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We consider a type of fuzzy viscoelastic integro-differential model in this paper. With the aid of some appropriate hypotheses, a
unified method and the multiplier technique are implemented to get priori estimates precisely without constructing any auxiliary
function. By establishing the estimation of energy function, we derive the stability result of the global solution, and we calculate the
estimations of energy attenuation in exponential and polynomial forms, respectively.

1. Introduction

In this work, the following fuzzy viscoelastic integro-dif-
ferential model is considered in a real Hilbert space
X � L2(Ω):

utt − Δu + 
t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
u + η2u � 0, x ∈ Ω, t ∈ (0,∞),

u(x, t) � 0, (x, t) ∈ Γ ×[0,∞),

u(x, t)|t�0 � u0(x),

ut(x, t)|t�0 � u1(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω is an open bounded neighbourhood in RN with
N≥ 3, 0< c≤ (2/N − 2). Meanwhile, Γ: � zΩ is smooth
enough. +e memory kernel g(t) and the fuzzy number η
are both positive, and g(t) is locally and absolutely
continuous.

As far as the viscoelastic equation is concerned, pro-
found research works have been made in many literature

studies [1–7]. For example, the authors in [3] proved a local
existence theorem for the next equation:

utt − Δu + 
t

0
g(t − ζ)Δu(ζ)dζ � |u|

c
u, (2)

which is subject to some proper initial data and conditions.
In [4], an appropriate Lyapunov-type function was
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introduced by Nasser-eddine Tatar to prove the decay of
solutions for the wave equation:

utt − Δutt − Δu + 
t

0
h(t − ζ)Δu(ζ)dζ � 0. (3)

+e key contribution of ref. [6] is that the authors
demonstrated the decay of the energy function for the next
wave equation:

utt − k0Δu + 
t

0
g(t − ζ)div[a(x)∇u(ζ)]dζ + b(x)h ut(  � 0,

(4)

and some Lyapunov functions were exploited felicitously to
deduct more general energy decay results. In [8], a nonlinear
hereditary memory evolution equation was considered, and
several stability results were given just by means of a simple
auxiliary function. +e authors in [9] attained analytical and
approximate solutions for the cubic Boussinesq equations
and modified ones with the aid of the He–Laplace method.
Besides, fuzzy synchronization problems have captured the
intensive interests of scholars (see, e.g., [10, 11]), where an
adaptive fuzzy backstepping control method was developed
in ref. [11] for a sort of uncertain fractional-order nonlinear
system.

Generally speaking, in most of the existing works, the
presence of auxiliary functions is inevitable, which is
exploited to seek the attenuation result of the solution.
Accordingly, in the discussion of energy attenuation of
solutions for the fuzzy viscoelastic integro-differential
model, how to reduce the construction of auxiliary functions
has become a problem worth discussing. Taking the integro-
differential abstract equation into account led to fruitful
excellent results (see, e.g., [12–14]). In [12], Boussouira et al.
proposed a unified method creatively. +ey derived the
decay results for second-order integro-differential equations
in the following abstract form:

u″ + Au − 
t

0
β(t − ζ)Au(ζ)dζ � ∇F(u). (5)

Also, they put forward an exquisite unified method.
With the help of the multiplier method, they accurately
described the energy attenuation of the solution of the
abstract equation mentioned above.

Inspired by these works, system (1) involved in this paper
is an extension of the equation appeared in [12], in which a
term with fuzzy coefficient is creatively added. +e decay
rates in exponential and polynomial forms, respectively, are
straightly derived through the unified method. +e specific
arrangement is made as follows: firstly, in Section 2, several
preliminary materials and essential assumptions are listed,
and secondly, Section 3 mainly concentrates on the global
solution and the estimation of energy attenuation, which are
derived by letting t⟶∞, and the priori estimates are
deduced without constructing any auxiliary function. Such
outcomes reflect the reliability and effectiveness of the
unified method in practice.

2. Preliminaries

+roughout this work, the inner product 〈·, ·〉 of X will be
utilized in its usual sense, and the norm is defined as follows:

‖u‖ �

�����������


Ω

|u(x)|
2dx



, ∀u ∈ X. (6)

Note that

u(x, t) � 0, (x, t) ∈ Γ ×[0,∞), (7)

Taking the operator

− Δ: D(− Δ)⟶ X, (8)

into consideration, we can verify that

D(− Δ) � H
2
(Ω)∩H

1
0(Ω) ⊂ X,

D(∇) � H
1
0(Ω),

(9)

where D(− Δ) is a dense domain. It is evident that, for some
positive constant M, the linear operator − Δ is self-adjoint on
the real Hilbert space L2(Ω) and satisfies an inequality
similar to the Poincaré inequality [15]:

〈− Δu, u〉 � 〈∇u,∇u〉 � ‖∇u‖
2 ≥M‖u‖

2
. (10)

What is more, we find that − Δ is accretive due to
〈− Δu, u〉≥ 0.

Now, we give the following assumptions and preliminary
materials about the memory kernel g(t).

(H1): as far as g: [0, +∞)⟶ [0, +∞) is concerned, for
some 2<p≤∞ and k> 0, the function g fulfills the fol-
lowing conditions:

g(0)> 0,


∞

0
g(ζ)dζ < 1,

g′ ≤ − kg
(p+1)/p

.

(11)

Remark 1. If p �∞, then g′ ≤ − kg yields g(t)≤Ce− kt with
t≥ 0, which indicates that g(t) will decay exponentially.

If 2<p<∞, then g′ ≤ − kg(p+1)/p yields

g′g− 1− (1/p) ≤ − k, (12)

i.e.,

− pg
− 1− (1/p)+1

 ′ � − pg
− (1/p)

 ′ ≤ − k. (13)

Next, based on the aforementioned results, the following
expression can be obtained by integrating from 0 to t:

− pg
− (1/p)

(t) + pg
− (1/p)

(0)≤ − kt, (14)

namely,

g(t)≤
1

(kt/p) + g
− (1/p)

(0) 
p. (15)
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+is means that g(t) will decay polynomially. Simul-
taneously, by generalized integral property, if pϑ> 1, it may
imply that gϑ ∈ L1(0,∞).

