ, θ′,ϕ, ϕ′( , 0≤ η≤∞, θ′(0) � −Bi1(1 − θ(0)), θ(0) � λ, (23)

ϕ″ � Fϕ η, f, g, θ, θ′, ϕ,ϕ′( , 0≤ η≤∞, ϕ′(0) � −Bi2(1 − ϕ(0)), ϕ(0) � ξ. (24)

)e final values of χ, ζ, λ, and ξ are calculated by
employing an iterative procedure, so that the solutions
satisfy the remaining boundary conditions, f′(∞) � 0,

g′(∞) � 0, θ(∞) � 0 andϕ(∞)) � 0, such that

lim
i⟶∞

f′ η∞, χi(  � 0, (25)

lim
i⟶∞

g′ η∞, ζ i(  � 0, (26)

lim
i⟶∞

θ η∞, λi(  � 0, (27)

lim
i⟶∞

ϕ η∞, ξi(  � 0. (28)

We start with appropriate initial guesses χ0, ζ0, λ0, and
ξ0 to solve the IVPs (21)–(24) iteratively. )e approximate
solutions to f, g, θ, ϕ are generated after updating the values
of χ, ζ, λ, ξ at each iteration step “i.” Readers are referred to
[37–39] for more details.

Denote B � (β− 1 + 1) for simplicity. )e functions
Ff , Fg, Fθ, and Fϕ are presented as

Ff � −
1
B

(f + g)f″ − f′
2

− Mf′ ,

Fg � −
1
B

(f + g)g″ − g′
2

− Mg′ ,

Fθ � − Pr(f + g)θ′ + PrNbθ′ϕ′ + PrNtθ′2 + PrQθe
− mη

 ,

Fϕ � − Le(f + g)ϕ′ +
Nt

Nb
θ″ − LeΛ(1 + Γθ)

r
e

(− E/1+Γθ)
 .

(29)

We divide the interval [0, η∞] into N uniform subin-
tervalsΩn � [ηn, ηn+1] for n � 0, 1, 2, 3, . . . , N − 1 in order to
solve the IVPs (21)–(24) iteratively using the IPS procedure.
Let ZN � ηn � nh: n � 0, 1, 2, 3, . . . , N − 1  where h � η∞−

η0/N. )e exact solution of equations (21)–(24) can be
shown here as a piecewise polynomial on each Ωn at given
χ � χi, ζ � ζ i, λ � λi, and ξ � ξi for i≥ 1, i.e.,

Step 1: As is customary, we expand the function f(η) in a power series, say about η � 0.
Step 2: )e coefficients, f(n)(η), are then re-expressed in terms of f(η). )ese creates a recursion relationship in between higher-
order coefficients, f(n)(0), and the lower-order coefficients, f(0)(0), and f(1)(0), allowing the power series to be represented in terms
of simply these two coefficients.
Step 3: )e series and its derivative are then computed at η � h, where h(� η∞ − η0/N) is substantially less than the radius of
convergence of the power series.
Step 4: At η � h, a new power series expansion is performed.
Step 5: Accordingly, the higher order coefficients, f(0)(h) and f(1)(h), are re-expressed in terms of the lower-order coefficients.
f(0)(h) and f(1)(h) are given the value of the previous series and its derivative determined at η � h, respectively.
Step 6: )en, around 2h, a new expansion is executed, using the lowest order coefficients from the preceding series, and so on. )is
iterative process is performed an infinite number of times. At η � Nh, the final series corresponds to a convergent series.

ALGORITHM 1: Steps of solutions using IPS method.
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f η, χi(  ≈ fn(η) � 

j

k�0
an,k η − ηn( 

k
, (30)

g η, ζ i(  ≈ gn(η) � 

j

k�0

bn,k η − ηn( 
k
, (31)

θ η, λi(  ≈ θn(η) � 

j−1

k�0
cn,k η − ηn( 

k
, (32)

ϕ η, ξi(  ≈ ϕn(η) � 

j−1

k�0
dn,k η − ηn( 

k
. (33)

