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We consider a type of fuzzy viscoelastic integro-differential model in this paper. With the aid of some appropriate hypotheses, a
unified method and the multiplier technique are implemented to get priori estimates precisely without constructing any auxiliary
function. By establishing the estimation of energy function, we derive the stability result of the global solution, and we calculate the
estimations of energy attenuation in exponential and polynomial forms, respectively.

1. Introduction

In this work, the following fuzzy viscoelastic integro-dif-
ferential model is considered in a real Hilbert space
X =L*(Q):

t

U, — Au+ j gt = OAu (Al —|ul"u + 112u =0,
0

u(x,t) =0,
u(x, t)|t=0 = U (x),

U (%, )| = uy (%), x€Q,

where Q is an open bounded neighbourhood in RN with
N=>3, 0<y< (2/N —-2). Meanwhile, I': =0Q is smooth
enough. The memory kernel g(t) and the fuzzy number 5
are both positive, and g(t) is locally and absolutely
continuous.

As far as the viscoelastic equation is concerned, pro-
found research works have been made in many literature

(x,t) € T x[0, 00),

x e Q,t e (0,00),

(1)

studies [1-7]. For example, the authors in [3] proved a local
existence theorem for the next equation:

Uy, — Au + J;g(t = OAu () =ul"u, (2)

which is subject to some proper initial data and conditions.
In [4], an appropriate Lyapunov-type function was
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introduced by Nasser-eddine Tatar to prove the decay of
solutions for the wave equation:

Uy, — Auy, — Au+ J;h(t—()Au(()dfz 0. (3)

The key contribution of ref. [6] is that the authors
demonstrated the decay of the energy function for the next
wave equation:

= Kyt [ gt~ aivIaGIV(OIAC + b0 () =0,
@

and some Lyapunov functions were exploited felicitously to
deduct more general energy decay results. In [8], a nonlinear
hereditary memory evolution equation was considered, and
several stability results were given just by means of a simple
auxiliary function. The authors in [9] attained analytical and
approximate solutions for the cubic Boussinesq equations
and modified ones with the aid of the He-Laplace method.
Besides, fuzzy synchronization problems have captured the
intensive interests of scholars (see, e.g., [10, 11]), where an
adaptive fuzzy backstepping control method was developed
in ref. [11] for a sort of uncertain fractional-order nonlinear
system.

Generally speaking, in most of the existing works, the
presence of auxiliary functions is inevitable, which is
exploited to seek the attenuation result of the solution.
Accordingly, in the discussion of energy attenuation of
solutions for the fuzzy viscoelastic integro-differential
model, how to reduce the construction of auxiliary functions
has become a problem worth discussing. Taking the integro-
differential abstract equation into account led to fruitful
excellent results (see, e.g., [12-14]). In [12], Boussouira et al.
proposed a unified method creatively. They derived the
decay results for second-order integro-differential equations
in the following abstract form:

u" + Au - J; Bt = O)Au({)dl = VF (). (5)

Also, they put forward an exquisite unified method.
With the help of the multiplier method, they accurately
described the energy attenuation of the solution of the
abstract equation mentioned above.

Inspired by these works, system (1) involved in this paper
is an extension of the equation appeared in [12], in which a
term with fuzzy coefficient is creatively added. The decay
rates in exponential and polynomial forms, respectively, are
straightly derived through the unified method. The specific
arrangement is made as follows: firstly, in Section 2, several
preliminary materials and essential assumptions are listed,
and secondly, Section 3 mainly concentrates on the global
solution and the estimation of energy attenuation, which are
derived by letting t — 00, and the priori estimates are
deduced without constructing any auxiliary function. Such
outcomes reflect the reliability and effectiveness of the
unified method in practice.
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2. Preliminaries

Throughout this work, the inner product {:,-) of X will be
utilized in its usual sense, and the norm is defined as follows:

lull = \/JQIu(x)Izdx, Yu e X. (6)

Note that
u(x,t) =0, (x,t) el x[0,00), (7)
Taking the operator
-A: D(-A) — X, (®)

into consideration, we can verify that
D(-A) = H*(Q)nH} (Q) € X,

1 9)
D(V) = Hy (),

where D (—A) is a dense domain. It is evident that, for some
positive constant M, the linear operator —A is self-adjoint on
the real Hilbert space L*(Q) and satisfies an inequality
similar to the Poincaré inequality [15]:

(=Au,uy =(Vu, Vuy = [ Vul* > Mjul’. (10)

What is more, we find that —A is accretive due to
{(=Au,u) >0.

Now, we give the following assumptions and preliminary
materials about the memory kernel g(#).

(H,):asfaras g: [0,+00) — [0, +00) is concerned, for
some 2< p<oo and k>0, the function g fulfills the fol-
lowing conditions:

g(0)>0,

J:og(()df< L (11)

! (p+D)/p

g <-kg

Remark 1. If p = co, then g' < — kg yields g (t) < Ce™ ¥ with
t >0, which indicates that g (¢) will decay exponentially.
If 2< p<oo, then g' < — kgP*V'P yields

gg P <k (12)
ie.,
(_ng 1—(1/p)+1)’ :(_Pg*(”l’))’ < —k (13)

Next, based on the aforementioned results, the following
expression can be obtained by integrating from 0 to t:

_pg—(l/p)(t) +pg7(l/p)(0)£ — kt, (14)

namely,

1
(1) < .
1= arpr g P ) (19
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This means that g(t) will decay polynomially. Simul-
taneously, by generalized integral property, if p9> 1, it may
imply that g° € L' (0, c0).