Lemma 1. Suppose that

F(u) �
1

c + 2

Ω

|u|
c+2dx −

η2

2

Ω

|u|
2dx. (16)

+e function is Gateaux differentiable for every
u ∈ D(∇),∇F(u) � |u|cu − η2u, and

|F(u)|≤C‖∇u‖
(c/2)+2

. (17)

Indeed, it is straightforward to see that
F(0) � 0,∇F(0) � 0. For any pair u, v ∈ D(∇), there exists
c(u)> 0 such that

|DF(u)(v)| � |〈∇F(u), v〉| � 
Ω
∇F(u)vdξ




� 
Ω

|u|
c

− η2 uvdξ




≤C‖∇u‖
c+1

‖v‖ + η2
Ω

|uv|dξ ≤C‖∇u‖
c+1

‖v‖ + η2‖u‖‖v‖

≤C‖∇u‖
c+1

‖v‖ +
η2
��
M

√ ‖∇u‖‖v‖≤ c(u)‖v‖,

(18)

in which c(u) � C‖∇u‖c+1 + (η2/
��
M

√
)‖∇u‖. For all u, v ∈ D(∇) with ‖∇u‖, ‖∇v‖≤R, where R> 0, it is

easily seen that u − v ∈ D(∇). Combining the mean value
formula applied in [12] and (10), one can verify that

‖∇F(u) − ∇F(v)‖
2

� 
Ω

|u|
c
u − η2u − |v|

c
v + η2v



2
dξ � 

Ω
|u|

c
u − |v|

c
v(  − η2(u − v)



2
dξ

� 
Ω

|u|
c
u − |v|

c
v



2dξ + η2

Ω
|u − v|

2dξ

≤C 
Ω

|∇u|
2

+|∇v|
2

 dξ 
c


Ω

|∇u − ∇v|
2dξ +

η2

M

Ω

|∇u − ∇v|
2dξ

≤C
2
R‖∇u − ∇v‖

2
.

(19)

+at is, some positive constant CR � [C(Ω(|∇u|2+

|∇v|2)dξ)c + (η2/M)](1/2) can be found to satisfy

‖∇F(u) − ∇F(v)‖≤CR‖∇u − ∇v‖. (20)

By letting ψ(u) � u(c/2), it is easy to see that
ψ: [0,∞)⟶ [0,∞) is continuous and strictly increasing.
Now, we suppose that |〈∇F(u), u〉|≤C‖∇u‖(c/2)+2, that is,

〈∇F(u), u〉 �〈 |u|
c

− η2 u, u〉 � 
Ω

|u(ξ)|
c

− η2 u(ξ)
2dξ

≤C‖∇u‖
(c/2)

‖∇u‖
2

� C‖∇u‖
(c/2)+2

, ∀u ∈ D(∇).
(21)

For every u ∈ D(∇),

|F(u)| ≤ 
1

0
|〈∇F(tu), u〉|dt≤ ‖∇u(t)‖

2

1

0
(t‖∇u(t)‖)

(c/2)
tdt

≤C‖∇u(t)‖
2+(c/2)

,

(22)
which yields

1
c + 2


Ω

|u|
c+2dx −

η2

2

Ω

|u|
2dx




≤ ‖∇u(t)‖

2+(c/2)
. (23)

Remark 2. For any 0<T≤∞, by taking the measurable
function u: (0, T)⟶ X into consideration, it is known that
both ‖u‖1 � 

T

0 ‖u(t)‖dt and ‖u‖∞ � esssupt∈[0,T]‖u(t)‖ are
finite.

For any f ∈ L1(0, T) and u ∈ L1(0, T; X), we denote the
convolution as follows:

f
∗
u(t) � 

t

0
f(t − s)u(s)ds, 0≤ t≤T. (24)

Aiming to facilitate the subsequent narration, we pro-
ceed to present the next useful lemmas.

Lemma 2. Consider a nonnegative nonincreasing functionE(t)

with 0≤ t<∞. If there exists a negative constant T such that


∞

t
E(s)ds≤TE(t), (25)

then
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E(t)≤E(0)e
1− (t/T)

, ∀t≥T. (26)

Proof. Let

f(x) � e
(x/T)


∞

x
E(s)ds, ∀x≥ 0. (27)

+en its derivative is calculated as

f′(x) �
e

(x/T)

T

∞

x
E(s)ds − TE(x) . (28)

Considering that 
∞
t
E(s)ds≤TE(t), we have

f(x)≤f(0) � 
∞

0
E(s)ds≤TE(0). (29)

+is implies that


∞

x
E(s)ds≤TE(0)e

− (x/T)
. (30)

On the other hand, since E is nonnegative and
nonincreasing,


∞

x
E(s)ds≥ 

x+T

x
1 · E(s)ds≥TE(x + T). (31)

Combining (30) with (31), we get

E(x + T)≤E(0)e
− (x/T)

. (32)

Taking t � x + T, by x≥ 0, formula (26) is obtained
naturally. □

Lemma 3. Let E(t) be a nonnegative and nonincreasing
function on [0,∞). If


∞

T
E

1+m
(t)dt≤CE

m
(0)E(T), ∀T≥T0, (33)

where m, C, and T0 are all positive constants. 8en, for ar-
bitrary t ∈ [0,∞), it holds that

E(t)≤E(0)
C + T0( (1 + m)

mt + C + T0
 

(1/m)

. (34)

+e proof of Lemma 3 is analogous to that of Lemma 2,
and hence, it is omitted here.

Let ui ∈ X(i � 0, 1). Now, let us discuss the problem as
follows:

utt − Δu + 
t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
u + η2u � 0, 0< t<∞,

u(0) � u0,

u|t(0) � u1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(35)

For any 0≤ t≤T, (T> 0), with the aid of the description
in [12], a mild solution of (35) can be described as follows:

u(t) � u0S(t) + 
t

0
S(ζ)u1dζ + 

t

0
1

∗ S(t − ζ) |u(ζ)|
c

− η2 u(ζ)dζ,

(36)

where

1∗S(t − ζ) � 
t− ζ

0
S(τ)dτ, ζ ≤ t≤T + ζ, (37)

and S(t){ } is the resolvent for the corresponding linear
problem of (35).

As far as the weak solution is concerned, u is a function
in C1([0, T]; X)∩C([0, T]; D(∇)) and satisfies

d
dt
〈ut(t), v〉 +〈∇u,∇v〉 − 〈

t

0
g(t − ζ)∇u(ζ)dζ,∇v〉

�〈 |u|
c

− η2 u, v〉,

(38)

∀v ∈ D(∇), 〈ut(t), v〉 ∈ C1([0, T]) and 0≤ t≤T.
Local existence, uniqueness, and regularity for (1) are

naturally guaranteed by the result in [12].
Considering a mild solution u of (1) (t ∈ [0, T]), and

using ut as a multiplier, the multiplier method can be used to
get the energy of u as follows:

Eu(t) �
1
2

ut

����
����
2

+ (1 − 
t

0
g(ζ)dζ ‖∇u‖

2


+ 
t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ

−
1

c + 2

Ω

|u|
c+2dx +

η2

2

Ω

|u|
2dx.

