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In this research work, an effective Levenberg–Marquardt algorithm-based artificial neural network (LMA-BANN) model is
presented to find an accurate series solution for micropolar flow in a porous channel withmass injection (MPFPCMI).*e LMA is
one of the fastest backpropagation methods used for solving least-squares of nonlinear problems. We create a dataset to train, test,
and validate the LMA-BANN model regarding the solution obtained by optimal homotopy asymptotic (OHA) method. *e
proposed model is evaluated by conducting experiments on a dataset acquired from the OHA method. *e experimental results
are obtained by using mean square error (MSE) and absolute error (AE) metric functions. *e learning process of the adjustable
parameters is conducted with efficacy of the LMA-BANNmodel.*e performance of the developed LMA-BANN for the modelled
problem is confirmed by achieving the best promise numerical results of performance in the range of E-05 to E-08 and also
assessed by error histogram plot (EHP) and regression plot (RP) measures.

1. Introduction

A few years ago, Eringen [1, 2] firstly presented the idea of
micropolar fluids. *eories of non-Newtonian fluid are
developed to describe the behavior of the fluid that does not
obey Newton’s law, such as micropolar fluids. *is fluid
summarizes specific non-Newtonian behaviors, such as
liquid with polymer additives, liquid crystals, animal blood
particles, suspensions, and topographic features. *e gov-
erning equations of many physical problems are nonlinear in

nature and cannot be solved analytically; therefore, the
scientist developed some approximate and numerical
techniques, such as perturbation-based methods [3, 4],
homotopy perturbation-based methods [5–7], homotopy
analysis-based methods [8–10], collocation-based method
[11–18], and Adomian decomposition-based methods
[19, 20]. Among these methods, artificial intelligence (AI)-
based numerical methods have been broadly designed for
solving differential equations in several diverse applications
[21–23]. A few latest research works to solve the problems of
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nonlinear systems include the study introduced for local
fractional partial differential equations [24], fourth-order
nonlinear differential equations [25], Riccati equation
control of nonlinear uncertain systems [26], analytic solu-
tion of micropolar flow using the homotopy analysis method
[27], and pantograph delay differential equation [28].
However, these numerical-based methods need discretiza-
tion and improved linearization techniques, which only
allow computing the solution for certain standards variables
and required huge computer memory and time. For opti-
mizing the results, convergence and stability should be
considered to avoid divergence. *e perturbative methods
required the assumption of small parameters, which is itself
an issue. Besides, there is no study yet has been applied a fast
backpropagation method for finding an accurate series so-
lution to micropolar flow in a porous channel with mass
injection (MPFPCMI).

*erefore, the aim of this study is to develop a Lev-
enberg–Marquardt algorithm-based artificial neural net-
work (LMA-BANN) model to solve the nonlinear governing
equation of MPFPCMI. *e contributions and mechanisms
of the proposed work fall under following points:

(i) *e LMA-BANN model is developed to analyze
MPFPCMI for diverse scenarios on variants of
physical parameters.

(ii) *e dataset for LMA-BANN is obtained by varia-
tions of different parameters with the help of the
OHA method.

(iii) *e validity and accuracy of LMA-BANN are
confirmed by comparing its results at different cases
and scenarios. *e results of training, testing, and
validation are subjected by displaying the
MPFPCMI for diverse scenarios.

(iv) *e MSE metric function, EHP, and RP results are
obtained with the help of plots to show the per-
formance of LMA-BANN for finding an accurate
series solution of MPFPCMI successfully.

2. Problem Formulations

Consider the steady, incompressible, and laminar flow of
micropolar fluid along two-dimensional channel with po-
rous walls. *e mass fluid is introduced with speed q. *e
walls of the channel are adjusted at y�±h, where 2h is the
width of the channel [29, 30]. *e fundamental equations
governing are as follows [31, 32]:
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*e suitable conditions for physical boundaries are as
follows [26, 27]:

u
􏽥

(x, ±h) � 0,

v
􏽥
(x, ±h) � ±q,

N(x, ±h) � −su
􏽥

y|(x,±h).