Lemma 1. Suppose that

1 2
F(u)=—J |u|Y+2dx-’7—J uPdx.  (16)
Y Q 2 J)a

+2

The function is Gateaux differentiable for every
u € D(V),VF (u) = |[ul’u — n*u, and

|F (u)| < C||Vu]) 22, (17)

Indeed, it is straightforward to see that
F(0) =0,VF(0) = 0. For any pair u,v € D(V), there exists
c(u) >0 such that

IDF ) 0] =ITF G, )] = | O ] = (1l - o uva]

<CIVul"™Iv] + 112J'Qlu1f|dst <CIVull"™ vl + 7*lullliv]

(18)

2
<ClIVul" vl + ”—M IVullivi < c )lvl,

\/_

in which ¢(u) = C|[Vu["* + (¥ M)||Vul.

IVE (u) - VE ()|

-l
-,

[ nzj - vPdE
Q

For all u,v € D (V) with ||Vu], |[Vv| < R, where R > 0, it is
easily seen that u —v € D(V). Combining the mean value
formula applied in [12] and (10), one can verify that

[l s - nu—|v'v+ ;12v|2df = JQ|(|u|yu ") = (- V)|2df

(19)

y 2
SC<J (IVuI2+|Vv|2)dE>j |VM—VV|2df+]1—J Vuu — Vv|*dé
Q Q Mo

< CpllVu — V.

That is, some positive constant Cp = [C(JQ(IVu|2+
IVv[*)dE)Y + (72/M)] 1" can be found to satisfy

IVF (1) = VF (v)|| < Cgll Ve = V. (20)

By letting w(u) =u"?, it is easy to see that
y: [0,00) — [0, 00) is continuous and strictly increasing.
Now, we suppose that [{VF (u), u)| <C|Vul| 22 that is,

V@) = (ul” =Yy = [ (1@ = (@ dg

<C|Vull 2 ||Vu||2 = C|Vul ()’/2)+2’
(21)

For every u € D(V),

|F (u)| < jl [{VF (tu), u|dt < |Vu (2] jl (tIVu ()l " edt
0 0
<ClIVu(8)|*"?,

(22)
which yields

Yu € D(V).

2

1
—J |u|y+2dx—’7—J ul2dx
Q 2 Ja

< [ Vu (1)),
y + 2

(23)

Remark 2. For any 0<T <co, by taking the measurable
function u: (0, T) — X into consideration, it is known that
both [lull; = JO lu()lldt and [lull,, = esssup,cjorllu(t)] are
finite.
Forany f € L'(0,T) and u € L' (0, T; X), we denote the
convolution as follows:
t
Fut) = j Flt-su(s)ds, 0<t<T.  (24)
0
Aiming to facilitate the subsequent narration, we pro-
ceed to present the next useful lemmas.

Lemma 2. Consider a nonnegative nonincreasing function & (t)
with 0 <t < 0o. If there exists a negative constant T' such that

JOO € (s)ds<T% (1), (25)

t

then



4
&)< 0D, vi>T. (26)
Proof. Let
Fx) = D J &(s)ds, Vx>0, (27)
Then its derivative is calculated as
e(x/T) o
£ = (J % (s)ds - T%(x)). (28)

Considering that _[fo & (s)ds<T&(t), we have
f(x)<f(0) = J & (s)ds<T&(0). (29)
0
This implies that

ro € (s)ds < T& (0)e D). (30)

X

On the other hand, since & is nonnegative and
nonincreasing,

JOO & (s)ds > JM 1. &()ds>TE(x+T). (31

Combining (30) with (31), we get
E(x+T)<&0)e D, (32)

Taking t =x+ 7T, by x>0, formula (26) is obtained
naturally. O

Lemma 3. Let &(t) be a nonnegative and nonincreasing
function on [0, 00). If

j:) E1 (1)dt < CE™ (0)E (T), VT >T,, (33)

where m,C, and T, are all positive constants. Then, for ar-
bitrary t € [0, 00), it holds that

(C+T,)(1+ m))(”m)

(34)
mt+C+T,

%(t)s%(o)<

The proof of Lemma 3 is analogous to that of Lemma 2,
and hence, it is omitted here.

Let u; € X (i = 0,1). Now, let us discuss the problem as
follows:
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t
Uy — Au+ Jog(t—()Au(()d(—lulyu+n2u =0, 0<t<oo,

u(0) = uy,
ul, (0) = u.
(35)

For any 0<t <T, (T >0), with the aid of the description
in [12], a mild solution of (35) can be described as follows:

() = S () + JO S(O)u,dl + JO 1
£ $(t=O(Iu (O - (e,

(36)

where
t-¢
1*S(t—()=J S(n)dr, (<t<T+¢(, (37)
0

and {S(t)} is the resolvent for the corresponding linear
problem of (35).

As far as the weak solution is concerned, u is a function
in C'([0,T]; X)NC([0,T]; D(V)) and satisfies

d t
3 e (0, ) + Vi, Vy —C I g(t = Qvu(Hdl, vv)
0

=(lul" = 1" )u, vy,
(38)

Vv € D(V), {u,(t),v) € C'([0,T]) and 0<t<T.

