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Coronavirus disease (COVID-19) cases and COVID-19-related deaths have been increasing worldwide since the outbreak in 2019.
Before the mass vaccination campaign for COVID-19, the main methods for COVID-19 control in China were mass testing and
quarantine. Based on the transmissionmechanism of COVID-19, we constructed a dynamicmodel for COVID-19 transmission in
two typical regions: Beijing and Xinjiang. We calculated the basic reproduction number R0, proved the global stability of COVID-
19 transmission via the Lyapunov function technique, and introduced the final size. We assessed the effectiveness of mass testing
and quarantine. Sensitivity analysis indicated that the more the people were tested per day, the larger is the quarantine pro-
portionality coefficient, the earlier the source location was determined, and the better is the controlling effect. In addition, it was
more effective to increase the coefficient of quarantine if the population density in the region was low. To eliminate the pandemic,
the government has to expand testing and quarantine, requiring a large amount of continuous manpower, material, and financial
resources. -erefore, new control measures should be developed.

1. Introduction

-e sudden and unexpected outbreak of the coronavirus
disease (COVID-19) pandemic is the most serious global
public health emergency and has spread to more than 200
countries. COVID-19 is a contagious respiratory illness
caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), which is a zoonotic virus.-e symptoms of
COVID-19 include fever or chills, cough, dyspnea, difficulty
in breathing, fatigue, headache, nasal congestion or runny
nose, muscle or body aches, sore throat, loss of smell or taste,
nausea or vomiting, and diarrhea. Notably, some people
become infected but do not develop any symptoms or feel
unwell. Infectious droplets are released when someone with
COVID-19 sneezes, coughs, or talks, which can settle in the
mouth or nose of people who are nearby or possibly be
inhaled into the lungs. COVID-19 is thought to spread
mainly through close person-to-person contact (within
approximately 6 feet). People who are infected but do not
show symptoms may also spread the virus to others [1, 2].

In December 2019, COVID-19 was first reported in
Wuhan, the capital of Hubei Province in central China. Early
in the outbreak, many patients were reported to have a link
with a large seafood and live animal market [3, 4]. On
January 23, 2020, the Wuhan shutdown was implemented to
limit the movement of people in and out of the city.
Meanwhile, suspected and confirmed cases had been iso-
lated, public transport had been suspended, schools and
entertainment venues had been closed, public gatherings
had been banned, and health checks and information had
been widely disseminated [5, 6]. -rough the lockdown, the
spread of the virus was controlled. Residents returned to
their normal lives 7 months after the city’s strict lockdown
was lifted.

In June and July 2020, COVID-19 affected Beijing and
Xinjiang Uygur Autonomous Region (for Xinjiang), re-
spectively, giving rise to the second wave of infections;
however, this wave was localized within the regions and did
not cause widespread transmission. -e two regions curbed
the rapid spread of COVID-19 cases by adopting strict
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prevention and control measures. -e details are as follows:
on June 11, 2020, a new locally transmitted case was reported
in Beijing.-e Xinfadi wholesale market, which is the largest
food wholesale market in Beijing, was identified as a possible
source of infection within 22 hours. Most cases were linked
to the market. -e market was shut down, high-risk indi-
viduals were identified, and nearby communities were
subjected to lockdown.-e government ensured an increase
in COVID-19 testing, including testing of suspected persons,
and followed up on their status. With the implementation of
targeted measures, Beijing controlled the surge in cases in
less than a month. -e number of daily infections returned
to zero by July 7. -e market was reopened to the public on
August 16. On July 15, 2020, a 24-year-old woman from
Urumqi (the capital of Xinjiang) tested positive for SARS-
CoV-2, making her the first locally transmitted COVID-19
case in Xinjiang since February. Based on epidemiological
investigations and laboratory testing, this round of outbreak
was associated with a gathering, and most confirmed cases
were reported in Urumqi. No newly confirmed or asymp-
tomatic COVID-19 cases have been reported in Xinjiang
since August 16. Before the mass vaccination campaign of
COVID-19, there was successful management of the out-
break in Wuhan, which offered a valuable experience to
those in Beijing and Xinjiang. Expanding the testing of the
population and asking people from medium- and high-risk
areas or who had close contact with confirmed or asymp-
tomatic cases to quarantine themselves gated widespread
community spread or spread across regions. -ese measures
have effectively reduced the spread of the virus and pre-
vented mass infections, thereby helping consolidate the
efforts of COVID-19 control and prevention. -ese two
outbreaks were quickly curbed. However, the time of
pandemic control in Xinjiang was longer than that in
Beijing.