Note that here j denotes the degree of the polynomials.
)e functions f, g, θ, and ϕ are assumed to be continuously
differentiable on [0, η∞] to obtain the recursion relations
between the coefficients. By applying the IPS technique with
j � 4, we obtain the following recursion relations between
coefficients for n � 0, 1, 2, 3, . . . , N − 1 (Al Sakkaf et al. [39]):

an,0 � an−1,0 + han−1,1 + h
2
an−1,2 + h

3
an−1,3 + h

4
an−1,4, (34)

an,1 � an−1,1 + 2han−1,2 + 3h
2
an−1,3 + 4h

3
an−1,4, (35)

an,2 � an−1,2 + 3han−1,3 + 6h
2
an−1,4, (36)

an,3 �
1
6B

−2an,2 an,0 + bn,0  + Man,1 + a
2
n,1 , (37)

an,4 � −
1

24B2 −2an,2 Ban,1 − Bbn,1 + b
2
n,0 + BM  + an,0 −4an,2bn,0 + Man,1 + a

2
n,1  + an,1bn,0 an,1 + M  − 2an,2a

2
n,0 . (38)

bn,0 � bn−1,0 + hbn−1,1 + h
2
bn−1,2 + h

3
bn−1,3 + h

4
bn−1,4, (39)

bn,1 � bn−1,1 + 2hbn−1,2 + 3h
2
bn−1,3 + 4h

3
bn−1,4, (40)

bn,2 � bn−1,2 + 3hbn−1,3 + 6h
2
an−1,4, (41)

bn,3 �
1
6B

−2bn,2 an,0 + bn,0  + Mbn,1 + b
2
n,1 , (42)

bn,4 �
1

24B2 2Bbn,2 −an,1 + bn,1 + M  + 2b
2
n,0bn,2 − an,0 Mbn,1 + b

2
n,1 − 4bn,0bn,2  + 2a

2
n,0bn,2 − bn,0bn,1 bn,1 + M   (43)

cn,0 � cn−1,0 + hcn−1,1 + h
2
cn−1,2 + h

3
cn−1,3 + h

4
cn−1,4, (44)

cn,1 � cn−1,1 + 2hcn−1,2 + 3h
2
cn−1,3 + 4h

3
cn−1,4, (45)

cn,2 � −
1

2(Nt Pr + 1)
Pre− hmn

cn,1e
hmn

Nb an,1 + bn,0 + dn,0  + Qcn,0  , (46)

cn,3 �
1

6(Nt Pr + 1)
2 Pre− hmn

Qcn,0 NbPran,1 + Prbn,0 + Prdn,0 + mNt Pr + m 

− cn,1 −2Nb Pran,1e
hmn

bn,0 + dn,0  + Nb
2Pra2

n,1 −e
hmn

 

+ 2Nb (Nt Pr + 1)an,2e
hmn

− 2Prbn,0dn,0e
hmn

+ NtPrbn,1e
hmn

− Prb2n,0e
hmn

+ bn,1e
hmn

+ NtPrdn,1e
hmn

− Prd2
n,0e

hmn
+dn,1e

hmn
+ NtPrQ + Q,

(47)

dn,0 � dn−1,0 + hdn−1,1 + h
2
dn−1,2 + h

3
dn−1,3 + h

4
dn−1,4, (48)

dn,1 � dn−1,1 + 2hdn−1,2 + 3h
2
dn−1,3 + 4h

3
dn−1,4, (49)
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dn,2 �
1

2Nt
Nb Le Γe− E/Γdn,0+1 Γdn,0 + 1 

r
− an,1 bn,0 + cn,0   − 2an,2  , (50)

dn,3 �
1

6Nt

⎧⎨

⎩Nb −
Man,1 + a

2
n,1 − 2an,2 an,0 + bn,0 

B
− 2Le an,2bn,0 − Le an,1bn,1 − Le 2an,2cn,0 + an,1cn,1 

+ Γ2Le dn,1e
− E/Γdn,0+1 Γdn,0 + 1 

r− 2
Γrdn,0 + E + r 

⎫⎬

⎭.

(51)

)e process continues until the boundary conditions,
equations (25)–(28), are satisfied, i.e., |f′(η∞, χi)|< ε,
|g′(η∞, ζ i)|< ε, |θ(η∞, λi)|< ε, and |ϕ(η∞, ξi)|< ε. Here ε is
the tolerance fixed to 10− 10, and the optimal choice for η∞ is
discussed in Section 7.

7. Validation

In the present section, we intend to assess the performance
and efficiency of the present numerical scheme for solving
(21)–(24). We will concentrate on equation (21), which can
be written as

β− 1
+ 1 f′″ +(f + g)f″ − f′

2
− Mf′ � 0, (52)

with the conditions

f(0) � 0, f′(0) � 1, f″(0) � χ, (53)

where the value χ is modified using the shooting technique
in order to satisfy f′(∞) � 0.

