
Research Article
Novel ANN Method for Solving Ordinary and Time-Fractional
Black–Scholes Equation

Saeed Bajalan 1 and Nastaran Bajalan 2

1University of Tehran, Tehran, Iran
2Eindhoven University, Eindhoven, Netherlands

Correspondence should be addressed to Saeed Bajalan; saeedbajalan@ut.ac.ir

Received 13 February 2021; Accepted 9 July 2021; Published 30 July 2021

Academic Editor: Chongyang Liu

Copyright © 2021 Saeed Bajalan and Nastaran Bajalan.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

)e main aim of this study is to introduce a 2-layered artificial neural network (ANN) for solving the Black–Scholes partial
differential equation (PDE) of either fractional or ordinary orders. Firstly, a discretization method is employed to change the
model into a sequence of ordinary differential equations (ODE). Subsequently, each of these ODEs is solved with the aid of an
ANN. Adam optimization is employed as the learning paradigm since it can add the foreknowledge of slowing down the process of
optimization when getting close to the actual optimum solution.)emodel also takes advantage of fine-tuning for speeding up the
process and domain mapping to confront the infinite domain issue. Finally, the accuracy, speed, and convergence of the method
for solving several types of the Black–Scholes model are reported.

1. Introduction

Both PDEs of the ordinary and fractional order play an
important role in pricing of financial derivatives. PDEs of the
ordinary order are the basis of various models proposed for
pricing of different types of options. On the contrary, fi-
nancial markets show fractal behavior [1–4] and fractional
PDEs (FPDE) which can better reflect that the reality of them
have gained a lot of interest recently. Hence, finding an
accurate and efficient approach for solving both types is a
critical issue in pricing.

)emost famous PDE in finance is the Black–Scholes (B-
S) model, which is broadly adopted for option pricing. So far,
studies have presented different approaches for finding the
numerical solution of this model and its variation when the
exact form does not exist [5–13]. By using tick-by-tick data,
Cartea and del-Castillo-Negrete [14] found that the value of
European-style options satisfies a FPDE containing a non-
local operator in time-to-maturity known as the Caputo
fractional derivative. Furthermore, in order to depict the
fractal structure in the financial market, the classical B-S

equation has been generalized by means of fractional de-
rivatives which have the property of self-similarity and better
modeling of long-range dependency [15–17]. Although the
fractional B-S is a powerful tool for explaining the hereditary
and memory characteristics of the financial market, it is
considerably difficult to obtain an accurate solution for it,
due to the memory trait of fractional derivatives [18]. As a
result, numerous researchers have tried techniques for ap-
proximating such problems. Among different analytical
models presented so far to solve time-fractional B-S, the
most cited articles employed integral transform [15, 19–23],
wavelet-based hybrid methods [24], the separation of var-
iables [25], the homotopy analysis and homotopy pertur-
bation methods [26–28], and Fourier Laplace transform
[29]. However, due to the high computational complexity of
these solutions, numerical methods are often better alter-
natives for solving such mathematical models.

Cartea and del Castillo-Negrete used backward differ-
ence technique together with shifted Grunwald–Letnikov
scheme to solve the spatial fractional FMLS process [14].
Investigation of convergence analysis and comparison of the

Hindawi
Complexity
Volume 2021, Article ID 5511396, 15 pages
https://doi.org/10.1155/2021/5511396

mailto:saeedbajalan@ut.ac.ir
https://orcid.org/0000-0002-6172-2766
https://orcid.org/0000-0001-7380-2491
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5511396

solution of three space fractional B-S modes were provided
by Marom and Momoniat [30]. Finite differences’ methods
were used to provide a solution for the time-fractional B-S
model in 2013 by Song and Wang [31]. Zhang et al. also
proposed a second-order finite difference method in the
following year [32]. Moreover, in 2017, the weighted finite
difference method was utilized to find the numerical solu-
tion of the model [33]. Chen et al. investigated predictor-
corrector approaches for the solution of American option in
2015 [34]. Khan and Ansari [35] were the first to use the
Sumudu transform to solve the fractional model of Euro-
pean options. In the same year, Zhang provided an un-
conditionally stable implicit numerical scheme for themodel
by changing the Riemann–Liouville derivatives to the
Caputo derivative [32]. As methods based on the radial basis
function (RBF) are widely used for approximating the or-
dinary PDEs, the meshless method was proposed for finding
the solution of the time-fractional method as well [18]. In
2020, the fractional model was numerically approximated by
using Quintic and sixth order B-spline functions as the basis
for a collocation method providing high accuracy for the
generalized B-S mode [36, 37]. In order to provide to sixth
order accuracy in solving the generalized Black–Scholes
model, Roul and Goura used both of the Crank–Nicolson
scheme and sextic B-spline collocation method.

