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In industrial steam systems, the process requires a specific pressure, and the maximum permissible operating pressure is different.
If the inlet steam pressure to the steam consuming equipment exceeds the operating pressure, it may cause hazards.*erefore, the
more precise control of the boiler pressure is important. Since we are dealing with a nonlinear, time-varying, and multivariable
system, the control method must be designed to handle this system well. Most of the methods proposed so far are either not
physically feasible or the system has considered very simple. *erefore, in this paper, while modeling the boiler and its pressure
relations more precisely, we will introduce a recurrent type-2 fuzzy RBFN-based model reference adaptive control system with
various uncertainties so that the uncertainty and inaccuracy of the model can be compensated.*e experimental results prove the
efficiency of the proposed method in boiler control.

1. Introduction

*e chemical industries consume a great deal of energy to
accomplish many tasks, including the process and supply of
heat energy needed to heat materials. Current energy sources
in the world mainly include fossil fuels, water and wind, and
solar and nuclear energy. Of these, fossil fuels are used more
often than any other source to supply energy carriers.
Usually, in the chemical industry, carriers are electricity and
steam. *e best way to use fossil fuel energy to generate
electricity and steam is to burn it [1]. In the burning process,
the internal energy is released as heat and transferred to the
environment in the form of radiation and displacement.
Boilers and gas turbines are equipment commonly used to
generate steam and electricity by burning fossil fuels. *e
boiler is a nonlinear, multivariable, and time-varying system
and therefore requires an advanced control method [2].

Various articles have been presented in the field of thermal
management in industries [3–5]. Here are some of the latest
ones. In [6], a method for measuring the water level of the
boiler is provided. *e control of the boiler drum level is
investigated using a feedback method. A laboratory-scale
steam boiler, a small version of the power plant boiler, is
intended for research in this article. In [7], fuzzy control was
used to control the boiler with sugarcane fuel. *is article
uses a tool to find the dynamics of plant and set up control
loops. In [8], a fractional order PID controller is introduced
to study the temperature and pressure effects. In this paper,
the AT89C55-based boiler water supply control system is
designed and a simple fractional order PID algorithm is
suggested. Also, the control of boiler water temperature and
pressure simulation analysis has been performed. In [9], the
integration of two-state model predictive control algorithms
(OPM, optimal control predictive model) and generalized-
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predictive control (GPC) to fit a self-control system to an
advanced cylindrical boiler dynamics O is performed with
nonminimal phase behavior.

Not much has been done about controlling the boiler
reference model. Perhaps, this is due to the over-dependence
of the method on the boiler mathematical model, and since
the boiler system is highly nonlinear and time varying, model-
based control may not be applicable in practice. However,
some of the work done in this area is discussed below. In [10],
the controller design for a boiler system with uncertainty is
presented. To achieve this goal, a controller is designed for the
class of multi-input nonlinear systems that correspond to the
boiler equations. Computational intelligence is increasingly
being developed [11–15]. Neural network-based control
systems [16–20], fuzzy system [21–23], and fuzzy neural
networks [24–27] have shown good performance. *e fol-
lowing discusses some methods of boiler control based on
computational intelligence. In [28], neural network-based
predictive control is used to control carbon dioxide emissions
from a large industrial boiler. In [29], fuzzy control is used to
regulate the oxygen content of a boiler in the sugarcane in-
dustry. It has been shown in this study that fuzzy control leads
to a decrease in metadata and a simultaneous increase in
system response. In [30], a hierarchical fuzzy system is used to
control a power boiler. It is acknowledged in the article that
the proportional-integrator controller alone is not well re-
sponsive due to its complex, nonlinear, and inertial boiler
nature and should therefore use with an intelligent control
system. Very rare work on the neural network composition
and model reference control method for boiler control is
presented, which will be discussed below. In [31], the neural
controller is presented. It is hard to obtain proper proficiency
for the combustion controller of chain boilers due to the high
latency, different quality of coal and load. A neural identi-
fication approach for time delay in nonlinear system is
presented. Deficiencies [32] can be attributed to the lack of
parametric and nonparametric uncertainty. In [33], a neural
network radial basis function is used to model the boiler
dyamics, and then, it is used in a model reference method. In
other words, in this paper, the model reference block is a
neural network model and it is a PID controller. *e major
drawback of [33] is the use of PID in the boiler system because
the boiler is a nonlinear and delayed system and the PID does
not provide a good response. Multivariable control means
simultaneous control of parameters by considering their
interaction [34, 35]. Due to the complexity of simultaneously
controlling all parameters, unfortunately, in most articles, the
parameters are controlled individually. Certainly, in a mul-
tivariable system such as a boiler, it is better to control all the
parameters at the same time, considering their effect on each
other. So, the innovations of this article are