We discuss the relevance of choosing the numerical
parameter, η∞, in order achieve accurate numerical data.
Table 2 presents the values of χ as a function of η for distinct
values of η∞ in order to obtain an optimal value of η∞. As
mentioned earlier, the values of the parameter χ are updated
at every iteration until it becomes sufficiently close to
f′(∞) � 0. Table 2 shows that the values of χ become nearly
constant after few iterations as η∞ > 7. )erefore, η∞ � 15 is
the optimal value. However, the range of values up to η∞ � 7
is considered for plotting the figures.

)e associated residuals to (21)–(24) are, respectively,
given by

Resf(η) � β− 1
+ 1 f′″ +(f + g)f″ − f′

2
− Mf′, (54)

Resg(η) � β− 1
+ 1 g‴ +(f + g)g″ − g′

2
− Mg′, (55)

Resθ(η) � θ″ + Pr(f + g)θ′ + PrNbθ′ϕ′ + PrNtθ′2 + PrQθe
− mη

, (56)

Resϕ(η) � ϕ″ + Le(f + g)ϕ′ +
Nt

Nb
θ″ − LeΛ(1 + Γθ)

r
e

(−E/1+Γθ)
. (57)

In Table 3, we present the residual error values for
Resf(η) in equation (54) corresponding to each η∞ using
the IPS method. )e findings demonstrate an accuracy of
order 10− 10.

To guarantee the convergence of the solution, we present
Tables 4 and 5 , which compare the numerical results ob-
tained for f′(η) and g′(η) using the IPS method with the
approximate solution derived using Runge–Kutta method of
fourth order for various values of η.

To validate our numerical solution, the estimated numerical
results for f″(0) and g″(0) are compared with the available
literature. Table 6 comparesf″(0) andg″(0) values obtained in
the present research with those of Umar et al. [19], Freidoo-
nimehr and Rahimi [12], and Wang [11]. It is clear that the
results are in very good agreement with an accuracy of 10− 5.

8. Results and Discussion

)e results obtained for equations (13)–(16) by transforming
into IVPs given by equations (21)–(24) and using the IPS

method combined with the shooting approach are discussed
in this section. Now onwards, f′(η), g′(η), θ(η), and ϕ(η)

have been used to mention the x component of velocity, y

component of the velocity, temperature, and concentration
profiles, respectively. Similarly, we mention momentum
boundary layer as MBL, thermal boundary layer as TBL, and
concentration boundary layer as CBL, respectively. )e pa-
rameter are values are varied between the following ranges:
0.5≤M≤ 2.0, 0.6≤ α≤ 0.9, 2.0≤Q≤ 5.0, 0.1≤E≤ 0.25,
0.1≤M≤ 0.25, 1.0≤Bi1 ≤ 2.5, 0.5≤Bi2 ≤ 0.8, 2.0≤Nb≤ 5.0,
0.2≤Nt≤ 0.8, 0.5≤Γ≤ 2.0, 0.6≤Le≤ 0.75, 3.0≤Pr≤ 4.5,
and 0.1≤Λ≤ 0.25.)e value of β is fixed to 0.5 andm and n to
1 throughout this study.

Table 7 presents the calculated values of the local skin
friction coefficients in the x-and y-directions. Following the
effects of the Casson parameter (β), Re1/2x Cfx and
α3/2,Re1/2y Cfy are enhanced, while it is decreased following
the effect of magnetic parameter (M) in both directions.
Interestingly, for the case of α, the friction coefficient,
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Re1/2x Cfx, increases, and α3/2Re1/2y Cfy decreases according to
the directions. Table 8 lists the numerical values for the local
Nusselt number and local Sherwood number for different
values of the relevant physical parameters. From this table, it
is clear that the heat transfer rate increases with the thermal
Biot number (Bi1), exponential heat source parameter (Q),
and Lewis number (Le). Likewise, the local Sherwood
number shows an enhancement with the concentration Biot
number (Bi2), Lewis number, (Le), and reaction rate con-
stant (Λ). It is noteworthy to mention that the local Nusselt
and Sherwood numbers reduce following the effects of
Arrhenius activation energy.