Local existence, uniqueness, and regularity for (1) are
naturally guaranteed by the result in [12].

Considering a mild solution u of (1) (¢t € [0,T]), and
using u, as a multiplier, the multiplier method can be used to
get the energy of u as follows:

#,() - ;(nutuz +(<1 . jogmdc)nwnz

+ [ gt - 01w - Vu<t>||2dc) (39)

2

1
——j |u|y+2dx+’ij ufdx.
y+2Ja 2 Ja

Next, it is necessary to discuss the decay of &, (t).
Consider that u is a strong solution of problem (1) on an
interval [0, T]. By taking derivative of (39), we obtain
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d _ g( ) ! d 2
8L = G + VitV - E v —(jog(ocic)dtnwn
t t
#3 [ g (€= 0NTu - VuOPA - [ g0 = 0D = Va0, Tu, 03 -l = s
t d t
= a4 (V) ~ L - (j g(()dc)d—nwquj g (6~ OIVu(t) - Vu (O
0 t 2 Jo
Jt N do 2 y_ 2 (40)
¢, 9= OVu(O)dE, Vu) + jog«*)dc vl =l = Jus )

g()

=ty ) + = Du, ) +< Jo gt = 0Au(Q)dd uy = (lul” = 1 u, u,y — == Vul®

1, 2
+EJ g (t = OIVu(t) - Vu()IPd

= 2y +

In view of the facts that g<0 and g’ >0, it follows from
these assumptions that

d g( )
a%u (t) = —Z=|Vul?®
(41)

+% J g (t = OlIVu(t) - Vu()l*d¢ <o,
0

that is, &, (t) is decreasing. One can draw a similar con-
clusion for mild solutions. In a word, if the initial conditions
are small sufficiently, the solution of model (1) exists
globally.

Theorem 1. Assume that H, holds. For any u, € D(V) and
u, € X, if there is a positive scalar p, such that

[Vutol| + et | < o (42)

t
jo g (¢~ OV (0) - Vu (D)L,

- g(o ¢

1
(02 ] + IVu@l?, (45

IVu () < M. (46)

Furthermore, u is a strong solution of (1), provided that
uy, € D(-A) and u, € D(V).

Proof. Assume that a maximal definition interval for the
mild solution of problem (1) is [0,T), and

£=(1- jgog(()d()/Z. According to Lemma 1, one gets
(1(y+ 2))f0|u0|"+2dx| < ||Vu0||2+(y/2). Besides, equation
(39) implies

1 1
5,0 =5 (el #vl”) = [ ool
then there is a unique mild solution u for problem (1). Besides, (47)
for arbitrary t € [0, 00), 7 24
€,(1)>0, (43) +7J0|u0| "
If |Vago | 72 < (£12), we get
&, (t)<&,0)<ps, (44)
1 p+2 7]2 2 y+2 ’72 2
mjo|u0| dx—;_[0|“o| dx|< 2J0|u0| dx +?l.[0|uol dx’
(48)
24(y/2) 712 2 ¢ 2 112 R4 2
<[Vu ™+ Vel <SVao [T+ SV < SV
where ?Z.E-I'— (2 M). . Consequently, &, (0)> (1/2) (u > + (1= )[[Vu|*) 20.
Thus, it is naturally acquired that Put p, = (22) 172+ @), Suppose that u, € D(V) and
b J Juo | dx + T j o> — 7||w I (49 e
yealal ° : [l + ol <p0 (50



Utilizing the amplification method, i.e.,

1
8.0 <3 ([ +1vuol” ) < (] + 176

) z 1+(4/y) (51)
<l sl < =(5)
we derive that (2&,(0)/2) " < (¢/2) and
1 4 1
&, 5||ut||2 + VUl 25||ut||2
_(*® 2
+ w+;—M}IIW(ﬂIIZ
1- [ g(0d
> Shl? +Muwmn2, vt € [0,T).
(52)

So, the energy &, is well bounded and the solution u
exists globally. The proof of the aforementioned formula is
based on the idea of reductio ad absurdum, and the detailed
process is omitted here. O

S
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3. Main Results

In this sequel, without invoking any auxiliary function, we
put forward the main result as follows.

Theorem 2. Assume that (H,) holds. Given S>S, > 0. For
each pair (uy,u;) € D(V) x X, if llu |l + [Vuyll < py with pq
being a positive constant, then there is some positive constant
C ensuring that the mild solution of model (1) satisfies the next

property:
j %11;—(1/19) (t)dt < Cgillp) (O)gu (S) (53)
S

Specifically,

&,(1)<&, (0, p=oo,

(54)

p+1\
%’u(t)ggu(o)<—p+Ct) , 2<p<oo.