Regarding machine learning and ANN in particular,
ANN has been traditionally used for predicting option prices
[38–43]; however, to the best of our knowledge except few
research studies, there is no available literature for solving
the B-S differential equation by ANN [44, 45]. Even these
few research studies are limited to integer order PDEs, and
there is no study for the solution of the fractional order B-S.
In this paper, we are going to construct a 2-layered artificial
neural network (ANN) to solve the Black–Scholes model of
either time-fractional or ordinary orders.)e Adaptive
Moment Estimation (Adam), which has been specifically
created to be used by neural networks, acts as the optimizer
in the ANN to add the foreknowledge of slowing down when
getting close to the optimal solution. To make the process
faster and increase the efficiency of the method, fine-tuning
is applied to the model. Also, to overcome the problem of the
infinite problem domain for approximation domain map-
ping is used to map the whole problem to a finite interval.
)e rest of paper is organized as follows: Section 2 is
dedicated to problem formulation, Section 3 explains the
methodology, Section 4 presents the numerical results, and
finally, the conclusion is provided in Section 5.

2. Problem Formulation

A put option on an underlying asset S is said to follow a
Geometric Brownian Motion (GBM), where σ, r, and W are
the volatility, interest rate, and Brownian motion, respec-
tively, if it obeys the stochastic differential equation as
follows:

dS � rSdt + σSdw. (1)

Using equation (1) and risk-neutral valuation formula
together with the classic Feynman–Kac formula, the
Black–Scholes operator is formed as below:

LU(S, t) � −
zU(S, t)

zt
−
σ2

2
S
2z

2
U(S, t)

zS
2 − rS

zU(S, t)

zS
+ rU(S, t),

(2)

where U(S, t) is the unknown function which determines the
option price Robbins and Monro [46]. It has been specified
that this option will have a certain payoff at a certain date in
the future, depending on the value(s) taken by the stock up
to that date.

It is well known now that a time-fractional Black-
–Scholes equation with the derivative of real order α can be
obtained to describe the price of an option under several
circumstances such as when the change in the underlying
asset is assumed to follow a fractal transmission system.
Fractional derivatives, as they are called, were introduced in
option pricing in a bid to take advantage of their memory
properties to capture bothmajor jumps over small periods of
time and long-range dependencies inmarkets.)erefore, the
fractional Black–Scholes model can be formulated as
follows:

LU(S, t) � − D
α
U(S, t) + c1

z
2
U(S, t)

zS
2 + c2

zU(S, t)

zS

+ c3U(S, t) + f(S, t),

(3)

where D denotes the fractional derivative, α is a real number,
and ci, i � 1, 2, and 3, and f(S, t) are functions dependent
on the values of σ, r, and α written using these notations for
simplicity. It can be shown that the time derivative DαU(S, t)

appearing in 3 equals the α-order Caputo fractional deriv-
ative by Chen et al. [47].

Based on the type of the option, the corresponding
condition set is as follows:

U(S, T) � g(S),

U(a, t) � Ma(t),

U(b, t) � Mb(t).

⎧⎪⎪⎨

⎪⎪⎩
(4)

In some cases, e.g., European, Mb(t) moves toward
infinity, thus the problem domain is semi-infinite. Some
possible strategies are defined in Section 3.4 to overcome this
obstacle when pricing.)e corresponding parameters and
their definitions are addressed in Table 1.

3. Methodology

In this section, four main concepts employed in the present
approach are explained.)en, the necessary steps to be taken
for finding the solution are combined to form the proposed
method.

3.1. Time Discretization. Solving multivariable equations
increases the time complexity and the risk of producing
inconsistent answers by computational software. In

2 Complexity

summary, time discretization methods are useful tools for
converting such models into a series of ordinary differential
equations (ODE).)is approach is the result of applying
finite difference methods on one dimension of an equation
to approximately calculate the value of derivatives with
respect to that dimension.