Figures 2–5 present the behavior of the velocity profiles
in x and y directions (f′(η) and g′(η), respectively),
temperature (θ(η)), and concentration (ϕ(η)) profiles with
respect to η for the variations in the magnetic parameter (M)
and stretching ratio parameter (α). It is observed that f′(η)

and g′(η) show a gradual decrease in the flow domain with
an increase in the values of M from 0.5 to 2. A charged
molecule moving across a magnetic field is acted upon by a
force that is perpendicular to the direction applied field and
to the direction in which the particle is moving. )e in-
teractions between the applied magnetic field and the
magnetic field generated by the moving particle lead to
development of a force, termed as the Lorentz force. )is
force acts as a drag-like force, opposite to the direction of
fluid motion. )erefore, an increase in the strength of the
magnetic field applied in the direction perpendicular to the
fluid flow tends to reduce the fluid velocities along both
x-and y-directions, as depicted in Figures 2 and 3. Similar
observations are reported by Nadeem et al. [26]. Lorentz
forces tend to increase the heat transmission in the fluid
domain by considerably reducing the flow velocities. Hence,
θ(η) enhances significantly with M as shown in Figure 4.
Even though the temperature distribution under the influ-
ence of M is considerably high, the concentration profile of
the fluid reduces considerably with an increase in M as
depicted in Figure 5.

Figures 2–5 also demonstrate the effect of α on the pa-
rameters f′(η), g′(η), θ(η), and ϕ(η). A gradual increase in
α from 0.6 to 0.9 leads to an enhancement in the transverse
velocity g′(η), whereas f′(η) diminishes. α(� b/a) is a
quantitative relation between the stretching velocities in x and
y directions, represented as Uw � ax and Vw � by. On in-
creasing α, the sheet stretching force significantly increases in
the transverse direction. )is is attributed to the relation of
direct proportionality between α and the transverse velocity
(g′(η)). On the other hand, the axial velocity field (f′(η)),
which is inversely proportional to α, decreases with an in-
crease in α (see Figures 2 and 3). )e enhanced values of α
seem not to influence the TBL, and θ(η) continues to decline.
)is is due to the fact that the cooler fluid from the ambient
region progresses towards the sheet relatively faster due to the
stretching of the sheet. As a result the temperature gradient
near the sheet is increased and thus the TBL grows thinner.
)is leads to decreased temperature profile (see Figure 4). In
addition, stretching of the sheet leads to a decrease in the
values of ϕ(η). )e CBL thickness decreases with an increase
in the values of α in Figure 5.

Table 2: Values of parameter χ corresponding to η∞, calculated by
using shooting method with M � 1.0, β � 0.5, α � 0.3, and absolute
error in the subsequent values of η∞.

η∞ χ Absolute Error

7 −0.92126708636310317 —
8 −0.92113408041491218 1.33 × 10− 4

9 −0.92109189943454539 4.22 × 10− 5

10 −0.92107847137819310 1.34 × 10− 5

11 −0.92107419566890625 4.28 × 10− 6

12 −0.92107282577059646 1.37 × 10− 6

13 −0.92107238794947266 4.38 × 10− 7

14 −0.92107224800468002 1.40 × 10− 7

15 −0.92107220327054939 4.47 × 10− 8

Table 3: Residual error (Resf(η)) corresponding to η∞, calculated
by using IPS method with M � 1.0, β � 0.5, and α � 0.3.

η∞ Error

7 0.0000130877
8 2.50503 × 10− 7

9 −2.01555 × 10− 7

10 2.81436 × 10− 6

11 −1.68648 × 10− 7

12 −6.91890 × 10− 7

13 −3.96241 × 10− 8

14 −1.14731 × 10− 7

15 −8.83440 × 10− 10

Table 4: Estimations of error for f′(η) by setting M � 0.5, α � 0.5,
and β � 0.5.

η fIPS′ (η) fRK4′ (η) Error (fIPS′ (η) − fRK4′ (η))

1 1.000000000000 1.000000000000 0.00
2 0.460525220817 0.460525181476 3.9341 × 10− 8

3 0.204915558646 0.204915533345 2.53006 × 10− 8

4 0.089670147015 0.089670097323 4.96921 × 10− 8

5 0.038942267210 0.038942231873 3.53371 × 10− 8

6 0.016855052694 0.016855116531 −6.38367 × 10− 8

7 0.007284282287 0.007284365925 −8.36375 × 10− 7

8 0.003145699764 0.003145804840 −1.05076 × 10− 7

9 0.001357621734 0.001357770701 −1.48967 × 10− 7

10 0.000585300711 0.000585480549 −1.79839 × 10− 7

Table 5: Estimations of error for g′(η) by setting M � 0.5, α � 0.5,
and β � 0.5.