With the massive global pandemic, it is natural that the
outbreak emerges accidentally in other areas worldwide.
-ere are geographical, economic, cultural, health care, and
population density differences between people living in
Beijing and Xinjiang. For instance, the population density in
Beijing is about 1313 people per square kilometer, whereas it
is 14.98 people per square kilometer in Xinjiang. Based on
the initial spread of the infection, in Beijing, the source of the
infection, that is, the market, was identified within 22 hours
after the first case was confirmed. In Xinjiang, the epide-
miological analysis showed that the virus source of this
outbreak was from the same source of infection identified 13
days later. -e other regions can learn from these two re-
gions’ experiences in containing the spread of the virus.
Quantifying the effectiveness of these control measures is of
crucial importance for cities preparing for rapid responses in
the event of another outbreak; if asymptomatic cases are
identified quickly, the source of the infection can be con-
trolled and the infection rate can be reduced. -erefore,
massive screening of asymptomatic cases and quarantine of
susceptible people in communities are necessary.

-e dynamic model is a useful method for identifying
the key factors affecting disease outbreaks and evaluating
the intervention strategies. Based on the transmission

mechanism, the model can dynamically predict future
trends according to current information. -e quantities
used often include the basic or effective reproduction
number and the final epidemic size [7–11]. A mathematical
model is used to estimate the degree of the COVID-19
epidemic in cities worldwide [12–16]. -e SEIR model is
the most widely adopted model to study the COVID-19
outbreak in China and other countries [17–20]. Based on
the SEIR model, some researchers have increased the
number of states that have to follow the quarantine process
[6, 21]. We analyzed the transmission of COVID-19 in two
typical regions: Beijing and Xinjiang. Between the two
regions, the outbreak occurred simultaneously and similar
control measures were adopted, though there were sig-
nificant differences, for instance, in the duration of con-
firming the source, the ability of mass testing, and
proportional coefficient of quarantine.

In this study, we considered a dynamic model with
intervention measures.-emodel is introduced in Section 2.
In Section 3, the basic reproduction number, R0, a threshold
quantity for the stability of equilibria, was calculated. Using
the Lyapunov function, we proved that the disease-free
equilibrium was globally asymptotically stable if R0 ≤ 1,
whereas an endemic equilibrium was globally asymptotically
stable if R0 > 1. -e final size was derived. In Section 4, we
estimate the parameter values using Markov Chain Monte
Carlo (MCMC) simulations. In Section 5, we explore the
influence of mass testing and quarantine in Beijing and
Xinjiang. -e final size was evaluated for COVID-19 in
Beijing and Xinjiang.

2. Model Formulation

-e SIHRSq model was used to estimate the COVID-19
epidemic in Beijing and Xinjiang. We divided the total
population (N) into five groups: susceptible (S), unfound
infected (I), hospitalized (H), removed (R, removed group
includes recovered and death populations), and quarantine
(Sq). Susceptible people were infected by asymptomatic
infected people. -rough a latent period, some infected
people developed symptoms, went to the hospital, and were
diagnosed, while others remained asymptomatic. Some
asymptomatic people who were identified by nucleic acid
testing were taken to the hospital. -erefore, hospitalized
patients included symptomatic and asymptomatic individ-
uals. Patients hospitalized were isolated and treated; thus, we
considered that the susceptible people could not be infected
by the hospitalized patients. Other asymptomatic people not
diagnosed in the crowd recovered without treatment. Re-
covered patients included the treated and untreated patients.
To minimize risks, susceptible people from medium- and
high-risk areas or who had close contact with confirmed or
asymptomatic cases were tested. If their results were negative
on nucleic acid testing, they were prohibited from leaving
the outbreak regions and quarantined. -erefore, the sus-
ceptible individuals were quarantined in proportion to the
number of new cases hospitalized. -ose quarantined
remained till the outbreak was over in their regions. Hence,
people quarantined did move toward susceptible people.
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Based on the previous assumptions, the dynamic model
was described by the following ordinary differential
equations:

dS(t)

dt
� − β

S

N
I − κq

S

N
I + μN − μS,

dI(t)