Since here fractional equations are also investigated,
ordinary and fractional time discretization approaches are
discussed. Suppose that the PDE to be solved is defined on
(S, t) ∈ [a, b]∗ [0, T]. Based on this method, U(S, t) in each
time step is defined as Ui(S) � U(S, iΔt), where U(S, t) is the
answer, Δ � (T − 0)/N, and N is the number of time steps.

3.1.1. Ordinary Time Discretization. Consider the PDE to be
solved as follows:

zU(S, t)

zt
� Ω

zU(S, t)

zS
,
z
2
U(S, t)

zS
2 , U(S, t), S, t , (5)

where U(S, t) is the answer and Ω is a linear or nonlinear
function. Instead of solving this problem on the two di-
mensions, it can be converted to a series of dependent ODEs.

By using the defined Ui(S), the following equation is
constructed:

zUi(S)

zt
� θ Ω

zUi(S)

zS
,
z
2
Ui(S)

zS
2 , Ui(S), S, iΔt

+(1 − θ) Ω
zUi− 1(S)

zS
,
z
2
Ui− 1(S)

zS
2 , Ui− 1(S), S, (i − 1)Δt .

(6)

)e method is implicit, if θ � 1. In this case, only
posterior time step is used.)e method is called explicit if
θ � 0 where only computing time step is utilized to ap-
proximate the solution. If the value of θ is equal to 1/2, the
method is the common Crank–Nicolson method which is
unconditionally stable and of the second order in time, and it
uses both posterior and computing time steps for approx-
imating the solution of the model. Due to the non-
smoothness of the payoff function and the activation
functions in our ANN, the Crank–Nicolson cannot reach its

second-order convergence. It can also cause extra incon-
sistencies because of the same problem. Hence, from this
point on, θ � 0 is considered.

3.1.2. Fractional Time Discretization. Suppose that the time-
fractional PDE (FPDE) to be solved is as follows:

D
α
t U(S, t) � Ω

zU(S, t)

zS
,
z
2
U(S, t)

zS
2 , U(S, t), S, t , (7)

where α denotes the Caputo derivatives of the function and
0< α< 1. As the first step for such FPDEs, the Caputo de-
rivative should be discretized (readers are advised to see
Hadian Rasanan et al. [48] for the preliminaries and thor-
ough information about this type of derivative). Consider
the following theorem.

Theorem 1. Suppose that [0, T] is divided to N parts with
step size of Δt � T/N, 0< α< 1, and q(t) ∈ C2[0, tk] where
tk � kΔt, and the following holds for this interval:

1
Γ(1 − α)

tk

0

q′(t)

t − tk(
αΔt −
Δt− α

Γ(2 − α)

· b0q x, tk(−
k− 1

m�1
bk− m− 1 − bk− m(q tm(− bk− 1q t0(⎡⎣ ⎤⎦

≤
1
Γ(2 − α)

1 − α
12

+
22− α

2 − α
− 1 + 2− α

(max
0≤t≤tk

q″(t)

Δt2− α
,

(8)

where bm � (m + 1)1− α − m1− α.

Proof. See the proof in the work of Suna andWub [49]. □

According to the above theorem, equation (3) can be
discretized in the following form:

D
α
t Un+1(S) ≈

1
Γ(2 − α)

n

m�0

Un+1− j(S) − Un− j(S)

Δtα
bm

� H Un+1(S) .

(9)

Now, the unknown function, Ui, i � 0, . . . , n, should be
approximated in each time step such that it satisfies equation
(3) and also its initial and boundary conditions in equation
(4). In this regard, the boundary conditions can be satisfied
by considering UN(S) � g(S) in computations. On the
contrary, to satisfy the boundary condition, the sum of least
square error methods is used in Section 4.

)e remaining step is satisfying equation (3), so for this
purpose, the cost function is chosen as below:

Cost(S, W) �
1

2Nr

r

i�1

N− 1

n�0

1
Γ(2 − α)

n

m�0

U Si, tn+1− m(− U Sm, tn− m(

dtα
bm − H U Si, tn+1(⎡⎣ ⎤⎦

2

, (10)

Table 1: Option parameters and their definitions.