η gIPS′ (η) gRK4′ (η) Error (gIPS′ (η) − gRK4′ (η))

1 0.500000000000 0.500000000000 0.00
2 0.243218922052 0.243218869936 5.21155 × 10− 8

3 0.110964835767 0.110964849780 −1.40132 × 10− 8

4 0.049098390961 0.049098373377 1.75844 × 10− 8

5 0.021425892132 0.021425880937 1.11958 × 10− 8

6 0.009293015758 0.009293079577 −6.38193 × 10− 8

7 0.004019793239 0.004019881570 −8.8331 × 10− 8

8 0.001736581704 0.001736693904 −1.122 × 10− 7

9 0.000749555748 0.000749706482 −1.50734 × 10− 7

10 0.000323117550 0.000323302343 −1.84793 × 10− 7

Complexity 9



Table 6: Comparison of the present numerical results for α, f″(0), and g″(0) with Umar et al. [19], Freidoonimehr and Rahimi [12], and
Wang [11].

α Umar et al. [19] Freidoonimehr and Rahimi [12] Wang [11] Present Result Maximum Error

f″(0)

0 −1.0000 −1.0000 −1.0000 −1.0000000 —
0.25 −1.0490 −1.04881 −1.0488 −1.0488110 −1.1 × 10− 5

0.5 −1.0932 −1.09309 −1.0930 −1.0930950 −9.5 × 10− 5

0.75 −1.1345 −1.13450 −1.1344 −1.1344857 −8.57 × 10− 5

1.0 −1.1737 −1.17372 −1.1737 −1.1737207 −2.07 × 10− 5

g″(0)

0 0.00000 0.00000 0.0000 0.0000000 —
0.25 −0.19457 −0.19457 −0.1945 −0.1945638 −1.38 × 10− 3

0.5 −0.46532 −0.46520 −0.4652 −0.4652048 −4.8 × 10− 6

0.75 −0.79470 −0.79462 −0.7946 −0.7946182 −1.8 × 10− 5

1.0 −1.17372 −1.17372 −1.1737 −1.1737207 −2.07 × 10− 5

Table 7: Values of Re1/2x Cfx and α3/2 Re1/2y Cfy corresponding to M, α, and β.

M α β Re1/2x Cfx α3/2Re1/2y Cfy

0.0 −0.91263354 −0.10486921
0.3 −1.14686424 −0.19773170
0.6 −1.36502137 −0.28057038

0.0 −1.67539238 −0.00000000
0.25 −1.64024018 −0.30972771
0.5 −1.60811195 −0.67453871

0.5 −1.63359047 −0.37845134
1.0 −1.28109625 −0.29421997
3.0 −0.99679321 −0.22663912

Table 8: Values of Re−1/2
x Nusx and Re−1/2

x Shx corresponding to M, Bi1, Bi2, Nb, Nt, Le, E,Λ, Q, and β.

M Bi1 Bi2 Nb Nt Le E Λ Q β Re−1/2
x Nusx Re−1/2

x Shx

0.0 0.73049067 0.16449552
0.3 0.72902988 0.17600451
0.6 0.72753576 0.18873343

0.1 0.09741008 0.23319547
0.2 0.18945977 0.22896889
0.3 0.27593479 0.22506826

0.1 0.72556403 0.20629971
0.2 0.71283726 0.39898561
0.3 0.70031755 0.57950017

0.1 0.72941262 0.07371255
0.2 0.72846414 0.15657457
0.3 0.72750619 0.18419747

0.1 0.78918148 0.23318320
0.2 0.77992473 0.22807811
0.3 0.77015236 0.22320023

0.5 0.72556403 0.20629971
1.0 0.73741327 0.22744454
1.5 0.74486116 0.23559864

0.1 0.72563138 0.23770808
0.2 0.72560205 0.22122394
0.3 0.72556403 0.20629971

0.1 0.72437632 0.09197616
0.2 0.72469919 0.12056004
0.3 0.72500447 0.14914185

0.1 0.74194053 0.20491889
0.2 0.73812455 0.20524079
0.3 0.73413256 0.20557744

0.5 0.72556403 0.20629971
1.0 0.72425929 0.21507536
3.0 0.72287366 0.22407199
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Figures 6 and 7 present the impact of the exponential
heat source parameter (Q) and the Brownian motion pa-
rameter (Nb) on the parameters θ(η) and ϕ(η), respectively.
)e exponential heat source provides heat to the fluid,
leading to a strong thermal environment, which justifies the
behavior of Q with θ(η). Similarly, Nb displays an opposite

behavior with θ(η). )e unpredictable migration of fluid
molecules increases with increasing Nb. )is migration can
be attributed to a reduction in the TBL thickness, which
eventually leads to a decrease in the temperature in the
whole domain.