(5)

*e symmetric flow (SF) is as follows [33]:
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(6)

Here, q greater than zero relates to suctions, q less than
zero corresponds to injections, and “s” is a finite-pa-
rameters worn to model the degree to which microele-
ments in the region of the channel walls are free to rotate,
e.g., as “s” is equal to zero is the case where microelements
near the boundary cannot turn around when s � 0.5, the
situation of microrotation is identical to the velocity of the
fluid at the end. Kelson et al. [29] developed the following
equations:
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*e Navier–Stokes equations (1)–(4) decrease via ap-
plying equations (7) and (8):
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Dimensionless parameters are established as follows:
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When viscosity parameter (Re) is more significant than
zero used for suction and less than for injection, the BCs are
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*e SF is as follows:

f
􏽥

(0) � 0,

f″
􏽥

(0) � 0,

f′
􏽥

(1) � 0,

f
􏽥

(1) � 1,

g
􏽥

(1) � s × f″
􏽥

(1).

(12)

By applying Kelson et al. [29], we put s � 0,

N1 � 1, N2 � 1, andN3 � 0.1:
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*e BCs are as follows:
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3. Numerical Experimental
Results with Discussion

A short overview of the scheme proposed for finding the
proposed LMA-BANN numerical experimentation conti-
nuity and momentum equations, i.e., 2–4, based on
MPFPCMI is accessible in this section. *e proposed
structure of stepwise flow is presented in Figure 1 by using
“nftool” of the NN tool-box existed in MATLAB. LMA-
BANN is implemented for two-layer structures that include
single input hidden and output of feed-forward network by
LMA-based backpropagation process. Figure 2 demon-
strates the structural design of ANN based on ten neuron
numbers with a data-sigmoid activation function.

A reference dataset for LMA-BANN for equations (14)
and (15) is created between intervals [0, 1] for 201 input
grids. Now, 80 percent of data are used for training as 10
percent is for testing and 10 percent is for validation in the
event of a 2-layer feed-forward ANN structure fitting tool
with LMA backpropagation to solve all problems of
MPFPCMI. Training data are used to establish the estimated
solution on the source of the MSE, validation data are used
to LMA-BANN, and even as test data are used to assess the
truthful input performance.

Figures 3 and 4 show the effects of LMA-BANN per-
formance represented by error histograms and fitting of
solutions for two cases of the MPFPCMI scenario, while the
regression tests are shown in Figure 5 for two cases of the
MPFPCMI scenario. Furthermore, the MSE, number
epochs, and other convergence parameters for training,
validation, and testing data are tabulated in Tables 1 and 2,
for two cases of theMPFPCMI scenario. Also, in Figures 3(a)
and 3(c) of the MPFPCMI scenario, the convergence of MSE
for the train, validation, and test process is provided for the
two cases of the MPFPCMI. *e best network performance
for different scenarios is 9.889E− 13 at 110 epochs and
9.889E− 13 at 110 epochs. *e gradient and step-size Mu of
backpropagation nearly [9.8879×10−08 and 9.8879×10−08]
and [10−11, 10−11] are as shown in Figures 3(b) and 3(d). *e
results indicate the exact and convergent output for each
case of the LMA-BANN.

*e result obtained by LMA-BANN is achieved with the
numerical outcome of the OHA method for two cases
scenario, and the outcomes are shown in Figures 4(b) and
4(d) with the input points between {0–1} and step-size 1/100.
*e considerable error attained for training, testing, and
validation statistics by planned ANN-LMM is less than
0.9×10−06 and −0.9×10−06 for the two cases of the scheme
design. For each input stage, the error dynamics are further
evaluated by error histograms, and results are given in
Figures 4(a) and 4(c) for two cases of the MPFPCMI sce-
nario. *e error with 20-bin is nearly −1.4E− 08 and
−1.4E− 08 for scenarios of MPFPCMI.