Parameter Definition
T Maturity (years)
K Strike price
S Underlying asset (stock price)
r Interest rate
D Fractional derivative
α Real-valued derivative order
σ Volatility
g(S) Payoff function

Complexity 3

where S � (S1, S2, . . . , Sr) and Si is the ith training data. To
find the optimum weights for the network, this cost function

should be minimized subject to W, so the following non-
linear least square problem is obtained:

min
W

1
2Nr

r

i�1

N− 1

n�0

1
Γ(2 − α)

n

m�0

Un+1− m Si(− Un− m Sm(

dtα
bm − H Un+1 Si(⎡⎣ ⎤⎦

2

. (11)

It is noteworthy that when α � 1, the ordinary time
discretization method will be used.

It should be noted that the method is based on the
discretization of Caputo-type derivatives, and the result
based on other types is only possible if the discretization is
possible for other types.

3.2. Function Approximation. According to the universal
approximation theorem, every continuous function can be
approximated by a feedforward neural network [50].)is
theorem states that any linear function can be approximated
by an ANN without any hidden layers. But for functions of
higher orders, the approximation can be well-established, if
the ANN has at least one hidden layer. To calculate the price
of an option based on equations (2) and (3), the value of
option at each time step using a 2-layered network should be
approximated as follows:

N(W, S) � Ψ Vφ WS + B0(+ B1(, (12)

where n is the number of neurons in the hidden layer,
B0 � b1, b2, . . . , bn , B1 � β1 , and φi, i ∈ 1, 2, . . . , n, are
the activation functions in the hidden layer, and Ψ is the
activation function for the output layer.)e above formula
can be seen in Figure 1.

)e nodes commensurate with the edges bi and β1 in this
network are called the biases whose inputs are unchangeable
1s, and their weights are additional parameters as means of
adjusting the output of the next layer. In other words, they
help the network fit best for the given data.

)e most famous activation function in deep learning and
neural networks is sigmoid.)e twomain reasons for the broad
application of the sigmoid function are the straight-forward
calculations of its derivatives and its bounded value.)e sig-
moid function is defined as follows, and its values are in [0, 1]:

sigmoid(x) �
1

1 + exp(− x)
. (13)

)ese features make it a perfect candidate for problems
that produce probabilities and for the Black–Scholes
model.)e values of options are nonnegative, and the effect
of other parameters will not increase the calculations as
they are multiplied by smaller values produced by sigmoid.
On the contrary, the derivative of this well-known acti-
vator, its slope, is easily calculable between any two arbi-
trary points:

sigmoid′(x) �
exp(− x)

(1 + exp(− x))
2. (14)

Although linear functions such as identity are not fa-
vorable for hidden layers as they take away the chance to
generalize and adapt from the network, it is possible to use
them as the activator of the output layer; hence, the hidden
layers are present and are directly interacting with inputs.

3.3. Fine-Tuning. One of the key factors in the present study
is the possibility of applying the fine-tuning methods during
the training process. Fine-tuning is employing a previously
trained neural network to find the solution of a new similar
task.)is process is normally applied to datasets related to
images and voices. However, following the same approach, it
is possible to increase the accuracy and speed of the network
in this work.

Building and validating an ANN from scratch can be a
huge task in its own right, depending on what data being
trained on it, and many parameters such as the number of
layers and the number of nodes in hidden layers, the proper
activation functions, and learning rate should be found
through trial and error. If a trained model that already does
one task well exist and that task is similar to ours in at least
some remote way, then everything the model has already
learned can be taken advantage of and applied to the new
specific task. If the task is completely similar, like what we
are facing when solving the problem at different time steps,
the exact weights can be used as the initial values. If the
models are somewhat similar, still some knowledge exists on
the previous network which is notable for speeding up the
process of building/modifying and training the network for
the new task.)en, the only job remains for the network is
learning the new features and properties that were not
available in the former task. Here, once the network is
trained for the first time steps, the obtained parameters,
weights, and biases can be effectively reemployed for
training the data fed to the network in other time steps.)e
approximated solution and its convergence rate are com-
pared in Section 5.