In Figure 7, the curves of the concentration profile can be
analyzed with values of Q ranging from 2.0 to 5.0. Initially,

η
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Figure 2: Behavior of f′(η) with respect to η for 1≤M≤ 2.5 and
0.6≤ α≤ 0.9.
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Figure 3: Behavior of g′(η) with respect to η for 1≤M≤ 2.5 and
0.6≤ α≤ 0.9.
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Figure 4: Behavior of θ(η) with respect to η for 1≤M≤ 2.5 and
0.6≤ α≤ 0.9.

ϕ 
(η

)

0.3

0.25

0.2

0.15

0.1

0.05

0

0 0.5 1 1.5 2

η

α = 0.6
α = 0.7
α = 0.8
α = 0.9

M = 1.0
M = 1.5
M = 2.0
M = 2.5

Figure 5: Behavior of ϕ(η) with respect to η for 1≤M≤ 2.5 and
0.6≤ α≤ 0.9.
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the concentration decreases in the region close to the sheet
surface (0≤ η≤ 0.4), and as η approaches the free stream
region, the concentration increases. )is is due to the fact
that the particles in the liquids remain very close to each
other near the surface that tend to increase the concentration
gradient. )is increment tends to a decrease in the TBL

thickness and it further affects the temperature profile in the
vicinity of the sheet surface. But, as the fluid particles move
at a considerable distance from the sheet surface, concen-
tration gradient effects are less perceived and therefore the
TBL thickness is larger here. Hence, the concentration
profiles far away from the sheet show an increase. We also
observe that an increase in the Brownian motion parameter
(Nb) tends to reduce the concentration profile. Mechan-
ically, Nb tends to induce a continual acceleration between
the fluid molecules. Such an acceleration boosted particles
move faster as they acquire kinetic energy, which leads to
higher collision rates and an increased diffusion rate. )us,
the greater the migration of particles to regions of lower
concentration, the lower the values of ϕ(η).

Figures 8 and 9 present the behavior of θ(η) and ϕ(η)

against the Prandtl number (Pr) and the thermophoresis
parameter (Nt), Pr, which is represented as the ratio of
energy diffusiveness to warm diffusiveness, and helps to
reduce θ(η) and ϕ(η). )e general thickening of MBL,
TBL, and CBL in heat transfer problems is well known to
be controlled by Pr (Shehzad et al. [27]). If Pr is small
(smaller than 1), the MBL is considerably less than those
of the TBL and CBL. )us, increasing the values of Pr
from 3.0 to 4.5 may decrease the thicknesses of TBL and
CBL. )is leads to a reduction with θ(η) and ϕ(η). Similar
observations have been documented by Shehzad et al.
[27].

Figures 8 and 9 depict the variations in the thermal and
concentration profiles with respect to Nt. If a temperature
gradient exists in a liquid, suspended particles tend to move
from a region of high temperature to a region of low
temperature. )e force responsible for this behaviour is
termed as thermophoretic force. Particles colliding with the
particles lying in region of high temperature have higher
velocities than those colliding with the particles lying in the
region of lower temperature. )is leads to a net force to-
wards the low temperature regions. )us, more fluid gets
heated that leads to a rise in the temperature, as observed in
Figure 8. However, in Figure 9, an increase in ϕ(η) has been
observed. )is is attributed to the fact that the thermo-
phoresis present in the domain tends to agitate the particles.
)e random oscillations do not possess a particular direc-
tion. Hence, the particles tend to spread equally throughout
the domain over a period of time, from regions of high
concentration to regions of lower concentration. )is
phenomenon is also called diffusion. )erefore, diffusion
tends to improve the concentration boundary layer and it
leads to an increase in ϕ(η), as depicted in Figure 9.