(39)

Next, it is necessary to discuss the decay of Eu(t).
Consider that u is a strong solution of problem (1) on an

interval [0, T]. By taking derivative of (39), we obtain
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d
dt
Eu(t) �〈utt, ut〉 +〈∇u,∇ut〉 −

g(t)

2
‖∇u‖

2
−
1
2


t

0
g(ζ)dζ 

d
dt

‖∇u‖
2

+
1
2


t

0
g′(t − ζ)‖∇u(t) − ∇u(ζ)‖

2dζ − 
t

0
g(t − ζ)〈∇u(ζ) − ∇u(t),∇ut(t)〉dζ − 〈 |u|

c
− η2 u, ut〉

�〈utt, ut〉 +〈∇u,∇ut〉 −
g(t)

2
‖∇u‖

2
−
1
2


t

0
g(ζ)dζ 

d
dt

‖∇u‖
2

+
1
2


t

0
g′(t − ζ)‖∇u(t) − ∇u(ζ)‖

2dζ

− 〈
t

0
g(t − ζ)∇u(ζ)dζ,∇ut〉 +

1
2


t

0
g(ζ)dζ 

d
dt

‖∇u‖
2

− 〈 |u|
c

− η2 u, ut〉

�〈utt, ut〉 +〈 − Δu, ut〉 +〈
t

0
g(t − ζ)Δu(ζ)dζ, ut〉 − 〈 |u|

c
− η2 u, ut〉 −

g(t)

2
‖∇u‖

2

+
1
2


t

0
g′(t − ζ)‖∇u(t) − ∇u(ζ)‖

2dζ

� −
g(t)

2
‖∇u‖

2
+
1
2


t

0
g′(t − ζ)‖∇u(t) − ∇u(ζ)‖

2dζ.

(40)

In view of the facts that g≤ 0 and g′ ≥ 0, it follows from
these assumptions that

d
dt
Eu(t) � −

g(t)

2
‖∇u‖

2

+
1
2


t

0
g′(t − ζ)‖∇u(t) − ∇u(ζ)‖

2dζ ≤ 0,

(41)

that is, Eu(t) is decreasing. One can draw a similar con-
clusion for mild solutions. In a word, if the initial conditions
are small sufficiently, the solution of model (1) exists
globally.

Theorem 1. Assume that H1 holds. For any u0 ∈ D(∇) and
u1 ∈ X, if there is a positive scalar ρ0 such that

∇u0
����

���� + u1
����

����< ρ0, (42)

then there is a unique mild solution u for problem (1). Besides,
for arbitrary t ∈ [0,∞),

Eu(t)> 0, (43)

Eu(t)≤Eu(0)≤ ρ20, (44)

Eu(t)≥
1
2

ut

����
����
2

+
1 − 
∞
0 g(ζ)dζ
4

‖∇u(t)‖
2
, (45)

‖∇u(t)‖
2+(c/2) ≤

1 − 
∞
0 g(ζ)dζ
4

. (46)

Furthermore, u is a strong solution of (1), provided that
u0 ∈ D(− Δ) and u1 ∈ D(∇).

Proof. Assume that a maximal definition interval for the
mild solution of problem (1) is [0, T), and
ℓ � (1 − 

∞
0 g(ζ)dζ)/2. According to Lemma 1, one gets

( |(1/c + 2))Ω|u0|
c+2dx|≤ ‖∇u0‖

2+(c/2). Besides, equation
(39) implies

Eu(0) �
1
2

u1
����

����
2

+ ∇u0
����

����
2

  −
1

c + 2

Ω

u0



c+2dx

+
η2

2

Ω

u0



2dx.

(47)

If ‖∇u0‖
(c/2) < (ℓ/2), we get

1
c + 2


Ω

u0



c+2dx −

η2

2

Ω

u0



2dx




≤

1
c + 2


Ω

u0



c+2dx




+
η2

2

Ω

u0



2dx





≤ ∇u0
����

����
2+(c/2)

+
η2

2M
∇u0

����
����
2 <

ℓ
2
∇u0

����
����
2

+
η2

2M
∇u0

����
����
2 ≤

ℓ
2
∇u0

����
����
2
,

(48)

where ℓ ≥ ℓ + (η2/M).
+us, it is naturally acquired that

−
1

c + 2

Ω

u0



c+2dx +

η2

2

Ω

u0



2dx≥ −

ℓ
2
∇u0

����
����
2
. (49)

Consequently, Eu(0)≥(1/2)(‖u1‖
2 + (1 − ℓ)‖∇u0‖

2)≥0.
Put ρ0 � (ℓ/2)(1/2)+(2/c). Suppose that u0 ∈ D(∇) and

u1 ∈ X satisfy

∇u0
����

���� + u1
����

����< ρ0. (50)

Complexity 5



Utilizing the amplification method, i.e.,

Eu(0)≤
1
2

u1
����

����
2

+ ∇u0
����

����
2

 ≤ u1
����

����
2

+ ∇u0
����

����
2

 

≤ u1
����

���� + ∇u0
����

����  
2
≤ ρ20 �

ℓ
2

 

1+(4/c)

,

(51)

we derive that (2Eu(0)/ℓ)(c/4) < (ℓ/2) and

Eu(t)≥
1
2

ut

����
����
2

+
ℓ
2
‖∇u(t)‖

2 ≥
1
2

ut

����
����
2

+
1 − 
∞
0 g(ζ)dζ
4

+
η2

2M
⎡⎣ ⎤⎦‖∇u(t)‖

2

≥
1
2

ut

����
����
2

+
1 − 
∞
0 g(ζ)dζ
4

‖∇u(t)‖
2
, ∀t ∈ [0, T).

(52)

So, the energy Eu is well bounded and the solution u

exists globally. +e proof of the aforementioned formula is
based on the idea of reductio ad absurdum, and the detailed
process is omitted here. □

3. Main Results

In this sequel, without invoking any auxiliary function, we
put forward the main result as follows.

Theorem 2. Assume that (H1) holds. Given S≥ S0 > 0. For
each pair (u0, u1) ∈ D(∇) × X, if ‖u1‖ + ‖∇u0‖< ρ0 with ρ0
being a positive constant, then there is some positive constant
C ensuring that the mild solution of model (1) satisfies the next
property:


∞

S
E

1+(1/p)
u (t)dt≤CE

(1/p)
u (0)Eu(S). (53)

Specifically,

Eu(t)≤Eu(0)e
1− Ct

, p �∞,

Eu(t)≤Eu(0)
p + 1

p + Ct
 

p

, 2<p<∞.