3.4. Domain Mapping. Considering the vulnerability of
neural networks due to the bounded domain of their acti-
vation functions in calculations on infinite domains, the
domain mapping approach is utilized to shift the problem
from its semi-infinite domain to a finite interval.)is helps
to prevent the error caused by common solutions such as
truncation of the domain.

On finite domains, S � x will be considered, but in semi-
infinite domains, transformation formulas should be used
for shifting the problem to a desired finite one. Here, x(S) �

(2/π)arctan(S/L) is used to shift the problem’s domain

4 Complexity

which is [0,∞) to [0, 1], in which L is the characteristic
length of the mapping Boyd [51].

Here, L is chosen in a way that 60% of all training points
stand before the mapped strike price because the price
significantly differs from zero in [0, K] (Rad et al. [52]). It
means that, by defining l as an indicator for 0.6, in the view
of the fact that these points are equidistant, L is computed as
follows:

L �
K

tan((π/2)l)
. (15)

First, let us introduce the following notations:

U(S, t) � U(x, t),

S � L tan
π
2

x ,

Υ≜
zS

zx
�

Lπ
2 cos2((π/2)x)

,

Θ≜
zΥ− 1

zx
� −

2 cos((π/2)x)sin((π/2)x)

L
.

(16)

Hence, the derivatives needed for the calculations
according to Section 2 are

zU(S, t)

zS
�

z U(x, t)

zx

zx

zS
�
1
Υ

z U(x, t)

zx
,

z
2
U(S, t)

zS
2 �

z

zS

zU(S, t)

zS
 �

1
Υ2

z
2 U(x, t)

zx
2 +
Θ
Υ

z U(x, t)

zx
.

(17)

By substituting equation (17) in equations (3) and (2),
the domain of the obtained Black–Scholes model is [0, 1].

Since the transformation is applied to the whole prob-
lem, the payoff function and boundary conditions of
equation (4) should be changed as well.

3.4.1. Discussion. Using domain mapping helps to ap-
proximate the answer on the whole interval of the problems.
On the contrary, the number of training data points needed
for solving the model on smaller intervals is significantly less
as can be seen in Section 5. However, it can decrease the
accuracy since the whole domain is being compacted into
one small domain and loss of information may occur,
meaning that truncating the domain causes a perfect ap-
proximation on a subdomain of problems but with accep-
tance of a bit of loss in accuracy, the whole domain can be
covered. So, there lays a trade-off between these two
methods.

3.5. Adaptive Moment Estimation Learning. Regression
modeling is used to determine coefficients of mathematical
functions based on empirical data.)e method of least
squares determines the coefficients such that the sum of the
squares of the deviations between the data and the curve fit is
minimized. Finding a satisfactory solution to nonlinear least
square problems is one of the famous topics among scientists
who work on nonlinear systems of equations. For mini-
mizing a vector function, ‖Λ(x)‖, that is, matrix A is defined
as Λ: Rn⟶ Rm, and m≥ n with respect to a predefined
x � (x1, x2, . . . , xn), that is to say, x∗ ∈ Rn is found in a way
that

Υ(x) �
1
2

m

i�1
Λi(x)(

2
�
1
2
‖Λ(x)‖

2
�
1
2
f

T
(x) · f(x),

(18)

in which

x
∗

� min
x
Υ(x){ }. (19)

Several methods have been introduced for solving this
nonlinear least square model so far. As we can see the same
vector can be constructed when solving differential equa-
tions, similarly, for the Black–Scholes models, in each time
step, the final goal is finding the proper network weights for
solving the following system of equations:

eq1 � U S, ti(− U S, ti(� 0, i � 0, . . . , M,

eq2 � U 0, ti(− f(S) � 0, i � 0, . . . , M,

eq3 � lim
x⟶boundary

U S, ti(− g(S) � 0, i � 0, . . . , M.

(20)

)e best possible solution to this system of equations is
calculated when the sum of the squares of these equations gets
smaller.)erefore, the problem is converted into an opti-
mization problem. By minimizing the following equation, the
appropriate weights and biases for our network are found:

objective(U(S, t)) � min
W,V,B1 ,B2

eq21 + eq22 + eq23. (21)

Gradient descent (GD) is the most famous iterative
algorithm employed as a learning paradigm to solve re-
gression problems. In GD, after initializing the weights, the

Ψ Us

1 1

β
1

ϕ1

ϕ2

ϕ3

ϕn

b1

v1

v2

v3

vn

w1

w2

w3

wn

b2
b3

bn

Figure 1:)e topology of the network used for solving the
Black–Scholes model.