*e outcomes for solving the LMA-BANN for different
scenarios are shown in Tables 1 and 2, respectively. *e
output of LMA-BANN is about 10−13 to 10−12 and 10−10 to
10−11 for scenarios of MPFPCMI. *e reliable output of
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LMA-BANN for explaining MPFPCMI is illustrated in these
results. *e results of LMA-BANN for the velocity and the
profiles for the scenarios are therefore calculated. *e ex-
perimental results of LMA-BANN are obtained for the
velocity profiles f(η), f′(η) , andg(η) of the adopted sce-
narios. *e outcomes of f(η), f′(η), andg(η) profiles are
shown in Figures 6–8 of the three scenarios of the
MPFPCMI. Increasing the value of Re increases the velocity
in x-direction and mass injection. *e order to access the
correctness gauges, the outcomes of LMA-BANN matched

with the OHA method solutions in situations, and absolute
errors (AEs) with references are calculated, and results are
displayed in Figures 6(b), 7(b), and 8(b) for the three sce-
narios of the MPFPCMI. *e AE is about 10−05 to 10−04,
10−06 to 10−07, 10−04 to 10−07, 10−05 to 10−04, 10 −05 to 10−06,
10 −06 to 10−08, 10 −06 to 10−04, 10 −05 to 10−06, and 10−05 to
10−06 for Re� 1, Re� 6, and Re� 20 and Re� 1, Re� 10, and
Re� 20 of the scenarios. All these numerical and also
graphical figures validated the reliable, convergent, and
effective relationship of the LMA-BANN computing

Input
Hidden Layer Output Layer

Output

2
210

1

Results

Regression study
Neural network backpropagation with LMP

Neuron models integrated to develop the proposed network

Error Histograms
State transition analysis
Absolute error analysis
Mean square error based fitness

Analysis of AssesmentsMethodology

Mass injection to Micro-polar
flow in a porous channel.

Problem Definition Problem Formulation
1 2

With BC,s

g″ + f″ − 2g − 0.1Re (fg ′ − f ′g) = 0.
2f iv − g″ − Re (ff‴ − f ′f″) = 0.

3 4

5

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0.2
0

0 10.80.6

Proposed: Re = 1
Proposed: Re = 10

Proposed: Re = 20
Numerical

0.4

w

b

w

b

f (0) = 0, f″ (0) = 0, f ′ (1) = 0, f (1) = 1.
g (1) = 0, g (0) = 0.

Figure 1: Process workflow of proposed LMA-BANN for MPFPCMI.

Input
Hidden Layer Output Layer

Output

2
2

++
ww

bb

10
1

Figure 2: Neural network model architecture.

4 Complexity



approach for solving the variants of MPFPCMI. In
Figure 7(a), the special effects of the Reynolds numbers on
the profile of the velocity index are presented. For the ve-
locity index f(η), the Reynolds numbers increase with
increasing the velocity index f(η) of the injection case. *e
direct effect of the Reynolds number on the rotation profile
of the fluid is presented in Figure 8(a). By increasing the
Reynolds number, the rotational profile index of the fluid
flow reduces up to η � 0.6, and then the rotation profile
increases with the increase in the Reynolds number.

Increasing the Reynolds number with a minimum rotation
occurred does not make it move away from the origin of the
channel.

According to the results in Table 1, we can see that the
model achieves the values 2.07665E− 12, 4.16509E− 9, and
2.3595E− 10 of the MSE on the test data for cases 1, 2, and 3,
when the number of epochs are 121, 214, and 223, re-
spectively. We notice that all these values of the MSE are too
low, confirming the effectiveness of the model. However, the
lowest value is obtained for case 1 at the smallest value of
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Figure 3: *e performance and MSE outcomes of LMA-BANN in two cases of the MPFPCMI scenario.