(54)

Proof. By +eorem 1, we know that the solution of (1) is
global. Moreover, it is easy to check that the solution is
strong if u0 ∈ D(− Δ) and u1 ∈ D(∇). Aiming to show (53),
we begin to focus on the formula as follows

:


T

S
E

1+(1/p)
u (t)dt �

1
2


T

S
E

(1/p)
u (t) ut

����
����
2dt +

1
2


T

S
E

(1/p)
u (t) 1 − 

t

0
g(ζ)dζ ‖∇u‖

2dt

+
1
2


T

S
E

(1/p)
u (t) 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζdt

−
1

c + 2


T

S
E

(1/p)
u (t)

Ω
|u|

c+2dxdt +
η2

2


T

S
E

(1/p)
u (t)

Ω
|u|

2dxdt.

(55)

Next, our task is introducing an approach for controlling
every term of the right hand of equation (55) via multiplier
methods. At the beginning, we propose the following
lemma. □

Lemma 4. Suppose that φ(t): R+⟶ R+ is a multiplier,
fulfilling that φ′(t)< 0. 8en for any positive constant T with
T≥ S≥ S0, there exists C> 0 such that

1
2


T

S
φ(t) ut

����
����
2dt +

1
2


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

−
1

c + 2


T

S
φ(t)

Ω
|u|

c+2dxdt +
η2

2


T

S
φ(t)

Ω
|u|

2dxdt≤Cφ(0)Eu(S).

(56)

Proof. Firstly, an inner product of model (1) with the
multiplication of u and φ(t) should be taken. Next,

integrating it on the closed interval [S, T], the following
description is now obtained:


T

S
φ(t)〈utt − Δu + 

t

0
g(t − ζ)Δu(ζ)dζ, u(t)〉dt � 

T

S
φ(t)〈 |u|

c
− η2 u(t), u(t)〉dt. (57)
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Integrating by parts, we get


T

S
φ(t)〈utt, u(t)〉dt � 

T

S
φ(t)

d
dt
〈ut, u(t)〉dt − 

T

S
φ(t)

d
dt
〈ut, ut〉dt

� φ(t)〈ut, u(t)〉 
T
S − 

T

S
φ′(t)

d
dt
〈ut, u(t)〉dt − 

T

S
φ(t)

d
dt

ut

����
����
2dt,

(58)


T

S
φ(t)〈− Δu, u(t)〉dt � 

T

S
φ(t)〈∇u,∇u〉dt � 

T

S
φ(t)‖∇u‖

2dt, (59)


T

S
φ(t)〈

t

0
g(t − ζ)Δu(ζ)dζ, u(t)〉dt

� − 
T

S
φ(t)〈

t

0
g(t − ζ)∇u(ζ)dζ,∇u(t)〉dt

� − 
T

S
φ(t)〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉dt,

(60)

− 
T

S
φ(t) 

t

0
g(t − ζ)〈∇u(t)),∇u(t)〉dζdt

� − 
T

S
φ(t)〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉dt

− 
T

S
φ(t) 

t

0
g(ζ)dζ ‖∇u‖

2dt,

(61)


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

� 
T

S
φ(t) ut

����
����
2dt + 

T

S
φ(t)〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉dt

+ 
T

S
φ′(t)〈ut, u(t)〉dt + 

T

S
φ(t)〈 |u|

c
− η2 u(t), u(t)〉dt − φ(t)〈ut(t), u(t)〉 

T
S .

(62)

Applying Schwartz inequality ∀ε1 > 0, we have


T

S
φ(t)‖∇u(t)‖ 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζdt

� 
T

S

����

φ(t)

 ����

φ(t)



‖∇u(t)‖ 
t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζdt

≤
ε1
2


T

S
φ(t)‖∇u(t)‖

2dt +
1
2ε1


T

S
φ(t) 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ 

2

dt.

(63)

Taking the integrability of gϑ and the assumption that
g′ ≤ − kg(p+1)/p into consideration, with the help

of Hölder inequality and the description of Eu
′(t), we

have

Complexity 7




T

S
φ(t) 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ 

2

dt

� 
T

S
φ(t) 

t

0
g

(p− 1)/2p
(t − ζ)g

(p+1)/2p
(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ 

2

dt

≤ 
T

S
φ(t) 

t

0
g

(p− 1)/p
(ζ)dζ  

t

0
g

(p+1)/p
(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤ 
∞

0
g

(p− 1)/p
(ζ)dζ  

T

S
φ(t) 

t

0
g

(p+1)/p
(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤ −
1
k


∞

0
g

(p− 1)/p
(ζ)dζ  

T

S
φ(t) 

t

0
g′(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤ −
2
k


∞

0
g

(p− 1)/p
(ζ)dζ  

T

S
φ(0)Eu
′(t)dt

� −
2
k


∞

0
g

(p− 1)/p
(ζ)dζ φ(0) Eu(T) − Eu(S)( 

≤
2
k
φ(0)Eu(S) 

∞

0
g

(p− 1)/p
(ζ)dζ .

(64)

Combining (62) and (63), we get


T

S
φ(t) 〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉




dt

� 
T

S
φ(t)‖∇u(t)‖ 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζdt

≤
ε1
2


T

S
φ(t)‖∇u(t)‖

2dt +
1

kε1
φ(0)Eu(S) 

∞

0
g

(p− 1)/p
(ζ)dζ .

(65)

In view of (45), we have
1
2
‖u(t)‖

2 ≤Eu(t),

1
2
‖∇u(t)‖

2 ≤
2Eu(t)

1 − 
∞
0 g(ζ)dζ

.

(66)

+us, we obtain

1
2
‖u(t)‖

2 ≤
1

M

1
2
‖∇u(t)‖

2
 ≤

(2/M)Eu(t)

1 − 
∞
0 g(ζ)dζ

. (67)

+erefore, the following result is arrived:

〈ut(t), u(t)〉


 � 
T

0
ut(t)u(t)dt




≤
1
2


T

0
ut(t)



2dt +

1
2


T

0
|u(t)|

2dt

≤
1
2
‖u(t)‖

2
+

(2/M)Eu(t)

1 − 
∞
0 g(ζ)dζ

≤ 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠Eu(t).

(68)

By φt(t)< 0 and Eu(t)≤Eu(S), we get − 
T

S
φt(t)dt � φ(S) − φ(T)≤φ(S)≤φ(0). (69)
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+erefore,


T

S
φt(t)〈ut(t), u(t)〉dt≤ − 

T

S
φt(t)〈ut(t), u(t)〉dt

≤ − 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠ 
T

S
φt(t)Eu(t)dt

≤Eu(S) 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠ − 
T

S
φt(t)dt 

≤Eu(S)φ(0) 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠.

(70)

By the condition imposed on the proof of +eorem 1,

‖∇u(t)‖
(c/2) ≤

1 − 
∞
0 g(ζ)dζ
4

, (71)

one has


T

S
φ(t)〈 |u|

c
− η2 u(t), u(t)〉dt≤ 

T

S
φ(t)‖∇u(t)‖

2+(c/2)dt

≤
1
4


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt.