dt
� β

S

N
I − α1I − α2I − μI,

dH(t)

dt
� α1I − δH − μH,

dR(t)

dt
� α2I + δH − μR,

dSq(t)

dt
� κq

S

N
I − μSq,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where α2 � c(1 − ρ)(1 − λ), α1 � ρ(1 − λ) + λ, and
κq � κ(1 − β)α1, where β is the infection coefficient. λ de-
notes the discovery rate of infectious people. c and δ are the
recovery rates. 1/μ is the rate of natural births and deaths,
where ρ is the daily proportion of nucleic acid testing. With
contact tracing, the uninfected individuals, who got in
contact with new hospitalized cases, move to the quaran-
tined compartment at a rate of κq. All parameters were
nonnegative. A flow diagram of system (1) is shown in
Figure 1. Additionally, the total population was included
N(t) � S(t) + I(t) + H(t) + R(t) + Sq(t). Adding all five
equations in system (1), we obtain (dN/dt) � 0, for all t≥ 0,
which implies N(t) � N(0)> 0 for all t≥ 0. Let the feasible
region for system (1) be

Ω � S, I, H, R, Sq  ∈ R
5
+: 0< S + I + H + R + Sq ≤N .

(2)

And the initial condition is

S(0) � S
0 ≥ 0, I(0) � I

0 ≥ 0,

H(0) � H
0 ≥ 0, Sq(0) � S

0
q ≥ 0,

R(0) � R
0 ≥ 0,

N(0) � N
0

� S
0

+ I
0

+ H
0

+ R
0

+ S
0
q.

(3)

Theorem 1. ,e region Ω is positively invariant with respect
to system (1).

Proof. To show the positivity of each individual, we first
show that I(t)> 0. We multiply both sides of the second

equation of system (1) by Θ(t) � e
− 

t

0
(β(S(τ)/N))dτ+(α1+α2+μ)t

and obtain

Θ(t)I′(t) � Θ(t) β
S(t)

N
− α1 + α2 + μ(  I(t). (4)

We obtain

I(t) � I
0
e


t

0
(β(S(τ)/N))dτ − α1 + α2 + μ( t

.
(5)

Since I0 ≥ 0, we obtain I(t)≥ 0 for all time t> 0. Now to
show that H(t)> 0, we multiply both sides of the third
equation of system (1) with e(δ+μ)t and obtain

e
(δ+μ)t

H′(t) � e
(δ+μ)t α1I(t) − (δ + μ)H(t)( . (6)

We may write

e
(δ+μ)t

H(t) ′ � e
(δ+μ)tα1I(t), (7)

on integrating from 0 to t and get

H(t) � e
− (δ+μ)t

H
0

+ 
t

0
e

(δ+μ)(τ− t)α1I(τ)dτ
. (8)

Since H0 ≥ 0 and I(t)≥ 0 for all times t> 0, we have
H(t)> 0. We multiply both sides of the fourth equation of
system (1) by eμt. By integrating from 0 to t, we obtain

R(t) � e
− μt

R
0

+ 
t

0
α2I(τ) + δH(τ)( dτ . (9)

Because R0 ≥ 0, I(t)≥ 0, and H(t)≥ 0 for all times t> 0,

we have R(t)> 0. From the fifth equation of system (1) and
S � N − I − H − R − Sq, we obtain

Sq
′(t) � κq

N − I(t) − H(t) − R(t)

N
I(t) − κq

I(t)

N
+ μ Sq(t).

(10)

We multiply both sides of the above equation with

Φ(t) � e


t

0
(κq(I(τ)/N))dτ+μt > 0 and get

Φ(t)Sq(t) ′ � κqΦ(t)
N − I(t) − H(t) − R(t)

N
I(t).

(11)

μN μS

μSq μH

μl μR

S l R

Sq H

γ(1 – ρ)(1 – λ)I

κ(1 – β)(S/N)(ρ(1 – λ)I + λI) ρ(1 – λ)I + λI

δH

β(S/N)I

Figure 1: General transfer diagram of the model.
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On integrating from 0 to t, we obtain that

Sq(t) � Φ− 1
(t) S

0
q + 

t

0
κqΦ(τ)

N − I(τ) − H(τ) − R(τ)

N
I(τ) dτ .