Proof. By Theorem 1, we know that the solution of (1) is
global. Moreover, it is easy to check that the solution is
strong if u, € D(-A) and u; € D (V). Aiming to show (53),
we begin to focus on the formula as follows

[Camwac=2 [ st wulfacd [ 80P 0(1- [ gac jiwurar
S u _2 u t 2 )5 u Og

1
+_
2

1 T
_ J g(l/P)(t)
y+2Js "

Next, our task is introducing an approach for controlling
every term of the right hand of equation (55) via multiplier
methods. At the beginning, we propose the following
lemma. d

jT &7 (1) j gt = OIVu() = Vu(p)didr (55)
N 0

2 T
j |u|y+2dxdt+'7—j gf}’l’)(t)j 2 dxd.
Q 2 Js Q

Lemma 4. Suppose that ¢(t): R, — R, is a multiplier,
fulfilling that ¢' (t) < 0. Then for any positive constant T with
T>S8=>S,, there exists C >0 such that

1 T 1 T t
3| o@lulfare [ (p(t)(l - jog<odc)||\7u(t>||2dt

T 2
_ ! j go(t)J |u|y+2dxdt+’ij
S Q 2

y+2

Proof. Firstly, an inner product of model (1) with the
multiplication of u and ¢(t) should be taken. Next,

(56)
T

(p(t)J lu*dxdt <Co (0)8, (S).
S Q

integrating it on the closed interval [S,T], the following
description is now obtained:

T t T
L 0 (£)Cuty — Dut + JO 9(t - OAu(QdS u(D))dt = L pOlul” - 1 ) (8), u (D) dt. (57)
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Integrating by parts, we get

T
j: 0 (£) (s (D)t = LT (p(t)%(ut,u(t»dt - L (p(t)%(ut,ut>dt

dr

T, .d T d
~[oOu@)] - [ o' O Gau®dit - [ o)Ll e

T T T )
J o () {-Au,u(t))dt = J @ (1){Vu, Vuydt = J o (O Vul“dt,
S s S

T t
js 9 (1) jo 9t~ OAu(AL u(t)ydr
T t
- L 9 ()¢ jo gt — OVu(OAL Vu (B)dr

T t
- L 0 (1) jo gt — ) (Vu(0) — Vu(£)dl, Vu (1) dt,

T t
- L, o (0) jo (¢ — OCVu(t)), Vu (1)) dd

T t
== IS @ ()< Jog(t = O (Vu () = Vu(1))dd, Vu(t))dt

T t ,
_J S"(t)(J g(()d()lquH dt,
s 0
T

t
j so(t)(l—j g(()dc)nwa)uzdt
S 0

T 2 T t
- js o ()]t + js 9 (1) jo 9t = O (Vu(0) = Vu(£)d(, Vu(£)ydt

T T
# [0 Ou@ydes [ o@Qul -1 Ju 0.0t - (o0, (0D,

Applying Schwartz inequality Ve, >0, we have

T t
js o (BIVu (D) jog(r OV () - Vu (D)1dedt

T t
- L o e OIVu @)l jog(t ~OIVu(Q) - Vu(t)ldeds

&

Taking the integrability of g° and the assumption that

g < —kg®V'? into consideration, with the help  have

1 g 2d 1 T t d 2d
5 JS pOIVu @)l e JS @(t)(Jog(t —OIVu(Q) = Vu @) ¢> .

(58)

(61)

(62)

(63)

of Holder inequality and the description of &, (t), we
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2

T t
[ <p<t>(j g(t—c>||w<<“)—w<t)||dz) dr
S 0
2
j <t)(j g (¢~ g TP (¢~ Vi (() - Vu(t)udc) dr
sj so(t)(j P”P(()d()(j PP (4 0)|Vu(() - Vu ()] dé)dt

(] a0 @a) [0 [ g - v - vuorar o

IN

(], o 0u) IZ <P<t><J; gt~ DIV () - Vu(t)||2d()dt
(J:o Pl (()d() j: 0(0)&, (t)dt

2
S__
k
_ 27 o _

([T g 0 Yo ), (1) - 7,9)

<205, O( [ 9" @)

Combining (62) and (63), we get

JZ ‘P(t)|< J; gt =0 (Vu() - Vu()d(, Vu(t))‘dt

T t
= JS e OIVu D) JO g(t = OlVu(¢) - Vu()ldldt

T
<[ emmuor dt+k—<p<0)% ©([ g7 )
In view of (45), we have Thus, we obtain
1 s (2/M)E&,(t)
Au®I” <&, (), || O <—(5IVu(
2 “ ( ) 1- [T gQdl
1||Vu(t)|| 28, (1) Therefore, the following result is arrived:
2 _ ac
1- 2 g0

J |, (0)]dt + = J lu(2)*dt

Iy (8, u (2| =|j u, (Du (1)di| <

1 . IME, (1) (2/M)
< —|lu(t = <1 = &, (t).
Shor + 2 < T g(()d{> ()

T
By ¢, (t) <0 and &, (t) < &, (S), we get - Js ¢, (O)dt = ¢ (S) — 9 (T) < () <9 (0).