(72)

Considering that both φ(t) and E(t) are decreasing,
from (67), we deduce

− φ(t)〈ut(t), u(t)〉 
T
S ≤ 2φ(0) 1 +

(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠Eu(S).

(73)

Based on equation (61), it is trivially shown that


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

� 
T

S
φ(t) ut

����
����
2dt + 

T

S
φ(t)〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉dt

+ 
T

S
φ′(t)〈ut, u(t)〉dt + 

T

S
φ(t)〈 |u|

c
− η2 u(t), u(t)〉dt − φ(t)〈ut(t), u(t)〉 

T
S

≤ 
T

S
φ(t) ut

����
����
2dt +

ε1
2


T

S
φ(t)‖∇u(t)‖

2dt +
1

kε1
φ(0)Eu(S) 

∞

0
g

(p− 1/p)
(ζ)dζ 

+ Eu(S)φ(0) 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠ +
1
4


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

+ 2φ(0) 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠Eu(S),

(74)
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which means that

3
4


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

≤ 
T

S
φ(t) ut

����
����
2dt +

ε1
2


T

S
φ(t)‖∇u(t)‖

2dt +
1

kε1
φ(0)Eu(S) 

∞

0
g

(p− 1)/p
(ζ)dζ 

+ 3Eu(S)φ(0) 1 +
(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠.

(75)

For simplicity, selecting ε1 � 1 − 
∞
0 g(ζ)dζ, we get


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

≤ 4
T

S
φ(t) ut

����
����
2dt + 4


∞
0 g

(p− 1)/p
(ζ)dζ

k 1 − 
t

0 g(ζ)dζ 
+ 3 1 +

(2/M)

1 − 
∞
0 g(ζ)dζ

⎛⎝ ⎞⎠⎛⎝ ⎞⎠Eu(S)φ(0)

≤ 4
T

S
φ(t) ut

����
����
2dt +

4M 
∞
0 g

(p− 1)/p
(ζ)dζ + 12k 2 + M 1 − 

∞
0 g(ζ)dζ  

Mk 1 − 
∞
0 g(ζ)dζ 

Eu(S)φ(0)

�
Δ

C1 
T

S
φ(t) ut

����
����
2dt + C2Eu(S)φ(0),

(76)

where C1 � 4 and

C2 �
4M 
∞
0 g

(p− 1)/p
(ζ)dζ + 12k 2 + M 1 − 

∞
0 g(ζ)dζ  

Mk 1 − 
∞
0 g(ζ)dζ 

(77)

are both positive.
Next, multiplying both sides of the original equation (1)

by φ(t) at the same time, taking 
t

0 g(t − ζ)(u(ζ) − u(t))dζ

as a multiplier, and integrating on the closed interval [S, T],
the following equation can be obtained:


T

S
φ(t)〈utt − Δu + 

t

0
g(t − ζ)Δu(ζ)dζ − |u|

c
− η2 u(t),


t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt � 0.

(78)

Taking integration by parts, one obtains


T

S
φ(t)〈utt, 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

� 
T

S
uttφ(t) 

t

0
g(t − ζ)(u(ζ) − u(t))dζ dt

� utφ(t) 
t

0
g(t − ζ)(u(ζ) − u(t))dζ |

T

S

− 
T

S
ut φ(t) 

t

0
g(t − ζ)(u(ζ) − u(t))dζ 

′
dt

� φ(t)〈ut, 
t

0
g(t − ζ)(u(ζ) − u(t))dζ〉|

T

S
− 

T

S
φ′(t)〈ut(t), 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

− 
T

S
φ(t)〈ut(t), 

t

0
g′(t − ζ)(u(ζ) − u(t))dζ〉dt + 

T

S
φ(t) ut

����
����
2


t

0
g(ζ)dζ dt,

(79)
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T

S
φ(t)〈 − Δu + 

t

0
g(t − ζ)Δu(ζ)ζ, 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

� 
T

S
φ(t)〈∇u, 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt − 

T

S
φ(t)〈

t

0
g(t − ζ)∇u(ζ)dζ, 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

� 
T

S
φ(t)∇u(t) 

t

0
g(t − ζ)(u(ζ) − u(t))dζ dt

− 
T

S
φ(t) 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t) + ∇u(t))dζ  

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ dt

� 
T

S
φ(t)∇u(t) 

t

0
g(t − ζ)(u(ζ) − u(t))dζ dt − 

T

S
φ(t) 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ 

2

dt

− 
T

S
φ(t) 

t

0
g(t − ζ)∇u(t))dζ  

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ dt

� 
T

S
φ(t) 1 − 

t

0
g(ζ)dζ 〈∇u(t), 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ〉dt

− 
T

S
φ(t) 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ

�������

�������

2

dt.

(80)

Substituting (79) and (80) into (78) leads to the
following:


T

S
φ(t) 

t

0
g(ζ)dζ  ut

����
����
2dt

� − φ(t)〈ut, 
t

0
g(t − ζ)(u(ζ) − u(t))dζ〉 

T

S

+ 
T

S
φ′(t)〈ut(t), 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

+ 
T

S
φ(t)〈ut(t), 

t

0
g′(t − ζ)(u(ζ) − u(t))dζ〉dt + 

T

S
φ(t) 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ

�������

�������

2

dt

+ 
T

S
φ(t) − 1 + 

t

0
g(ζ)dζ 〈∇u(t), 

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ〉dt

+ 
T

S
φ(t)〈 |u|

c
− η2 u(t), 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt.

(81)

Now, let us consider the term 
T

S
φ(t)‖ut‖

2dt and
evaluate it. First of all, according to (10), we have

〈ut, 
t

0
g(t − ζ)(u(ζ) − u(t))dζ〉




≤
1
2

ut

����
����
2

+ 
t

0
g(t − ζ)‖u(ζ) − u(t)‖dζ 

2
⎡⎣ ⎤⎦

≤Eu(t) +
1
2M


t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ 

2

≤Eu(t) +
1
2M


t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ  

t

0
g(ζ)dζ 

≤
1 + M

M
Eu(t).

(82)
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Consequently,

− φ(t)〈ut, 
t

0
g(t − ζ)(u(ζ) − u(t))dζ〉 

T

S

≤ 2φ(0)
1 + M

M
Eu(S).

(83)

As a result,


T

S
φ′(t)〈ut(t), 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

≤
1 + M

M


T

S
− φ′(t)( Eu(t)dt≤

1 + M

M
Eu(S) 

T

S
− φ′(t)( dt

≤
1 + M

M
Eu(S)φ(0).

(84)

Using the Cauchy inequality, we have


T

S
φ(t)〈ut(t), 

t

0
g′(t − ζ)(u(ζ) − u(t))dζ〉dt

≤
δ1
2


T

S
φ(t) ut

����
����
2dt +

1
2δ1


T

S
φ

· (t) 
t

0
g′(t − ζ)


 · ‖(u(ζ) − u(t)‖dζ 

2

dt.