(12)

Since S0q ≥ 0, N − I(t) − H(t) − R(t)≥ 0, and I(t)≥ 0 for
all times t> 0, we have Sq(t)> 0. Similarly, to show that
S(t)> 0, we multiply both sides of the first equation of

system (1) by Ψ(t) � e


t

0
(β(I(τ)/N)+κq(I(τ)/N)+μ)dτ > 0 and

obtain

Ψ(t)S′(t) � Ψ(t)μN − Ψ(t) β
I(t)

N
+ κq

I(t)

N
+ μ S(t),

(13)

which can be rewritten as

(Ψ(t)S(t))′ � μNΨ(t). (14)

On integrating from 0 to t, we obtain that

S(t) � Ψ− 1
(t) S

0
+ 

t

0
μNΨ(τ)dτ , (15)

and thus S(t)> 0 for all times t> 0.
N(t) � N. -erefore, the region Ω is positively invari-

ant. -e solution enters Ω in an infinite time or N(t) as-
ymptotically approaches N. -e region Ω attracts all
solutions in R5

+ [22]. □

3. Dynamical Analysis

For the convenience of calculation, adding the equations in
system (1), it follows that N(t) is a first integral, and in-
troducing the densities s � (S/N), i � (I/N), h � (H/N),
sq � (Sq/N), r � (R/N), and s + i + h + sq + r � 1, system (1)
becomes

ds(t)

dt
� μ − βsi − κqsi − μs,

di(t)

dt
� βsi − α1 + α2( i − μi,

dh(t)

dt
� α1i − δh − μh,

dr(t)

dt
� α2i + δh − μr,

dsq(t)

dt
� κqsi − μsq.
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(16)

3.1. Global Stability of the Disease-Free Equilibrium (DFE).
By solving the equations of system (16) at a steady state, we
obtain a disease-free equilibrium (DFE) P0 � (s0, 0, 0, 0, 0),

where s0 � 1. We can evaluate the basic reproduction
number R0 for system (16) following the next-generation
matrix formulated by van den Driessche and Watmough
[23]. For the epidemic model, R0 shows that an average of
each infected individual infects more than one individual. If
R0 ≤ 1, the disease dies out. On the other hand, we may
expect the disease to spread in the community if R0 > 1. -e
basic reproduction number R0 for system (16) is

R0 �
β

α1 + α2 + μ
. (17)

Theorem 2. ,e DFE of system (32) is locally asymptotically
stable if R0 ≤ 1 and unstable if R0 > 1.

Proof. By linearizing system (16) around P0, the local sta-
bility of the DFE solution can be examined. Let
x � (i, h, r, sq, s) and f(x) denote the vector field of the
system in (16). Jacobian matrix J � (zf/zx) associated with
this P0:

J|P0 �

β − α1 − α2 − μ 0 0 0 0

α1 − δ − μ 0 0 0

α2 δ − μ 0 0

κq 0 0 − μ 0

− β − κq 0 0 0 − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

-e characteristic equation for the above matrix is

(λ + μ)
3 λ + α1 + α2 + μ(  1 − R0( ( (λ + δ + μ) � 0. (19)

We can see that all the eigenvalues have negative real
parts if and only if R0 < 1 which shows that the DFE P0 is
locally asymptotically stable. -e DFE P0 is unstable if
R0 > 1. □

Theorem 3. ,eDFE of system (16) is globally asymptotically
stable in Ω whenever R0 < 1.

Proof. Consider the following Lyapunov function:

V(t) � i(t). (20)

-en, if R0 < 1,

V′(t) � i′(t)

� βsi − α1 + α2 + μ( i

≤ β − α1 − α2 + μ( i

� α1 + α2 − μ(  R0 − 1( , i≤ 0,

(21)

where V′ � 0 if and only if i � 0. -e largest compact in-

variant set in (s, i, h, r, sq) ∈ Ω: V′ � 0  is a singleton P0.

-e global stability of P0 follows from LaSalle’s invariance
principle [24–26]. -is establishes the theorem. □
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3.2. Global Stability of the Endemic Equilibrium. By solving
the equations of system (16) in the steady state, there is an
endemic equilibrium P∗ � (s∗, i∗, h∗, r∗, s∗q ) if R0 > 1, where

s
∗

�
1

R0
> 0,

i
∗

�
R0 − 1( μ
β + κq

> 0,

h
∗

�
α1

δ + μ
i
∗ > 0,

r
∗

�
δα1 +(δ + μ)α2

(δ + μ)μ
i
∗ > 0,

s
∗
q �

R0 − 1( κq μ + α1 + α2( 

β β + κq 
> 0.