(64)

(65)

(67)

(68)

(69)
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Therefore,

T T
L 0, (B)u, (D, u(B)yde < - L 00 (O, (1), 1 (D)t

(2/M) T
<1+ 9, ()&, (1)dt
( = (:)d()J (D&, ()

(2/M) ( T )
<&, (S| 1+ —| ¢, (t)dt
< <>< = (()d() | o0

(2/M)
<&, (90| 1+
! ( - fy <6>d6>

(70)

By the condition imposed on the proof of Theorem 1, Considering that both ¢(¢) and & (t) are decreasing,
from (67), we deduce

IV (£)] SM’ (71) 2
~[p®)<u (), u )]s <29 (0)( 1+ €, (S).
one has L) w05 <29 < - jo (()d(>
! y 2 g 2+H(y/2) (73)
Js 9 ((|u| K )u(t),u(t))dt = Js DIV ol at Based on equation (61), it is trivially shown that
T t
< <p(t><1 -, g(()dc)||w(t)u2dt.
(72)
T t 5
| ¢<t>(1 -| g(()d(>||Vu(t)|| at
S 0
T 2 T t
= [ o@lulPar+ [ o] ate- 0@ - Vue)al, Vue)dr
S S 0
T T 5 .
+ JS @' () Cup, u(t)ydt + L o (O(lul” = 1 Y (), u(£)ydt = [ (£) Cuy (), (1)) ]
(74)

T
< pr(t)uutuzdt%j o (OIVu O dt+k—q)(0)‘é” (S)(j g ()

(2/M) 1 (T t N
+%u(s>go<0)<1 e (C)dc> 4Lso(t)(l—jog@)dc)uw(t)u dt

(2/M)
2000)( 1+ %S
+2¢( )( = (()d(> (),
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which means that

3 T t
: js go(t)(l - Jog(f)dC>IIVu(t)||2dt

Complexity

T
s[sso(t)uutnzdu%j o (OIVu (D) dt+— o, 6)([ g7 0) (75)
(2/M)
38, (S)e(0)| 1+
+3%,(S)p( )< e orrd}

For simplicity, selecting &, = 1 — jgo g()d¢, we get

T t
j so(t)(l—j g(()dc)uwa)uzdr
S 0

<4J 9 (O] dt+4<I°

gP VP (Od¢
k(1 - [ g(Od?)

(2/M)
3 1+————] |18,(S)e(0)
' ( +1_.[0 g(()d5>> !

M [ g )dg + 12k(2 + M(1 - [ g(0)dT))

(76)

T 4
<t [ glufdrs
A T 2
A¢, L o (O dt + C, 8, ()9 (0),

where C; = 4 and

aM [ g PP (0d] + 12k(2+ M(1 - [ g(Dd?))
MK(1- [ g(O)

) =
(77)

are both positive.
Next, multiplying both sides of the original equation (1)
by ¢ (t) at the same time, taking _[0 gt =0 () —u()d{

T t
L ¢ (£)<uygs JO gt =) u () —u)ddHdt

T t
ZJ utt¢(t)(J g(t—C)(u(()—u(t))dC)dt
S 0

Mk(1 - [ g(DdC)

&, (S)¢(0)

as a multiplier, and integrating on the closed interval [S, T,
the following equation can be obtained:

T t
[ o - aut | gt - 00O (1l - )uto),

[ gte- 0@ - =o
(78)

Taking integration by parts, one obtains

t T T t !
- (utfp(t) jo gt D)) - u(t))dc)|s - js ", [gv(t) jo gt O () - u(t))d(] dr

t T T t
=¢(t)<upj 90t =0 () - u(e)dd)] —j ¢ (t)<ut(t>,j 90t = O () —u(e)dlyde
0 S S 0

T t , T 2 t
- [ o0 @, [ o' - 0@ -uendddr+ [ p]ul (j g(()dc)dt,
S 0 S 0

(79)
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T t t
L o (D~ Au+ j g(t— Db ()L, jo 90t O () - u(H)d0ydt

0

g(t—()(u(()—u(t))d@dt—j so(t)<j g(t—cwumdcj 90t~ OO - u()ddydt

0

T
=j o (D(Vu,
- <p(t)Vu(t)( G- - u(t))dc)dt

- L ¢ (t)(jo g(t = O (Vu(Q) - Vu(t) + w(t»dc)(jo gt -0 (Vu()) - w(t))dc)dt

T t T t 2 (80)
=j (p(t)w(ﬂ(j g(t—o(u(o—u(t»dz)dt—j <p(t)<j g(t—C)(Vu(C)—Vu(t))dC) dr
S 0 S 0
T t t
—j so(t)(j g(t—OVu(t))dc)(j g(t—cxw(o—w(t»d{)dt
S 0 0
T t t
- | so(t)(l -| g(()dc)m(t),j gt - O)(Vu(Q) - Vu(£)dOdr
S 0 0
T t 2
[ o] gt-0mu0- it
S 0
Substituting (79) and (80) into (78) leads to the
following:
T t
o
t T T t
=—[<p(t><ut,j g(t—()(u(()—u(t))do] +j ¢ (t)<ut<t),j 90t~ QW) - u()dlydt
0 S S 0
T t T t 2
N L o (O, (1), jog’u—mu(o u(0)dlydt + js jog(t—owu(c)—wu» dr (81)
T t t
" L sv(t)(—l " jo g(()d(><Vu(t), jo 9(t = O (Vu(Q) - Vu(t)d{dr
T ) t
+ [ oOQul = Juon | glt- 00O - u)dpdr
Now, let us consider the term JST¢(t)||ut||2dt and
evaluate it. First of all, according to (10), we have
t 1 ) t 2
<ut,j 90t~ O (0 - u()dly si[uutll +<j g(r—onu(c)—ua)ndc> ]
0 0
1 2
<8, (t)+—<j g(t = OIVu(() - Vu(t)lldé”)
(82)
1 t t
8,05 (jo gt = DIVu () - Vu(t)udc)(jo g(()dc)
- 1+ Mgu (o).