Complexity 5

gradients, G, of the cost function is calculated.)e cost
function is the sum square error of the output based on the
desired output for each member of the training dataset.
)en, based on G, the weights become updated
W � W − ηG.)is process is repeated by considering the
new values as the initial ones until the cost function is
desirably minimized. η is known as the learning parameter
and is used to balance the rate of increase or decrease in each
iteration. It should be noted that the only constraint on this
value is 0< η< 1. Various methods and theorems are in-
troduced to find the boundaries of this value according to the
problem. Some suggest using a big value and decreasing its
value as the result approaches the correct value. In contrast,
some others suggest choosing a very small value and then
increasing it exponentially in time when the correct direc-
tion is found. But generally, they all prefer making this
parameter a function of time, while none of them propose a
single formula to calculate the exact amount of it for the best
approximation [46, 53, 54].

GD family has different optimizers such as Stochastic
Gradient Descent (SGD), Adaptive Moment Estimation
(Adam), Root Mean Square Propagation (RMSprop), and
Nesterov Accelerated Gradient (NAG) which are mostly
used in deep learning because of their speed and strength
according to various control parameters such as the size of
the training datasets and the pattern in which the training
data is scattered.

In GD for updating only one parameter, all available
samples in the dataset should be visited; however, in SGD
[55], minibatches, which are small subsets of the whole
dataset, are used to update a single parameter. For relatively
large datasets, this causes the algorithm to converge faster.
GD is an actual optimizer trying to find the exact gradients
while in SGD; as explained, the algorithm only approximates
the gradients and not the precise value. Since SGD fluctuates
a lot, due to frequent updates with high variance, it shows a
paradoxical behavior. It can explore new and potential di-
rections to find the minimum but, at the same time, this
behavior puts the network in danger of completely missing
the local or global minimum.

A solution was proposed by the father of propagation,
Geoffrey Hinton Tieleman and Hinton [56].)is thorough
study which has not been academically submitted or pub-
lished gained a lot of attention.)e proposed algorithm
fights the possibilities of vanishing or exploding the gra-
dients. In other words, RMSprop normalizes the gradient
using a moving average of squared gradients.)is nor-
malization balances the step size, reducing the step size for
large gradients to avoid exploding and increasing it for small
ones to avoid vanishing. Since this approach uses the ex-
ponentially decaying average, it is related to the most recent
gradients, so the past gradient would not play a great role in
updating the parameters.)is leads to slow changes in the
learning rate; however, it is relatively faster than GD.

So far, it can be seen that RMSProp and SGD are the best
options. Adam is an adaptive algorithm which is generally
considered as the combination of these two paradigms with
momentum.)is methodology has been specifically created
to be used by neural networks.

Like RMSprop, Adam employs squared gradients to
modify the learning rate. Also, the first and second moments
are utilized using the moving average of the gradient such as
SGD. However, a specific learning rate is calculated for each
network parameter (weights) using two hyperparameters.
Here, a summary of how Adam optimization works for the
present model is provided. For the complete explanation,
readers are encouraged to study Kingma and Ba [57].)e
convergence of the method has been described in several
great papers. But finally, all of the studies confirm the
convergence proof provided in the first papers [58].

All computations are done using autograd package of
Python. In this package, Adam optimization is implemented
as follows:

def adam (grad, w, callback � None, num_iters � 100,
step_size � 0.001, b1 � 0.9, b2 � 0.999, eps � 10∗∗ − 8):
m � np · zeros(len(w))

v � np · zeros(len(w))

for i in range (num_iters):
g � grad(w, i)

if callback: callback (w, i, g)

m � (1 − b1)∗g + b1∗m # First moment estimate.
v � (1 − b2)∗ (g∗ ∗ 2) + b2∗ v # Second moment
estimate.
mhat � m/(1 − b1∗ ∗ (i + 1)) # Bias correction.
vhat � v/(1 − b2∗ ∗ (i + 1))