(85)

Recall that |g′(ζ)| � − g′(ζ), which is deduced from
g′(t)≤ 0. Hence,


t

0
g′(t − ζ)


 · ‖(u(ζ) − u(t)‖dζ 

2

� 
t

0

���������

g′(t − ζ)






  ·

���������

g′(t − ζ)






‖(u(ζ) − u(t)‖ dζ 

2

≤ − 
t

0
g′(ζ))dζ 

t

0
g′(t − ζ)


 · ‖(u(ζ) − u(t)‖

2dζ 

� (g(0) − g(t)) 
t

0
− g′(t − ζ)(  · ‖(u(ζ) − u(t)‖

2dζ 

≤g(0) 
t

0
− g′(t − ζ)(  · ‖(u(ζ) − u(t)‖

2dζ 

≤
g(0)

M


t

0
− g′(t − ζ)(  · ‖(u(ζ) − u(t)‖

2dζ

≤ −
2Eu
′(t)g(0)

M
.

(86)

+en, (85) is transformed into the following form:


T

S
φ(t)〈ut(t), 

t

0
g′(t − ζ)(u(ζ) − u(t))dζ〉dt

≤
δ1
2


T

S
φ(t) ut

����
����
2dt +

1
2δ1


T

S
φ(t) 

t

0
g′(t − ζ)


 · ‖(u(ζ) − u(t)‖dζ 

2

dt

≤
δ1
2


T

S
φ(t) ut

����
����
2dt +

1
2δ1


T

S

− 2g(0)φ(t)Eu
′(t)

M
dt

≤
δ1
2


T

S
φ(t) ut

����
����
2dt +

1
2δ1

2g(0)φ(0)

M
− Eu(t)( |

T
S

≤
δ1
2


T

S
φ(t) ut

����
����
2dt +

g(0)φ(0)

Mδ1
Eu(S).

(87)
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In view of the assumption of g(t) and 
∞
0 g(ζ)dζ < 1, the

estimates of (64) can be arrived as follows:


T

S
φ(t) − 1 + 

t

0
g(ζ)dζ 〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉dt

≤ 
T

S
φ(t) 〈

t

0
g(t − ζ)(∇u(ζ) − ∇u(t))dζ ,∇u(t)〉




dt

≤
ε1
2


T

S
φ(t)‖∇u(t)‖

2dt +
1

kε1
φ(0)Eu(S) 

∞

0
g

(p− 1)/p
(ζ)dζ .

(88)

Observing that |F(u)|≤C‖∇u(t)‖2+(c/2), by combining
(44) and (45), we can attain that ∀t≥ 0,

‖∇u(t)‖ ≤
2

�����
Eu(t)



������������

1 − 
∞
0 g(ζ)dζ

 ≤
2

������
Eu(0)



������������

1 − 
∞
0 g(ζ)dζ



≤
2ρ0������������

1 − 
∞
0 g(ζ)dζ

 �

�
2
ℓ



ρ0.

(89)

+erefore,

|u(t)|
c

− η2 u(t)
�����

����� � |u(t)|
c

− η2 u(t) − |u(0)|
c

− η2 u(0)
�����

�����

≤C‖∇u(t) − ∇0‖ � C‖∇u(t)‖.

(90)

So, combining (62) with (63) and taking a part of (78)
into consideration, we obtain


T

S
φ(t)〈 |u|

c
− η2 u(t), 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

≤C 
T

S
φ(t)〈(‖∇u(t)‖, 

t

0
g(t − ζ)(u(ζ) − u(t))dζ〉dt

� C 
T

S
φ(t)(‖∇u(t)‖ 

t

0
g(t − ζ)(u(ζ) − u(t))dζ dt

≤ 
T

S

����

φ(t)

 ����

φ(t)



(‖∇u(t)‖ 
t

0
g(t − ζ)(u(ζ) − u(t))dζ dt

� 
T

S
(

����

φ(t)



‖∇u(t)‖)
C
��
M

√
����

φ(t)




t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖dζ dt

≤
ε2
2


T

S
φ(t)‖∇u(t)‖

2dt +
C
2

Mkε2
φ(0)Eu(S) 

∞

0
g

(p− 1)/p
(ζ)dζ .

(91)

Since 
∞
0 g(ζ)dζ < 1, it is natural to see that 

t

0 g(ζ)dζ can
be regarded as a small number tending to 0. Now, we consider
the existence of such a t0 ∈ (0, t), which guarantees the

positiveness of 
t

0 g(ζ)dζ . Further, by a combination of
equations (63), (83), (84), (87), (88), and (91), the variant of (81)
can be obtained, which satisfies the following estimation:


T

S
φ(t) 

t

0
g(ζ)dζ −

δ
2

  ∇ut(t)
����

����
2dt

≤ ε3 
T

S
φ(t) ∇ut(t)

����
����
2dt

+
g(0)

Mδ2
+
3(2M + 1)

2M
+
1
k

2 +
1
ε3

+
C
2

Mε3
  

∞

0
g

(p− 1)/p
(ζ)dζ φ(0)Eu(S).

(92)
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For any S0 ∈ (0, S], with the help of the fact g(0)> 0 and
the continuity of g, it can be acquired that


S

0
g(ζ)dζ ≥ 

S0

0
g(ζ)dζ > 0. (93)

Choosing a positive constant δ3 which is small enough so
that δ3 < 

S0

0 g(ζ)dζ, and considering


t

0
g(ζ)dζ < 

S

0
g(ζ)dζ, (94)

we can check that


t

0
g(ζ)dζ −

δ3
2
< δ3 −

δ3
2

�
δ3
2

. (95)

Now, for any S ∈ [S0, T), we have

δ3
2


T

S
φ(t) ut(t)

����
����
2dt

<
1
2


S0

0
g(ζ)dζ 

T

S
φ(t) ut(t)

����
����
2dt

≤ ε3 
T

S
φ(t) ∇ut(t)

����
����
2dt +

g(0)

Mδ3
+
3(2M + 1)

2M
+
1
k

2 +
1
ε3

+
C
2

Mε3
  

∞

0
g

(p− 1)/p
(ζ)dζ φ(0)Eu(S)

�
Δε3 

T

S
φ(t) ∇ut(t)

����
����
2dt + C01φ(0)Eu(S).

(96)

+us, we can conclude that


T

S
φ(t) ut(t)

����
����
2dt≤ ε4 

T

S
φ(t) ∇ut(t)

����
����
2dt + C1φ(0)Eu(S),

(97)

where ε4 � (2ε3/δ3), and

C1 �
2
δ3

g(0)

Mδ3
+
3(2M + 1)

2M
+
1
k

2 +
1
ε3

+
C
2

Mε3
  

∞

0
g

(p− 1)/p
(ζ)dζ .