(1) Accurate modeling of an industrial and practical
boiler with all the limitations and uncertainties

(2) Present recurrent type-2 fuzzy neural network in
model reference control of a boiler for the first
time

(3) Consider the interaction of variables with each other
and use multivariable control

In this paper, first, the nonlinear equations of a real
boiler are extracted, and then, the linear state space model is
calculated to obtain the reference model. In the following,
the multivariable control system of the model reference
based on the proposed recurrent type-2 fuzzy RBFN is
presented, and then, the rules of updating the neural net-
work are presented. Finally, by simulating a real power plant
boiler, the proposed control method is evaluated.

2. Mathematical Modeling of the Boiler System

*enonlinear dynamic of boiler-turbine-generator provided
by Bell and Astrom is used. Since this model is extracted
from the data of a real system in Sweden, this model has been
used in most research projects since 1987 [36]. As shown in
Figure 1, y1 is the steam pressure of the drum in kilograms
per square centimeter (kg/cm2), y2 is the electrical output
power in megawatts (MW), and y3 is the drum water level in
terms of meter (m) *e output variables of this system are
multivariable. Also, the flow rate of the input fuel, the u2 flow
rate of the boiler output steam and the turbine inlet, and the
u3 flow rate of the water entering the boiler are the input
variables. So, we have a multivariable system of three inputs
and three outputs. Table 1 shows the parametric values of the
system.

*e state-of-the-art form of this multivariable system
with a power of 160MW is as follows:

_x1 � −0.0018u2x
9/8
1 + 0.9u1 − 0.15u3,

_x2 �
0.73u2 − 0.16( 􏼁x

9/8
1 − x2

10
,

_x3 �
141u3 − 1.1u2 − 0.19( 􏼁x1􏼂 􏼃

85
,

y1 � x1,

y2 � x2,

y3 � 0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁.

(1)

In the above system, x1 is the steam pressure of the
drum, x2 is the power output, x3 is the steam density inside
the drum in terms of kg/m3, u1 is the amount of flow input
fuel, u2 is the amount of steam discharge applied to the
turbine from the boiler, and u3 is the flow of water entering
the drum. Also, acs and qe are the rate of steam quality and
evaporation (kg/s) and are calculated by the following
equations. It should be noted that y3 is the water level change
of the drum:

acs �
−25.6 + 0.8x1( 􏼁 1 − 0.001538x3( 􏼁

1.0394 − 0.0012340x1( 􏼁x3
,

qe � x1 0.854u4 − 0.147( 􏼁 + 45.59u1 − 2.514u3 − 2.096.

(2)

To design a model reference control system, one must
extract a linear model of the system that is easily controllable
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and design a controller for it. In this case, since the behavior
of the linear model is similar to the main nonlinear model,
the main nonlinear model can also be controlled by careful
control of the linear model.

3. Linearization of the Nonlinear Model of
the Boiler

Boiler-turbine-generator system is one of the nonlinear and
multivariable models. In this dissertation, the nonlinear
model is linearized as
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(3)

*e general form of nonlinear systems is _x � f(x, u),
which can be written as

dx1

dt
� f1 x1, x2, . . . , xn, u1, u2, . . . , um( 􏼁,

dx2

dt
� f2 x1, x2, . . . , xn, u1, u2, . . . , um( 􏼁,

⋮

dxn

dt
� fn x1, x2, . . . , xn, u1, u2, . . . , um( 􏼁.

(4)
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So, regardless of the nonlinear terms, we will have
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We also have
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because x0 is a fixed number. Assume
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By ignoring higher-order sentences to achieve linear
approximation and writing in the form of state space,

Figure 1: A power plant boiler in Iran.

Table 1: System parameter values.

Nominal power 160MW
Rate of fuel flow 14 kg/sec
Rate of vapor flow 140 kg/sec
Inlet temperature 3°C
Steam pressure 140 kg/cm2

Steam mass 2000 kg
Steam temperature 535°C
Drama size 40m3

Water mass 40000 kg
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d(Δx)

dt
� AΔx + BΔu. (11)

Similarly, the output of the nonlinear system model is as
follows:

y1 � h1 x1, x2, . . . , xn, u1, u2, . . . , um( 􏼁,
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⋮

yn � hn x1, x2, . . . , xn, u1, u2, . . . , um( 􏼁.