(22)

Now, we prove that P∗ is globally asymptotically stable in
the interior of Ω. We establish the following result.

Theorem 4. ,e unique endemic equilibrium P∗ is locally
asymptotically stable if R0 > 1.

Proof. By linearizing system (16) about P∗, we obtain the
Jacobian matrix:

J|P∗ �

βs
∗

− α1 − α2 − μ 0 0 0 βi
∗

α1 − δ − μ 0 0 0

α2 δ − μ 0 0

κqs
∗ 0 0 − μ 0

− β + κq s
∗ 0 0 0 − β + κq i

∗
− μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

-e characteristic equation for the above matrix is

λ + M1(  λ + M2( (λ + μ)(λ + η + μ)(λ + δ + μ) � 0,

(24)

where

M1 �
β + κq  α1 + α2 + μ( i

∗

β + κq i
∗

+ μ
,

M2 � β + κq i
∗

+ μ.

(25)

Hence, all the eigenvalues are negative real parts ifR0 > 1,
which shows that P∗ is locally asymptotically stable. □

Theorem 5. ,e endemic equilibrium P∗ is globally as-
ymptotically stable whenever R0 > 1.

Proof. We define the following Lyapunov function:

V � s
∗


s

s∗

βτ − α1 + α2 + μ( 

τ
dτ + 

i

i∗

β + κq s
∗τ + μs

∗
− μ

τ
dτ,

(26)

where α1 + α2 + μ � βs∗. By calculating the time derivative of
V along the solution of system (16), we obtain

V′ � −
μβ s − s

∗
( 

2

s
≤ 0, (27)

for all (s, i) ∈ Ω. -erefore, (s∗, i∗) is globally asymptotically
stable.

Using the previous conclusion,

h(t) � e
− (δ+μ)t

h
0

+ 
t

0
e

(δ+μ)(τ− t)α1i(τ)dτ. (28)

We derive

lim
t⟶∞

h(t) � lim
t⟶∞

α1i(t)

δ + μ
� i
∗
. (29)

Similarly, we obtain

lim
t⟶∞

r(t) � r
∗
,

lim
t⟶∞

sq(t) � s
∗
q .

(30)

According to LaSalle’s invariance principle [27, 28], the
endemic equilibrium P∗ is unique and globally asymptoti-
cally stable in the interior of Ω if R0 > 1. -e theorem is
proven. □

3.3.FinalSize. -efinal size of the epidemic is the number of
individuals ultimately becoming infected, which is the total
number of cases during the entire outbreak [29, 30]. In
analyzing system (16), we adopt the conventions that, for an
arbitrary continuous function x(t) with nonnegative
components:

x
∞

� lim
t⟶∞

x. (31)

Due to the small-time span, we considered natural birth
and death to be zero.

Letting μ � 0 in system (16), it becomes

ds(t)

dt
� − βsi − κqsi,

di(t)

dt
� βsi − α1 + α2( i,

dh(t)

dt
� α1i − δh,

dr(t)

dt
� α2i + δh,

dsq(t)

dt
� κqsi.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

-e disease basic reproductive number is
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R0 �
β

α1 + α2
. (33)

We observe that

s(t) + sq(t) ′ < 0,

s(t) + sq(t) + i(t) ′ < 0,

s(t) + sq(t) + i(t) + h(t) ′ < 0,

r′(t)> 0,

(34)

for all t> 0, while we know that s(t), sq(t), i(t), h(t) > 0 and
0≤ r(t)<N; hence, s∞ and r∞ exist, and we have
i∞ � 0, h∞ � 0, and s∞q � 0. Adding s, sq, and i equations to
system (32), we obtain

s + sq + i ′ � − α1 + α2( i. (35)

Integration of the equation with respect to t from 0 to∞
gives


∞

0
idt �

1
α1 + α2

s
0

− s
∞

+ s
0
q + i

0
 . (36)

Adding sand sq equations to system (32),

s + sq ′ � − βsi. (37)

From (di/d(s + sq)), we obtain that

di � − d s + sq  +
1

R0

ds

s
+
dsq

s
 

� − d s + sq  +
1

R0

ds

s
+
κq

R0
i.