(98)

Consequently,


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

≤ ε5C1 
T

S
φ(t)‖∇u(t)‖

2dt + C2φ(0)Eu(S).

(99)

If ε5 is small enough in the above formula, then


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt≤C2φ(0)Eu(S).

(100)

Alternatively, if C3 is taken properly, the estimation can
be arrived as


T

S
φ(t) ut(t)

����
����
2dt≤C3φ(0)Eu(S). (101)

Considering the third term and the fourth one of (56), we
get

− 
T

S
φ(t)

1
c + 2


Ω

|u|
c+2dx −

η2

2

Ω

|u|
2dx dt

≤C 
T

S
φ(t)‖∇u(t)‖

2+(c/2)dt≤
C

4


T

S
φ(t)

· 1 − 
∞

0
g(ζ)dζ ‖∇u(t)‖

2dt

≤
C

4


T

S
φ(t) 1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt≤C4φ(0)Eu(S).

(102)

By combining equations (100)–(102), it is shown that
(56) is true, which concludes the proof.

Next, it remains to complete the Proof of +eorem
2. □

Proof of 8eorem 2. Let us consider the case where p equals
infinity firstly. For any t, if c represents any positive constant,
then by taking φ(t) � c in (56), we can get the following
result:

1
2


T

S
ut

����
����
2dt +

1
2


T

S
1 − 

t

0
g(ζ)dζ ‖∇u(t)‖

2dt

−
1

c + 2


T

S

Ω

|u|
c+2dxdt +

η2

2


T

S

Ω

|u|
2dxdt

≤C5Eu(S).

(103)
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Again, g(t) ≤ − (g′(t)/k) follows from g′(t)≤ − kg(t).
Invoking Lemma 3, one may deduce that

1
2


T

S


t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤ −
1
k

1
2


T

S


t

0
g′(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤ −
1
k


T

S
Eu
′(t)dt

≤
1
k
Eu(S).

(104)

+en, 
T

S
E(p+1/p)

u (t)dt≤CEu(S) can be derived from
(55). +is fact further explains the attenuation of Eu(t)

according to a polynomial form.

Secondly, it is valuable to consider the case of 2<p<∞.
Aiming to evaluate the last term of Eu(t), we will put
forward the following lemmas. □

Lemma 5. For any 0≤ S≤T and t> 0, the following in-
equality holds:


T

S
ε(1/p)

u (t) 
t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤C6ε
p/(p+1)
u (S) 

T

S
ε(p+1/p)

u (t) 
t

0
‖∇u(ζ) − ∇u(t)‖

2dζ dt 

(1/p+1)

.

(105)

Proof. Let

Φ1(t) ≔ 
t

0
‖∇u(ζ) − ∇u(t)‖

2dζ. (106)

In view of the assumption H1 and the Hölder inequality,
we get


T

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ

� 
T

0
‖∇u(ζ) − ∇u(t)‖

2
 

(1/p+1)
g

(p+1/p)
(t − ζ)‖∇u(ζ) − ∇u(t)‖

2
 

(p/p+1)
dζ

≤ 
T

0
‖∇u(ζ) − ∇u(t)‖

2
 

(1/p+1)(p+1)
dζ 

(1/p+1)

× 
T

0
g

(p+1/p)
(t − ζ)‖∇u(ζ) − ∇u(t)‖

2
 

(p/p+1)(p+1/p)
dζ 

(p/p+1)

� Φp/(p+1)
1 (t) 

T

0
g

(p+1/p)
(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ 

(p/p+1)

.

(107)

Hence,


T

S
ε(1/p)

u (t) 
T

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζdt

≤ 
T

S
ε(1/p)

u (t)Φ(1/p+1)
1 (t) 

T

0
g
1+(1/p)

(t − ζ)‖∇u(ζ) − ∇u(t)‖
2dζ 

(p/p+1)

dt

� 
T

S
ε(p+1/p)

u (t)Φ1(t) 
(1/p+1)


T

0
g
1+(1/p)

(t − ζ)‖∇u(ζ) − ∇u(t)‖
2dζ 

(p/p+1)

dt

≤ 
T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)


T

S


T

0
g
1+(1/p)

(t − ζ)‖∇u(ζ) − ∇u(t)‖
2dζdt 

(p/p+1)

≤ 
T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)


T

S


T

0
−

g′(t − ζ)

k
 ‖∇u(ζ) − ∇u(t)‖

2dζdt 

(p/p+1)
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� k
− (p/p+1)


T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)


T

S


T

0
− g′(t − ζ)( ‖∇u(ζ) − ∇u(t)‖

2dζdt 

(p/p+1)

≤ k
− (p/p+1)


T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)

− 2
T

S
εu
′(t)dt 

(p/p+1)

�
k

2
 

− (p/p+1)


T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)

εu(S) − εu(T)( 
(p/p+1)

≤
k

2
 

− (p/p+1)


T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)

ε(p/p+1)
u (S)

� C6ε
p/(p+1)
u (S) 

T

S
ε(p+1/p)

u (t)Φ1(t)dt 

(1/p+1)

,

(108)

where C6 � (k/2)− p/(p+1). +is completes the proof. □

Lemma 6. Let

Φ2(t) ≔ 
t

0

�������

g(t − ζ)



‖∇u(ζ) − ∇u(t)‖
2dζ , ∀t≤ 0.

(109)

+en, for 0≤ S≤T, it holds that


T

S
ε(2/p)

u (t) 
t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ dt

≤C7ε
p/(p+2)
u (S) 

T

S
ε1+(2/p)

u (t)Φ2(t)dt 

(2/p+2)

.

(110)

+e proof of Lemma 6 can be deduced similar to the one
of Lemma 5, and this process will not be stated here. Besides,
it is easy to see that Φ2(t) is bounded.

Indeed,
����
g(ζ)


∈ L1(0,∞) can be ensured from p> 2.

With the assistance of (45), we find

‖∇u(t)‖
2 ≤

4Eu(t)

1 − 
∞
0 g(ζ)dζ

, (111)

and

Φ2(t)


≤C2a


t

0

�������

g(t − ζ)



‖∇u(ζ)‖
2

+‖∇u(t)‖
2

 dζ

≤C2b


t

0

�������

g(t − ζ)



Eu(ζ) + Eu(t)( dζ

≤C2c


t

0

�������

g(t − ζ)



Eu(0)dζ

≤C2c

∞

0

�������

g(t − ζ)



Eu(0)dζ

≤C2d

∞

0

�������

g(t − ζ)



Eu(0)dζ ≤C2e
Eu(0),

(112)

where C2e
≥C2d


∞
0

�������
g(t − ζ)


dζ . Now,

Φ2(t)
����

����
(2/p)

∞ ≤C
(2/p)
2e

Eu(0)
(2/p)

, (113)

which follows from (112).