T M
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Consequently, Using the Cauchy inequality, we have
! 1+ M T ¢
—[(p(ﬂ(btt J (t =) (u(Q) —u()d) (S0 ,(S). L ¢ () Cuy (1), Jog (t = Q) (u(¢) —u(t)d{>ds
(83) 8, T
As a result, <? J. (P(t)"“t” dt +T L 2 (85)

T t
i , , _ _ dod t . 2
Jo# @ [ g -0w® - uorpn -(t)(jolg (t—()l-ll(u(c’)—u(t)lld() dt.

1+M
= M

M
J (9" ()&, (1)dt < +M (S)J (—¢' (1))dt Recall that |g' ({)| = —g' ({), which is deduced from

g' () <0. Hence,

< g, ()9 0).

(84)

t 2 t 2
(joig’u—m-||(u<o—u<t>||dc) =(jo( |g’(t—o|)-( |g’(t—<)|||(u(:)—u(t)||)dc)

0

—jog’(o)dc(J g (t = 0| 1w () —u @) d()
=(g(0)—g(t))(j (~g' (t-0)- ||(u(c)—u(t)||2dc>
’ (86)

Sg(O)(JO(—g' (t=0)- I - u(t)llzd()

g]&)) j (=g’ (¢t = 0) - () —u(®IPd¢

28.(1)g(0)
o)

Then, (85) is transformed into the following form:

T t
JS ¢ () <u, (1), JO g (t =) Q) ~u(t)ddHdt

T 1 (T £ 2
<5 L ¢ (6)u, | dt 35 js go(t)(jolg (t - 0| Iu() —u(t)ndc) dt

290 (8L
G dt+28 | e B (87)

9 ()| dt + (-%. ()l

S M

T 2. g(0)9(0)
S (p(t)”ut” dt + Mo,

J
J JT 1 2g(0)<P(0)
J

&,(8).
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In view of the assumption of g (¢) and Jgo g({)d{<1,the
estimates of (64) can be arrived as follows:

T t t
j go(t)(—l + j0g<¢)dc)< Jog(t _ OV (0) - Vu(B)dS, Vu(e)ydt

S

T t
< L ¢(t)\<[ 9(t = O (Vu(Q) - Vu(t)dl, w(r»ldt (88)

T
s%j o (OIVu (D) dt+k—q>(0)% (S)(j 9P ().

Observing that |F (u)] <C|IVu ()|, by combining Therefore,
44 45), in th 20,
(44) and (45), we can attain that V£>0 H(lu(f)ly - qz)u(t)” =‘K|M(f)|y - nz)u(t) —(lu(O)ly - ’12)”(0)"
WED  _ 2(E0)

[Vu(t)] < = < = <C|Vu(t) - Vo[ = CVu ().
V=13 90de 1= [T 90 (50)
(89)
2p, \/E So, combining (62) with (63) and taking a part of (78)
T \7 into consideration, we obtain
1- [, g()d

T t
L o (lul” -7 Ju(®), jo g(t =) () - u(r)dddt
T t
_CJ <p<t><(uw(t>u,j gt =0 w(Q) - u(t)dddt
S 0

T t
= Cj 90(t)(IIVu(t)II<J gt=O () - u(t))d()dt
S 0

j NN (||Vu(t>||<jog<t—o<u<c)—u(t))dc)dt

j (\Jo () ||Vu(t)||)( v_\/"’(t jogu—onwo—Vu(t)udc>dt

(91)

IN

2

T C
<2 js PNVt + g O)F, (S)(j g™ ().

Since Igo g({)d{ < 1, it is natural to see that I:) g({)d{can  positiveness of J; g({)d(. Further, by a combination of
be regarded as a small number tending to 0. Now, we consider equations (63), (83), (84), (87), (88), and (91), the variant of (81)
the existence of such a ft, € (0,¢), which guarantees the  can be obtained, which satisfies the following estimation:

T t é\
L <p(t)<J0g(OdC —E)IIVut ()| dt

r 2
<e, [ oo (92)

2

g(0) 32M+1) 1 1.C -
+[M82+ M +k(2+s3+M53>J (O |@(0)E,(S).
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For any S, € (0, S], with the help of the fact g(0) > 0 and
the continuity of g, it can be acquired that

S S,
J g(()dfzj g(0)d¢>o. (93)
0 0

Choosmg a positive constant d; which is small enough so
that d; < Io g({)d{, and c0n51der1ng

[ g@a< [ g (94)
0 0
1)
;J o ()|Ju, ()|
1 (S T
< [ a@ac| el o
g(0) . 32M +1)

T
<e, L o (O Vu, (O] dt + [M T

T
A, L o (O] Vu, ®)dt + Corg (0), (S).