(12)

In other words,

y � h(x, u). (13)

*e expansion of the Taylor series is again used as
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Now, we can write the general vector symbol of the
nonlinear system and the space model mode of the linear
system as

_x � f(x, u),

y � h(x, u),
(18)

and linear form is

_x � Ax + Bu,

y � Cx + Du ,
(19)

where the linear matrix elements are as follows:
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To implement the above linearization theory on the
boiler system, the following is done:
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Matrix B drives are also calculated as follows:
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*e following are also used to determine the drives of
matrices C and D:
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zacs

zx1
+ 0.05

zqe

zx1
,

(23)
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where

zacs

zx1
x
0
, u

0
􏼐 􏼑 �

x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑 0.8 − 0.00123404x

0
3􏼐 􏼑−􏽨 􏽩

x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑􏼐 􏼑

2 −
1 − 0.001538x

0
3􏼐 􏼑 0.8x

0
1 − 25.6􏼐 􏼑 −0.00123404x

0
3􏼐 􏼑

x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑􏼐 􏼑

2 ,

zqe

zx1
x
0
, u

0
􏼐 􏼑 � 0.854u

0
2 − 0.147,

C32 �
zh3

zx2
x
0
, u

0
􏼐 􏼑 �

z

zx2
0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁( 􏼁 x0 ,u0( ) � 0,

C33 �
zh3

zx3
x
0
, u

0
􏼐 􏼑 �

z

zx3
0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁( 􏼁 x0 ,u0( ) � 0.0065365 + 5

zacs

zx3
,

(24)

where

zacs

zx3
�

x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑 0.00123404x

0
1 + 0.039372􏼐 􏼑􏽨 􏽩

x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑􏼐 􏼑

2 — 1 − 0.001538x03􏼐 􏼑 0.8x01 − 25.6􏼐 􏼑 −0.00123404x01􏼐 􏼑

· x
0
3 1.0394 − 0.00123404x

0
1􏼐 􏼑􏼐 􏼑

2
,

D11 �
zh1

zu1
x
0
, u

0
􏼐 􏼑 �

z

zu1
x1( 􏼁 x0 ,u0( ) � 0,

D12 �
zh1

zu2
x
0
, u

0
􏼐 􏼑 �

z

zu2
x1( 􏼁 x0 ,u0( ) � 0,

D13 �
zh1

zu3
x
0
, u

0
􏼐 􏼑 �

z

zu3
x1( 􏼁 x0 ,u0( ) � 0,

D21 �
zh2

zu1
x
0
, u

0
􏼐 􏼑 �

z

zu1
x2( 􏼁 x0 ,u0( ) � 0,

D22 �
zh2

zu2
x
0
, u

0
􏼐 􏼑 �

z

zu2
x2( 􏼁 x0 ,u0( ) � 0,

D23 �
zh2

zu3
x
0
, u

0
􏼐 􏼑 �

z

zu3
x2( 􏼁 x0 ,u0( ) � 0,

D31 �
zh3

zu1
x
0
, u

0
􏼐 􏼑

�
z

zu1
0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁( 􏼁 x0 ,u0( ) � 0.2279,

D32 �
zh3

zu2
x
0
, u

0
􏼐 􏼑

�
z

zu1
0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁( 􏼁 x0 ,u0( ) � 0.00427x

0
1,

D33 �
zh3

zu3
x
0
, u

0
􏼐 􏼑

�
z

zu3
0.05 0.13073x3 + 100acs + qe − 67.975( 􏼁( 􏼁 x0 ,u0( ) � −0.014.

(25)
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*erefore, four matrices A, B, C, and D are obtained as
follows.

A �

−0.00203u
0
2 x

0
1􏼐 􏼑

1/8
0 0

0.08212u
0
2 − 0.018􏼐 􏼑 x

0
1􏼐 􏼑

1/8
−0.1 0

0.19 − 1.1u
0
2􏼐 􏼑

85
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0.9 −0.0018 x
0
1􏼐 􏼑

9/8
−0.15

0 0.073 x
0
1􏼐 􏼑

9/8
0

0 −
1.1
85

x
0
1

141
85

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

1 0 0

0 1 0

5
zacs

zx1
+ 0.05

zqe

zx1
0 0.0065365 + 5

zacs

zx3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

0 0 0

0 0 0

0.2279 0.00427x
0
1 −0.014

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

*erefore, a linear state space form can be written for the
boiler:

_x � Ax + Bu,

y � Cx + Du .
(27)

*e variables y, x, and u are the output, mode, and input
of the boiler system at the operating points, respectively.