(38)

An epidemic ends when no infection is found; that is,
i∞ � 0, h∞ � 0. -e integration of the above equation yields

ln
s
∞

s
0  � − R0 1 +

κq

β
  s

0
− s
∞

+ s
0
q + i

0
 . (39)

We now derive the equation for the final epidemic size,
defined by Y � s0 − s∞. -is yields an implicit relation:

Y � s
0
e

− R0 1+ κq/β( (  Y+s0q+i0 
. (40)

4. Estimation of Epidemiological Parameters

We obtained data on COVID-19 cases in Beijing and
Xinjiang from the National Health Commission of -e
People’s Republic of China. -e data included the cumu-
lative and new infections of confirmed, suspected, death,
cured, and asymptomatic cases; the cumulative number of
close contacts; and hospitalization time [31].

In China, the per-day rate of natural birth and death is
μ � 0.01094/365. Suppose that the recovery rate of asymp-
tomatic cases is c � 1/14. Beijing is a metropolitan area with
a population of 21.536 million (N � 2.1536 × 107). From
June 11 to July, 9,335 confirmed local cases and 49

asymptomatic cases had been reported, and no deaths were
reported of the cases in Beijing. According to the data in
Beijing, the mean time from infection to being tested pos-
itive for the virus was 10.8 days λ � (1/10.8), and the
treatment time was 10 days δ � (1/10). -e testing capacity
was approximately 0.3 million people per day ρ � 3 × 105/N.
-e initial values on June 11 in Beijing were S(0) � 2.1536 ×

107 R(0) � 0 and H(0) � 1.
-e population in Xinjiang is 24.87 million

(N � 2.487 × 107). Since the outbreak of the virus on July 15,
828 confirmed COVID-19 cases and 391 asymptomatic cases
have been reported in Xinjiang, mainly in Urumqi. No newly
confirmed COVID-19 case had been reported in Xinjiang since
August 16.-e treatment timewas 11 days δ � 1/11. From July
15 to 19, about 0.24 million people who had close contact with
infected people and asymptomatic carriers had got the nucleic
acid test, where the testing capacity was 0.06 million people per
day (ρ1 � 6 × 104/N). -e mean time from infection to being
tested positive for the virus was 14 days (λ1 � 1/14). On July 18,
a citywide, free nucleic acid test was launched in Xinjiang. -e
testing capacity was up to 0.5 million people per day
(ρ2 � 5 × 105/N) since July 20, the meantime from getting
infected to being tested positive for the virus was shortened
(λ2 � 1/7). -e initial values on June 11 in Xinjiang were
S(0) � 2.487 × 107, R(0) � 0, and H(0) � 1.

Based on the mathematical model, the cumulative
numbers of confirmed cases and identified asymptomatic
cases were determined in Beijing and Xinjiang. We used the
MCMC method to fit the model and adopted an adaptive
Metropolis–Hastings algorithm to carry out the MCMC
procedure. -e algorithm was run for 30,000 iterations with
a burn-in of the first 10,000 iterations, and the Geweke
convergence diagnostic method was employed to assess the
convergence of chains [32, 33]. We could acquire the pa-
rameter values for β and κ, and the initial values for S0q and I0

in the two regions. -e mean values and 95% confidence
intervals (95% CI) are presented in Table 1.

-e infection coefficient in Beijing (β � 0.0640) is lower
than that in Xinjiang (β � 0.1522). S0q in Beijing is greater
than that in Xinjiang because the population density in
Beijing (approximately 1313 people per square kilometer) is
higher than that in Xinjiang (approximately 14.98 people
square kilometer). I0 in Beijing is lower than that in Xinjiang
because the source of infection in Beijing was identified
quicker than that in Xinjiang. -e time evolution of the
infected cases and comparison with the cumulative number
of confirmed cases and identified asymptomatic cases are
shown in Figure 2. Evidently, the theoretical prediction is
nearly in agreement with the actual data, which also validates
the accuracy of the model. -e final sizes of the pandemic in
Beijing and Xinjiang were S(∞) � 2.1535137 × 107,
R(∞) � 862 and S(∞) � 2.4866980 × 107, R(∞) � 3019,
respectively. -e final scale in Beijing is smaller.