Complexity 5



-2
.8

e-
06

-2
.5

e-
06

-2
.3

e-
06

-2
e-

06
-1

.8
e-

06
-1

.5
e-

06
-1

.3
e-

06
-1

e-
06

Errors = Targets - Outputs

0

5

10

15

In
sta

nc
es

20

25

30

Error Histogram with 20 Bins

-7
.7

e-
07

-5
.2

e-
07

-2
.7

e-
07

-1
.4

e-
08

2.
38

e-
07

4.
9e

-0
7

7.
42

e-
07

9.
94

e-
07

1.
25

e-
06

1.
5e

-0
6

1.
75

e-
06

2e
-0

6
Training
Validation

Test
Zero Error

(a)

Input
-5

×10
-6

0

Er
ro

r

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

O
ut

pu
t a

nd
 T

ar
ge

t

0.8

1

1.2
Function Fit for Output Element 1

Targets-Outputs

Training Targets
Training Outputs
Validation Targets
Validation Outputs

Test Targets
Test Outputs
Errors
Fit

(b)

-2
.8

e-
06

-2
.5

e-
06

-2
.3

e-
06

-2
e-

06
-1

.8
e-

06
-1

.5
e-

06
-1

.3
e-

06
-1

e-
06

0

5

10

15

In
st

an
ce

s

20

25

30

Error Histogram with 20 Bins

-7
.7

e-
07

-5
.2

e-
07

-2
.7

e-
07

-1
.4

e-
08

2.
38

e-
07

4.
9e

-0
7

7.
42

e-
07

9.
94

e-
07

1.
25

e-
06

1.
5e

-0
6

1.
75

e-
06

2e
-0

6

Errors = Targets - Outputs

Training
Validation

Test
Zero Error

(c)

Input
-5

×10
-6

0

Er
ro

r

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

O
ut

pu
t a

nd
 T

ar
ge

t

0.8

1

1.2
Function Fit for Output Element 1

Targets-Outputs

Training Targets
Training Outputs
Validation Targets
Validation Outputs

Test Targets
Test Outputs
Errors
Fit

(d)

Figure 4: Outcomes of error histograms and fitting graphs of proposed LMA-BANN in two cases of the MPFPCMI scenario.
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Figure 5: Continued.

Complexity 7



epoch’s number. In addition, from the results in Table 2, it
obvious that the model gets the values 1.08132E− 9,
4.7336E− 10, and 8.78423E− 11 for the test data at epoch’s
number 92, 329, and 177 and through the settings of case 1,
case 2, and case 3. *e lowest value is obtained for case 3 at

epoch’s number 177, which is also an acceptable number of
epochs. *is also confirms the efficiency of the LMA-BANN
model. Finally, from Figures 6(b)–8(b), we can see that
lowest values of error plot are for Re� 10 for all scenarios,
which means that this value is suitable for Re parameter.

Table 1: Data of LMA-BANN for scenario 1 of the MPFPCMI.

Case
MSE

Performance Gradient Mu Epoch
Training Validation Testing

1 4.77038E− 13 1.07665E− 12 2.07665E− 12 4.77E− 13 9.83E− 08 1.00E− 11 121
2 3.31283E− 11 1.53447E− 10 4.16509E− 9 3.31E− 11 9.96E− 08 1.00E− 09 214
3 7.61638E− 12 1.95429E− 9 2.3595E− 10 7.57E− 12 9.84E− 08 1.00E− 10 123

Table 2: Data of LMA-BANN for scenario 2 of the MPFPCMI.