4. Neural Model Reference Adaptive Control

Here, the controller structure is described (Figure 2). In the
previous section, the linear model of the boiler was obtained,
and it is used in the model reference block.

In Figure 2, the control system calculates the difference
between the boiler output and the reference model. *is
error signal is then used to train the recurrent type-2 fuzzy
radial basis function neural network (RT2FRBFN) [37]. We
train the neural network so that the error is less and less, and
as a result, the boiler output follows the output of the ref-
erence model. In this case, the system is controlled com-
paratively. Lyapunov’s sustainability rule design approach is
one of the most important methods of adaptive control
[38–40]. *is method tries to find the Lyapunov function
and a matching mechanism so that the error between the
system and the model is zero. *is method also ensures the

stability of the control parameters. *e model reference is
usually defined as a first-order system as follows:

dym

dt
� −amym + bmuc, (28)

where ym are the output of the model reference and uc are
the input of the reference model. Suppose the system to be
controlled is as follows:

dy

dt
� −ay + bu, (29)

where y is the output of the system and u is its input. *e
control signal with the adjustable parameters θ1 and θ2 is
selected as follows:

u � θ1uc − θ2y. (30)

*e error is calculated as follows:

e � y − ym. (31)

Since the above error must be zero, the error changes
must be negative. So,

_e � _y − _ym

� −ay + bu—am
y

m + bmuc

� −ay + bu + amym − bmuc.

(32)

So, we will have

_e � −ay + b θ1uc − θ2y( 􏼁 + amym − bmuc

� −ay − bθ2y + amym − bθ1 − bm( 􏼁uc

� −ame − bθ2 + a − am( 􏼁y + bθ1 − bm( 􏼁uc.

(33)

To find the law of conformity, consider Lyapunov’s
function as follows:

V e, θ1, θ2( 􏼁 �
1
2

e
2

+
1
bc

bθ2 + a − am( 􏼁
2

+
1

bc
bθ1 − bm( 􏼁

2
􏼢 􏼣.

(34)

Based on the above Lyapunov function, we will have

_V � e
de

dt
+
1
c

bθ2 + a − am( 􏼁
dθ2
dt

+
1
c

bθ1 − bm( 􏼁
dθ1
dt

� −ame
2

+
1
c

bθ2 + a − am( 􏼁
dθ2
dt

− cye􏼠 􏼡

+
1
c

bθ1 − bm( 􏼁
dθ1
dt

+ cuce􏼠 􏼡.

(35)

In order for the above statement to be negative, we must
have

dθ1
dt

� −cuce, (36)

dθ2
dt

� cye, (37)

where c is the learning rate. So,
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_V � −ame
2
. (38)

*erefore, the system will be stable and the change of
parameters will be in order to reduce the error. *e adap-
tation law for training the neural network uses equations
(36) and (37).

5. Experimental Results

In this section, the performance of the control method of the
proposed model reference for boiler control is examined.
*e industrial boiler is shown in Figure 3. To test the control
system, assume that the boiler output steam pressure in the
first 100 seconds is 150 kg/cm2, from 200 seconds to 200
seconds, it is 300 kg/cm2, and, finally, from 200 to
300 seconds per second, it is a value of 150 kg/cm2.

Figure 4 illustrates the performance of the proposed
neural controller.

In the following, the control of the electric power output
as the second component of the boiler output that must be
controlled is presented. Assume that, according to the above
steam pressure control scenario, the output power is to be
50 kW in the first 100 seconds, 200 kW from 100 to 100
seconds, and, finally, 300 kW from 200 seconds to 300
seconds. Figure 5 illustrates the designed control perfor-
mance in electric power control. *ree perceptron neural
networks have been used, and the number of hidden layer is
16, 14, and 17, respectively.

*e following examines the control of the water level of
the drum as the third component of the boiler output that
should be controlled. Assume that, according to the boiler
steam pressure control scenario, the water level of the drum
is supposed to be 400 cm in the first 100 seconds, 200 cm

r1(t)
r2(t)
r3(t)

uc1(t)
uc2(t)
uc3(t)

ym1(t)
ym2(t)
ym3(t)

y1(t)

y2(t)

y3(t)

u1(t)

u2(t)

u3(t)

e1(t)

e2(t)

e3(t)

Model
Reference

Boiler

RT2FRBFN

RT2FRBFN

RT2FRBFN

+
–

+

–

+

–

Figure 2: *e suggested control structure.

Figure 3: *e industrial boiler.
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Figure 4: Control of the boiler steam pressure model reference.
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from 100 to 100 s in the second, and 300 to 400 cm in the
second from 200 to 300 s. Figure 6 presents control per-
formance in drum water level control.