5. Spread of COVID-19 and the Effectiveness of
Interventions in Beijing and Xinjiang

-e basic reproduction numbers in Beijing and Xinjiang
were 0.3783 and 1.0882, respectively. -e basic reproductive
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number in Beijing was less than one, and it was verified that
the disease dies out. -e basic reproductive number in
Xinjiang was greater than one; however, with the increasing
expansion of the nucleic acid testing, the outbreak was
curbed. To draft policies for control measures, we analyzed
the cumulative number of confirmed and identified
asymptomatic COVID-19 cases for different values of κ
(Figure 3). -e analysis showed that, to control the spread of
COVID-19 (the smaller the final size, the shorter the du-
ration), a larger coefficient of quarantine is necessary. In
addition, as the population density in Xinjiang is less than
that in Beijing, it is effective to increase the coefficient of
quarantine in Xinjiang. We provided a sensitivity analysis of
the basic production number R0 with the parameters β and ρ
in Beijing and Xinjiang (Figure 4). Apparently, improving
the testing capacity ρ can decrease the basic reproduction
number R0.When the testing capacity reaches a certain level,
it will make the basic reproduction number R0 less than one
(Figure 4). In Xinjiang, the basic reproduction number
R0 > 1 was equal to ρ≥ 415600/N if the other parameters are
fixed. -is implies that the infection could not persist over
time in Xinjiang if the number of people tested was greater
than 415,600 per day. Without mass vaccination campaigns,
mass testing may be an effective prevention measure. Early

detection of new cases is a useful control strategy for
COVID-19.

6. Conclusion and Discussion

In this study, we constructed a mathematical model for
COVID-19 transmission in Beijing and Xinjiang in 2020.
-ere are differences in geographical, economic, cultural,
health care, and lifestyles of people living in the two regions.
-e population in Xinjiang is similar to that in Beijing;
however, the population density in Xinjiang is 100 times less
than that in Beijing. -e outbreak occurred in Beijing and
then in Xinjiang. Similar measures (mass testing and
quarantine) were adopted in the two regions, though the
time to confirm the source, the ability of mass testing, and
the proportional coefficient of quarantine were different. To
explore effective control and prevention measures for
COVID-19, we proposed a deterministic model with mass
testing and quarantine to describe the spread of COVID-19
in China. First, the basic reproduction number R0 of the
model was provided. -en, it was found that the model had
two nonnegative equilibria: the DFE and endemic equilib-
rium. -rough the analysis of the model, it was found that
the global behavior of the system was completely determined

Table 1: Parameter estimation for COVID-19 in Beijing and Xinjiang.

Parameter
Beijing Xinjiang

Source
Mean 95% CI Mean 95% CI

β 0.0640 [0.0640, 0.0641] 0.1522 [0.1520, 0.1524] MCMC
κ 99.2342 [93.4580, 105.8892] 83.3883 [83.3727, 83.4038] MCMC
S0q 80.0866 [80.0864, 80.0868] 1.8793 [1.8790, 1.8796] MCMC
I0 344.4526 [344.1625, 344.7428] 449.7552 [447.4628, 451.0475] MCMC
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Figure 2: Fitting results of the estimated cumulative number of confirmed and identified asymptomatic COVID-19 cases with its actual
reported numbers in Beijing and Xinjiang.
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Figure 3: Cumulative number of confirmed and identified asymptomatic COVID-19 cases on κ in (a) Beijing and (b) Xinjiang.
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by the size of the basic reproduction number R0, that is, the
DFE was globally asymptotically stable if R0 < 1, while an
endemic equilibrium existed uniquely and was globally
asymptotically stable if R0 > 1. Based on mathematical
analysis, data fitting, and sensitivity analysis, we revealed the
effects of mass testing and quarantine. Without the mass
vaccination campaign of COVID-19, it was found that the
higher the mass testing is, the earlier the source of infection
was determined for effectively controlling the spread. In
addition, a larger coefficient of quarantine was necessary to
control the spread of COVID-19. It was more effective in
increasing the coefficient of quarantine if the population
density of the region was less. If the government implements
mass testing and quarantine, it must devote a large amount
of continuous manpower, material, and financial resources
to eliminate the epidemic. With the development of the
vaccine for COVID-19, more people are vaccinated in a
community, which makes it possible for eliminating the
spread of COVID-19.

In the future, we plan to study the mass vaccination
campaign for COVID-19 in the whole of China.
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