Case
MSE

Performance Gradient Mu Epoch
Training Validation Testing

1 5.40353E− 10 1.0355E− 9 1.08132E− 9 5.40E− 10 9.95E− 08 1.00E− 09 92
2 3.93472E− 10 7.23124E− 10 4.7336E− 10 3.93E− 10 1.00E− 07 1.00E− 08 329
3 4.45013E− 11 5.86838E− 11 8.78423E− 11 4.45E− 11 9.90E− 08 1.00E− 09 177

1

0.8

0.6

0.4

0.2

0

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 1
.6

e−
08

10.80.60.4
Target

Training: R=1

0.20

1

0.8

0.6

0.4

0.2

0

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 7
.6

e−
08

10.80.60.4
Target

Validation: R=1

0.20

1

0.8

0.6

0.4

0.2

0

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 4
.4

e−
08

10.80.60.4
Target

All: R=1

0.20

1

0.8

0.6

0.4

0.2

0

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 1
.5

e−
07

10.80.60.4
Target

Test: R=1

0.20

Data
Fit
Y = T

Data
Fit
Y = T

Data
Fit
Y = T

Data
Fit
Y = T

(b)

Figure 5: Regression plot of LMA-BANN for two cases of the MPFPCMI scenario.
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Figure 6: Evaluation of proposed LMA-BANNwith the numerical reference results for theMPFPCMI scenario 1: (a) outcomes for different
value of Re in f; (b) error plot of Re in f.
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4. Conclusion

*e LMA-BANN is used as an artificial intelligence-based
integrated method to find an accurate series solution for the
MPFPCMI. *e partial differential equations (PDEs) system
of the MPFPCMI is converted to the order differential
equations (ODEs) system by using the ability of similarity
variables. *e OHA method is used for producing the
dataset of the MPFPCMI. Different measurable quantity of a
set of metrics is utilized for evaluating the developed model.
For training the model, a percentage equals to 80% of the
data used, and a percentage of 10% from the remaining is
used for testing, as well as the last 10% of the reference data is
applied for validating the LMA-BANN model. *e near
values of both planned and reference outcomes matching of
level between 10−05 to 10−07 confirm the rightness of so-
lution, and supposed feature is additional authentic via
numerical and graphical design of for the convergence of
MSE, AE, error histogram plot, and regression plot mea-
sures. After this assurance, the results are demonstrated for
the rotating and velocity profile when there are different
values of Reynolds number and viscosity parameter (Re).
From the numerical results of the problem, we get that
increasing the value of Re decreases the velocity in x-di-
rection and mass injection. Moreover, the experimental
results confirmed the effectiveness of the LMA-BANN
model for accurate analysis ofMPFPCMI. In future work, we
plan to apply the designed model for finding a solution to
another nonlinear system with a large dataset and with
different percentages of testing for more analyzing and
investigating.

Abbreviations

􏽥Β: Magnetic field (NmA− 1)

C: Fluid concentration
cp: Specific heat (J/kgK)

β: Non-Newtonian parameter
􏽥Ε: Electric field intensity (NC− 1)

Jw: Mass flux
α1, α2, β1, β2, β3: Material constants
A1, A2, A3: Kinematic tensors
k: *ermal conductivity (Wm− 1K− 1)

M: Magnetic parameter
ne: Number density of electron
O: Origin
P: Fluid pressure (Pa)

Pr: Prandtl number
Qw: Heat flux (Wm− 2)

qr: Radioactive heat flux (J)

Re: Viscosity parameter
S: Cauchy stress tensor
te: Flow time (s)

T: Fluid temperature (K)

u, v, w: Velocities components (ms− 1)

x, y, z: Coordinates.

Greek Letters

α: *ermal diffusivity (m2s− 1)

κ⌢: Vertex viscosity (mPa)

μ: Dynamic viscosity (mPa)

υ: Kinematic coefficient of viscosity
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Figure 8: Evaluation of proposed LMA-BANNwith the numerical reference results for theMPFPCMI scenario 3: (a) outcomes for different
value of Re in f; (b) error plot of Re in velocity f.
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ρf: Base fluid density (Kgm− 3)

ρb: Density of the particles (Kgm− 3).
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