Figure 10 shows the dynamics of the Arrhenius acti-
vation energy parameter (E) and the reaction rate constant
(Λ) with ϕ(η). )e expression, E � Ea/k1T∞, describes the
connection of temperature with the speed of a chemical
reaction. Here, Ea denotes the activation energy for the
reaction and k1 denotes the reaction rate constant. As the
activation energy increases, the generative chemical reaction
is initiated, which leads to an enhanced concentration
profile. Meanwhile, an increase inΛ results in the decrease of
ϕ(η) to ensure an enormous concentration gradient on the
wall, which lowers the thickness of CBL.
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Figure 6: Behavior of θ(η) with respect to η for 2≤Q≤ 5.0 and
2.0≤Nb≤ 5.0.
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Figure 7: Behavior of ϕ(η) with respect to η for 2≤Q≤ 5.0 and
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Figures 11 and 12 present the impacts of Bi1 and Bi2 on
θ(η) and ϕ(η), respectively. Here, Bi1 and Bi2 denote the
thermal and concentration Biot numbers, respectively. Sim-
ilarly, the fixed temperature of the wall θ(0) � 1 and the
concentration ϕ(0) � 1 are achieved using the values of Bi1
and Bi2. An increment in the values of Bi1 and Bi2 leads to an

increase in the values of heat and mass transfer coefficients.
)is increase in the values of these coefficients enhances the
temperature and the concentration profiles. )e variations in
ϕ(η) against the nondimensional fluid parameters (Γ) and
Lewis number (Le) are depicted in Figure 13. )is figure
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0.1≤Λ≤ 0.25.

θ 
(η

)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.5 1 1.5 2

η

Nt = 0.2
Nt = 0.4
Nt = 0.6
Nt = 0.8

Pr = 3.0
Pr = 3.5
Pr = 4.0
Pr = 4.5
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shows that ϕ(η) is a diminishing relation of Γ and Le. )e
Lewis number, Le, is a dimensional number that is defined as
the ratio of thermal diffusivity andmass diffusivity. It has been
used to model fluid flows where the heat transfer and mass
transfer phenomena are observed to occur simultaneously. In
the boundary layer flow, if Le increases, heat diffuses more

easily than the solute. )erefore, the thickness of TBL is
greater than the thickness of CBL. Note that a reduction in the
CBL reflects a reduction in the concentration profile.

9. Conclusion

)e considered problem is quite significant in the field of
engineering and technology. It has great importance in the
production of cosmetics, pharmaceuticals, chemicals, oil, gas,
food, and several others. In this study, we investigated the
three-dimensional Casson nanofluid flow over a stretching
sheet with Arrhenius activation energy and exponential heat
source effects with convective heat and mass boundary
condition. )e numerical solution of the ODEs is obtained
using a computational process based on iterative power series
(IPS) method combined with shooting iteration approach.
)e following are some key characteristics of various physical
constraints on various flow variables in the problem:

(i) When the magnetic parameter, M, increases, the x–
and y–direction velocities, f′(η) and g′(η), de-
creases. But the rising values of magnetic parameter
improve the temperature and concentration
distribution.

(ii) )e x−direction velocity, f′(η), temperature, θ(η),
and concentration, ϕ(η), are reduced for larger
values of stretching ratio parameter, α, whereas for
the same values of α, the y−direction velocity,
g′(η), is enhanced.

(iii) )e exponential heat source parameter, Q, im-
proves the temperature profile. For the concen-
tration profile, we note a decrement initially in the
region close to the surface (0≤ η≤ 0.4) and an
increment after that.

(iv) Skin friction coefficient is increased by enhancing the
Casson parameter, β, and is decreased for magnetic
parameter, M, and stretching ratio parameter, α.

(v) )e strength of the Arrhenius activation energy, E,
intensifies the concentration field. Also, enhance-
ment in the thermal and concentration Biot
numbers augments the temperature and concen-
tration profiles.

(vi) )e heat and mass transfer rates are observed to
decline with an increment in the Arrhenius acti-
vation energy parameter, E.

(vii) )e mass transfer rate is enhanced and the heat
transfer rate decreased with an increase in the
exponential heat source parameter, Q.

)e results obtained indicate very clearly that thermal and
concentration profiles of Casson fluid are enhanced by an
exponential heat source and by Arrhenius activation energy.
Also, from these concluded points, we have achieved clear-cut
answers for the research questions raised in Section 1.
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