Thus, we can conclude that

r 2 T 2
[ ol @Fase, | p@lvum o0,

(97)
where ¢, = (2¢;/85), and
_2[g(0) 3eM+1) 1 1 c (p-1p
€ s [M63+ 2M +k<2+£3+Ms3>J (©dc].
(98)
Consequently,
T t
|. gv(t)<1 - g(()dC>IIVu(t)||2dt
(99)

T
<&Cy Js @ (O)IVu()]*dt + C,9 (0)E,, (S).
If & is small enough in the above formula, then

T t
L So(t)(l - JO g(()dC)IIVu(t)Ilzdt <C0(0)&,(9).
(100)

Alternatively, if C; is taken properly, the estimation can
be arrived as

T
JS o (Ou, (D' dt <C,p(0)F, (5. (101)

Considering the third term and the fourth one of (56), we
get

Complexity

we can check that

¢ 0, d; 0,
g -3 2 =2 95
Jo (©d¢ 2 <% 2 2 (95)
Now, for any S € [S,, T), we have
(96)

& Mey

2 00
+%<2+1+C_> j 0 g<P-1>’P(c)dc]go<o>%u<s>

T 1 ’72
—J (1) —J |u|y+2dx——j lul*dx )dt
s y+2Ja 2 Ja

T C (T
=¢ L; pOIVu ()" de < Js 9(0)
( I g(()dc”)uw(t)u dt

%j ¢(t>< jog(()dc)uwa)uzdtsc4so(0)%’u(s>.
(102)

By combining equations (100)-(102), it is shown that
(56) is true, which concludes the proof.

Next, it remains to complete the Proof of Theorem
2. O

Proof of Theorem 2. Let us consider the case where p equals
infinity firstly. For any ¢, if c represents any positive constant,
then by taking ¢ (t) = ¢ in (56), we can get the following
result:

1 (T 1 (T t
3 ) halPar 3 L(l - j0g<odc>||w(t)n2dt

2

" T 103
- J J |l 2dxdt + - J J |ul*dxdt (10
y+2JsJa 2 JsJa

<C%,(S).
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Again, g(t) < - (g' (t)/k) follows from g’ (t) < — kg (¢).
Invoking Lemma 3, one may deduce that

T t
; L (jo g(t = OIVu()) - Vu<t>||2dc)dt

<M L(j (= OIVu(l) - Vu(t)||2dc>dt

1 (T,
_EL &' (H)dt

1

k% (8.

(104)

Then, Jz %,Epﬂ/p)(t)dtSC%u (S) can be derived from
(55). This fact further explains the attenuation of &, (t)
according to a polynomial form.

T
| ate-01vu - vuora
T
= [ (vu@ - ur) " (g0

(1/p+1)
< “Z (Ve (Q) - Vu(t>||2)““’*”“’“)d(]

= !/ P+“(t>“ g P (= OIVu () - Vu(D)Pd
0

Hence,

T T
[ @ | gt - 0w - vutoPaga

g “ Z (g2 (£ = OIVu(Q) - vu(?) * 7P P

15

Secondly, it is valuable to consider the case of 2 < p < co.
Aiming to evaluate the last term of &, (t), we will put
forward the following lemmas. O

Lemma 5. For any 0<S<T and t>0, the following in-
equality holds:

jTei”’” (t)(f g(t=OlIvVu(Q) - Vu(t)llzd{>dt
S 0

T t (1/p+1)

< Ceel ™) (S)“ e (r)(] ||Vu<c>—w<t>||zdc)dr] :
S 0

(105)

Proof. Let
®, (1) = JO 1Vu(0) - Va()dC. (106)

In view of the assumption H, and the Holder inequality,
we get

—OIVu(©) - vu@?) " a

(p/p+1) (107)

] (p/p+1)

(p/p+1)
P (1o PV (t)(j P (- O)IVu(Q) - Vu(t)||2dc> dr
0

(p+1/p) (1/p+1) T 14(1/p) 5 (p/p+1)
(e B, (1)) JO g (t = OIVu(0) = Vu(t)lI*d¢ dt

T (p+1/p) (1/p+1) T ~T .
p+lip
(L PP (1), (t)dt) (L JO g
T (1/p+1) T
(p+1/p)
(L PP (1o, (t)dt) <L JO(

(plp+1)
HUP) (4 _ ) IVu (O) - Vu(t)llzd(dt>

-0

(p/p+1)
)IIVu(() Vu(t)llzd(dt)
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T (1/p+1) T
_ k—<P/P“><L PP (1), (t)dt) (L JO (=g’ (t = O)IVu(Q) - Vu(t)llzd(dt)

Complexity

(p/p+1)

T (1/p+1) T (p/p+1)
< k(P/P+1)<J 815P+1/P) (D, (t)dt) <_2 J 81; (t)dt)
N S

2

2

T (1/p+1)
_ C685/(p+1) (S)( Js 81517*1/17) (D, (t)dt) ,

where Cg = (k/2)” P/ ?*V_ This completes the proof. O

Lemma 6. Let

(0= [ ae-0Ivu@ - vu@ra, ve<o
(109)

Then, for 0<S<T, it holds that

jT &’ (t)(jt gt = OIvu(Q) - Vu<t>||2dc)dt
S 0

:| (2/p+2) ( 1 10)

T
<Ceb! ¥ (g “ £HCIP) (1)@, (1)dt
N

g(t

g(t-

where G, 2G,, IEO \/g (t — {)d{. Now,

|0, 027 <P, ()P, (113)

which follows from (112).

B —(p/p+1) T (1/p+1) -
) (_> <J e e, (t>df) (6,(8) — &, (1)) PV

(108)

k —(plp+1) / T o
< (—) (J 815,0+1/P) (1D, (t)dt) sl(lp/pﬂ) S)
S

The proof of Lemma 6 can be deduced similar to the one
of Lemma 5, and this process will not be stated here. Besides,
it is easy to see that @, (¢) is bounded.