*e above results are related to an ideal boiler with
constant coefficients. In other words, the coefficients and
parameters of the boiler are considered unchanged with
time; as in practice, some coefficients may change for various
reasons, such as wear and tear over time, high heat, hu-
midity, and environmental conditions. In this case, a proper
controller must be robust to parametric variations. To check
the performance of the proposed model reference control
system in the presence of parametric changes, assume that
the coefficients of each sentence in the equations of the boiler
state space change by ±10% and their nominal value ran-
domly. In this case, the performance of the proposed ref-
erence control systemmodel in boiler steam pressure control
is shown in Figure 7.

Figure 8 shows the electrical power control outputs,
despite the uncertain parameter.

In the following, the indefinite effect of the parameter in
controlling the water level of the drum is examined. Figure 9
illustrates the control function of the reference water level
model of the drum despite the uncertain parameter.

However, there is another uncertainty that stems from
a lack of accurate modeling of the system. It is very im-
portant to examine this category of indeterminacy, es-
pecially in the model reference control method, because
the basis of the model reference method is model based
and is highly dependent on the exact model. To add a
nonparametric indeterminacy, since x1 is present in most
of the equations of the boiler system equation, so we
convert the terms from x9/8

1 to x9/8
1 + 0.2x1/8

1 . It should be
noted that any coefficient and power can be considered
and the control system evaluated. Also, with an indefinite
magnification, it is observed that the control system has
gradually become weaker, and from now on, the system
cannot be controlled with a large indeterminacy. *ere-
fore, in this category, any indefinite type can be tested with
trial and error. Figure 10 shows the performance of the
proposed model reference control system in the boiler
output steam pressure in the presence of nonparametric
uncertainty.

Figure 11 shows the performance of the model reference
control system to control the electric power in the presence
of an indefinite nonparametric presence.
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Figure 5: Control of the power reference model.
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parameter of ±10%.
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Figure 12 shows the performance of the model reference
control system to control the water level of the drum in the
presence of nonparametric uncertainty.

As shown in Figure 4 to 12, the use of recurrent type-2
fuzzy RBFN in themodel reference control method leads to a
significant reduction in fluctuations and control ripples.
Also, when the reference signal has a sudden change, the
recurrent type-2 fuzzy RBFN immediately directs the output
of the system in the direction of the change and there is no
time delay. For further comparison, Table 2 shows the
performance of the proposed recurrent type-2 fuzzy neural
network (RT2FRBFN) with two methods including normal
(without feedback) type-2 fuzzy neural network (T2FRBFN)
and type-1 fuzzy neural network (T1FRBFN).

Table 2 shows significant results. First, the number of
fuzzy rules in RT2FRBFN is much less than the other two
methods, especially, compared with the type-1 fuzzy neural
network. Secondly, with an uncertainty increase, the number
of fuzzy rules for our proposed model has only increased by
1, but in other methods, more than 1 rule has been added.
*e RMSE index also confirms the superiority of our pro-
posed model. However, the training time in our proposed
model is longer than the model without feedback, which is
normal and related to feedback calculations.
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Figure 9: Control of the model reference of the drum water level in the presence of an uncertain parameter of ±10%.
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presence of nonparametric uncertainty.
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nonparametric uncertainty.
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in the presence of nonparametric uncertainty.
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6. Conclusion

Today, boilers are widely used in the industry. Precise
control and mastery of the boilers and their output pa-
rameters are very much needed. Since the nature of thermal
systems in terms of control is complex systems, therefore, no
control method can be used. In this paper, in order to
control the boiler, the method of adaptive model reference
based on recurrent type-2 fuzzy RBFN was proposed. *e
proposed method is resistant to parametric and nonpara-
metric changes, and since the control system depends on the
control system, so with the model changes, the control
system also changes. Two indefinite parametric and non-
parametric models were considered for the system. In the
indefinite parameter, it was assumed that the parameters in
the system model would change, and in the nonparametric
indefiniteness, terms were added to the system model. *e
results showed that, with about ±10% increase in the amount
of both indeterminate models, the model reference control
system provided good capability. However, with the further
increase of uncertainties (for example, about ±20%), the
model reference control system does not function properly.
Comparing the conventional model reference method and
the recurrent type-2 fuzzy RBFN-based model reference
method, it has been observed that the use of recurrent type-2
fuzzy RBFN leads to a reduction in control ripples as well as
a reduction in the time delay of the control system.
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*e industrial boiler data used to support the findings of this
study are available from the corresponding author upon
request.
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