Lemma 7. For any S0 ∈ (0,∞), if S≥ S0, then there is a
constant C8 ∈ (0,∞) such that


∞

S
ε(p+2/p)

u (t)dt≤C8εu(S) ε(2/p)
u (0) + Φ2(t)

����
����

(2/p)

∞ .

(114)
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Proof. Given S ∈ (S0, T). By means of (39), we get


T

S
E

(p+2)/p
u (t)dt

� 
T

S
E

(2/p)
u (t)Eu(t)dt

� 
T

S
E

(2/p)
u (t)

1
2

ut

����
����
2

+ 1 − 
t

0
g(ζ)dζ ‖∇u‖

2
+ 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζ  −
1

c + 2

Ω

|u|
c+2dx +

η2

2

Ω

|u|
2dx dt

�
1
2


T

S
E

(2/p)
u (t) ut

����
����
2dt +

1
2


T

S
E

(2/p)
u (t) 1 − 

t

0
g(ζ)dζ ‖∇u‖

2dt −
1

c + 2


T

S
E

(2/p)
u (t)

Ω
|u|

c+2dxdt

+
η2

2


T

S
E

(2/p)
u (t)

Ω
|u|

2dxdt +
1
2


T

S
E

(2/p)
u (t) 

t

0
g(t − ζ)‖∇u(ζ) − ∇u(t)‖

2dζdt

�
Δ

I + II + III + IV + V.

(115)

Taking ε(2/p)
u (t) as a multiplier and replacing the position

of φ(t) in (56), we have

I + II + III + IV≤Cε(2/p)
u (0)εu(S). (116)

Applying (110) and Young inequality, it is inferred that

V≤C7ε
p/(p+2)
u (S) 

T

S
ε1+(2/p)

u (t)Φ2(t)dt 

2/(p+2)

≤C7ε
p/(p+2)
u (S) 

T

S
ε1+(2/p)

u (t)dt 

2/(p+2)


T

S
Φ2(t)dt 

2/(p+2)

≤C7ε
p/(p+2)
u (S) 

T

S
ε1+(2/p)

u (t)dt 

(2/p+2)

Φ2(t)
����

����
2/(p+2)

∞

≤ ε6 
T

S
ε1+(2/p)

u (t)dt 

(2/(p+2).(p+2)/2)

+
2ε6/p + 2( 

(− p/2)

(p/p + 2)
εp/(p+2)

u (S) 
(p+2)/p
Φ2(t)

����
����

(2/(p+2).(p+2)/p)

∞

� ε6 
T

S
ε1+(2/p)

u (t)dt +
2ε6/p + 2( 

(− p/2)

(p/p + 2)
εu(S) Φ2(t)

����
����

(2/p)

∞ .

(117)

Combining (116) and (117), one gets


T

S
ε(p+2)/p

u (t)dt≤ ε6 
T

S
ε1+(2/p)

u (t)dt + εu(S)
2ε6/p + 2( 

(− p/2)

(p/p + 2)
Φ2(t)

����
����

(2/p)

∞ + Cε(2/p)
u (0)⎛⎝ ⎞⎠. (118)

Let the positive number ε6 be infinitely close to zero, and
C8 ≥max C, ((2ε6/(p + 2))(− p/2)/(p/(p + 2))) . +en


T

S
ε(p+2)/p

u (t)dt≤C8εu(S) Φ2(t)
����

����
(2/p)

∞ + ε(2/p)
u (0) .

(119)
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As T tends to infinity, the limit result of long-time
memory is easily seen, and thus, (114) is true. □

Remark 3. With the aid of paper [12], it is trivial to show that


∞

S
ε(p+1)/p

u (t)dt≤C8′εu(S) ε(1/p)
u (0) + Φ1(t)

����
����

(1/p)

∞ .

(120)

+e proof of (120) is entirely similar to that of (114) and
so it is omitted here. Now, let us turn back to complete the
verification of +eorem 2.

Continued Proof of +eorem 2. By equation (113), we
have


∞

S
ε(p+2)/p

u (t)dt≤C8εu(S) ε(2/p)
u (0) + C

(2/p)
2e

εu(0)
(2/p)

 

≤C9εu(S)ε(2/p)
u (0),

(121)

where C9 ≥C8(1 + C
(2/p)
2e

).
Taking (2/p)< 1, T � S and T0 � S0, it is inferred from

(121) that

Eu(t)≤Eu(0)
S0 + C( (1 +(2/p))

(2t/p) + S0 + C
 

(p/2)

, ∀t ∈ [0, +∞).

(122)

From the representation of (45), it is not difficult to
examine that for any t ∈ [0,∞),

Φ1(t)


 � 
t

0
‖∇u(ζ) − ∇u(t)‖

2dζ



≤C10 

t

0
Eu(ζ)dζ + 

t

0
Eu(t)dt 

≤C10 
∞

0
Eu(ζ)dζ + tEu(t) ≤C10 

t

0
Eu(ζ)dζ + C11tEu(0) 

≤C12Eu(0),

(123)

where C12 ≥ t(1 + C11)C10. +at is, ‖Φ1(t)‖∞≤C12Eu(0).
+e application of (120) and S≥ S0 yields


∞

S
ε(p+1)/p

u (t)dt≤C13εu(S)ε(1/p)
u (0). (124)

+us, employing p> 2, we have

Eu(t)≤Eu(0)
S0 + C( (1 +(1/p))

(t/p) + S0 + C
 

p

� Eu(0)
p + 1

p + Ct
 

p

.

(125)

Besides, under the condition that p �∞, equation (124)
turns into


∞

S
Eu(t)dt≤C13Eu(S), (126)

which yields

Eu(t)≤Eu(0)e
1− t/C

13′ 
� Eu(0)e

1− Ct
. (127)

+is completes the proof.

4. Conclusion

Based on the proposed appropriate assumptions of the
convolution kernels along with the discussion about the
fuzzy number η, the exponential and polynomial aspects of
the energy decay rates for system (1) are estimated only
through the application of the multiplier method and the

unified technique. In this process, the most valuable point is
that our research has avoided the construction of auxiliary
functions perfectly. +e appearance of the term with fuzzy
coefficient makes the expression form of Eu richer and it
leads to some difficulties in calculation. At the same time,
more efforts have been spent on discussing the inte-
gro-differential inequalities and the discussion is quite in-
teresting. Considering the case of η � 0, we can see that the
results coincide with that of reference [12]. In summary, the
result in this paper reveals the wide applicability of the
unified method, and further discussion for the blow-up
problems may be considered in the future.
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