Indeed, /g ({) € L' (0,00) can be ensured from p>2.
With the assistance of (45), we find

4%, (1)

Vu ()| € ——tnt—
[Vu @) < 1‘fo (Ol (111)
and
C)(IIVu(C)II +[Vu ()] ) ¢
O(&, (O +&,(1)dd
(112)

Lemma 7. For any S, € (0,00), if $>S,, then there is a
constant Cg € (0,00) such that

[ e a < e (9] @ 40, 0] 5P
N
(114)
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Proof. Given S € (S, T). By means of (39), we get

T
| s gar

! &P ()&, (1)dt

i}

T (Z/p 2 ! 2 ! 2 1 yi2 ’Iz 2
-| & (t)[ (lutu +<1—j0g<c>d(>uwn + [ gte-01vue - vut df)‘mjo'”' ax+ [ u dx]dt

L (" p LIS N ey ! 2 L (" 2
:—j £ (1) |u | dt+—J. £ (1) 1—J 9(0)d¢ |Ivul dt——J g (t)J jul"2dxdt
2 )s 2 )s 0 y+2Js Q

2 T T t
n (2/p) 2 1 (2/p) B 3 2
+ 5 JS &, (t)JQ|u| dxdt+2 Js &, (1) Jog(t OIVu () = Vu (t)|°dldt

A4+ IIT+1V +V.
(115)

. ‘ - I+11+1I1+1V <Ce?P (0)e, (S). (116)
Taking &, (t) as a multiplier and replacing the position

of ¢(t) in (56), we have Applying (110) and Young inequality, it is inferred that

T 2/ (p+2)
V<Cel P (s) [ J £ (1), (t)dt]
S

T 2/ (p+2) T 2/ (p+2)
< C,el! P2 (s) ( I ehHlp (t)dt) ( J 0, (t)dt)
S S

T (2/p+2) 2 (pt2)
<Cyell P2 (S)(L enreip) (t)dt) |o, ] (117)

T (2/(p+2). (p+2)/2) 2e.p+2 (-pl2) 2
<, J P (1) gy L (2e/p+2) (2 (5)) (p+2) Plo, (] & ¢ #*P
s (p/p+2)

T 2 2 p/2)
=£6J €SP (1) + —( /P 2)
N

2/p)

Combining (116) and (117), one gets

T T 2 2 (=p
J PP (1)dr < e J NI (1)dt + e, (S) MH@Z 0|27 + cel'? (0) (118)
s s (p/lp+2)
(2/ )
Let the positive number & be infinitely close to zero, and L (PP (1)dt < Cge, (S)(”CD2 (t)" b (Z/P) (0)).

Cy2max{C, ((2&/ (p +2)) "1 (p/ (p +2)))}. Then (119)
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As T tends to infinity, the limit result of long-time
memory is easily seen, and thus, (114) is true. O

Remark 3. With the aid of paper [12], it is trivial to show that
h /
JS 85{1’1—1)/17 (t)dt < CS' &, (S) [SIEI/P) (0) + "(D] (t)"((xl) p)].

(120)

The proof of (120) is entirely similar to that of (114) and
so it is omitted here. Now, let us turn back to complete the
verification of Theorem 2.

Continued Proof of Theorem 2. By equation (113), we
have

[ e <, ()2 00+ C2Pe, 027
s :

<Cye, (5)e*'P(0),
(121)

@, (1) = jo 1Vu(0) - Vu()I2d

scm(J:O & (Ol + 8, (t)) SC”(JO & (Al + O, t%, (0))

<C,%,(0),

where C, >t (1 + C,,)Cy,. That is, O (t)ll, <C,, &, (0).
The application of (120) and S> S, yields

J PP (1)dr < e, (9P (0). (124)

S
Thus, employing p > 2, we have
(So+C) (1 +(1/p)) p_ p+1\’
%”(t)sg“(o)[ (tIp) +Sy+C = &0 p+Ct)’
(125)

Besides, under the condition that p = co, equation (124)
turns into

JOO &, (t)dt <C,5 &, (S), (126)
S

which yields

&, (t) < %u(O)el*(”Cw’) =&, (0 (127)

This completes the proof.

4. Conclusion

Based on the proposed appropriate assumptions of the
convolution kernels along with the discussion about the
fuzzy number #, the exponential and polynomial aspects of
the energy decay rates for system (1) are estimated only
through the application of the multiplier method and the

Complexity

where Cy > Cg (1 + Cz(f/p)).
Taking (2/p) <1, T =S and T, = S, it is inferred from
(121) that

(Sy +C) (1 +(2/p))]#?

S <80 =g is, +C

, Vte[0,+00).

(122)

From the representation of (45), it is not difficult to
examine that for any t € [0, 00),

< cw( JO & (0 + IO %, (t)dt)

(123)

unified technique. In this process, the most valuable point is
that our research has avoided the construction of auxiliary
functions perfectly. The appearance of the term with fuzzy
coefficient makes the expression form of &, richer and it
leads to some difficulties in calculation. At the same time,
more efforts have been spent on discussing the inte-
gro-differential inequalities and the discussion is quite in-
teresting. Considering the case of 7 = 0, we can see that the
results coincide with that of reference [12]. In summary, the
result in this paper reveals the wide applicability of the
unified method, and further discussion for the blow-up
problems may be considered in the future.
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