x � x − step size∗ (mhat/(np · sqrt(vhat) + eps)).
return x

As the name of the method describes, it is derived from
adaptive moment estimation. nth moment of a random
variable is defined as the expected value of that variable to
the power of n:

mn � E w
n

 , (22)

where m shows the nth moment and w is a random variable.
)e gradient of the cost function of the neural network can be
considered a random variable since it usually evaluated on
some small random batch of data.)e first moment is mean,
and the secondmoment is uncentered variance. To estimate the
moments, Adam utilizes exponentially moving averages and
computed on the gradient evaluated on a current minibatch:

mi � β1mi− 1 + 1 − β1(gi,

vi � β2vi− 1 + 1 − β2(g
2
i ,

(23)

where m and v denote the moving averages and g is the
gradient of the current data presented to the network.
According to Kingma and Ba [57], which is also mentioned in
the above snippet from autograd package, the values of
hyperparameters β1 and β2 have two default values of 0.9 and
0.999, respectively. While the authors did not discuss the
choosing process of these two variables, all studies reported
very promising and, in most cases, perfect estimations using
these two default values (see also [59]).)e vectors of moving
averages are initialized with zeros at the first iteration.

6 Complexity

)e remaining problem with these moments was being
biased towards zero since mi and vi are initialized as vectors
of 0’s. In other words, especially during the initial epochs
and when the decay rates are small (i.e., β1 and β2 are close to
1), the values of mi and vi will not change significantly or
even at all. So, the authors proposed the following bias
corrections in order to surmount this obstacle:

mi �
m

1 − βi
1
,

vi �
v

1 − βi
2
.

(24)

Now, for each of the parameters (weights), a specific
updating rule can be created:

w � w − η
m

����
v + ϵ

√ , (25)

where ϵ is an control parameter preventing the fractional
part from producing a division by zero error.

Different scientific studies have shown that Adam
outperforms other methods. According to empirical
practices, this method has better performance and accu-
racy.)is is also discussed in Section 5. One problem that
is stated by many studies is the convergence of the method.
However, Kingma and Ba [57] provided the analysis for
the convex problems; other papers argued the conver-
gence of the method on a few nonconvex problems. And,
with some modification, they finally agreed on its
usability.

In [60], the full analysis of the convexity of the Black-
–Scholes model is proposed. Due to differences such as the
failure of put-call parity in real markets instead of theory, this
paper proves that, for all American options, they preserve
their convexity in bubbled markets as well as nonbubbled
ones.)ey showed that European options are convexity
preserving only for bounded payoffs.)us, in this respect, the
prices of American options are more robust than their Eu-
ropean counterparts. In the same study, it is shown that
models for bubbles are convexity preserving for bounded
contracts. More precisely, consider (x, t) ∈ [0,∞) × [0, T],
and let u1(x, t) and u2(x, t) be the option prices such that
their corresponding volatilities are nonnegative α1 and α2
which satisfy α1(x, t)≤ α2(x, t).

Theorem 2. Assume that g is concave. 8en, u(x, t) is
concave in x for any t ∈ [0, T]. Moreover, the option price is
decreasing in the volatility, that is, u1(x, t)≥ u2(x, t) for all
(x, t) ∈ [0,∞) × [0, T]. Similarly, if g is convex and boun-
ded, then u(x, t) is convex in x for any t ∈ [0, T]. Moreover,
the option price is increasing in the volatility, that is,
u1(x, t)≤ u2(x, t) for all (x, t) ∈ [0,∞) × [0, T].

)e full proof is available in [60]. As they mentioned, the
proof is valid under the assumption of the uniqueness of the
result for such an option, which is proved in their thorough
study on properties of Black–Scholes models in more re-
alistic markets as well.

4. Numerical Results and Discussion

In this section, three test examples with exact solutions are
chosen according to the previous works for examining the
accuracy and efficiency of the proposed ANN. According to
what is mentioned in Section 3.5, this approach is applicable
to other kinds of options such as barriers and American
options. All computations are performed using Python.3.7
software on a 2.7GHz Intel Core i7 CPU machine with
16GB of memory. Only one hidden layer with 20 hidden
neurons is used in all of the samples.)e initial weights are
scattered in [− 0.01, 0.01].)e number of epochs for the first
time stamp is 5000, and for the rest of the steps, thanks to
fine-tuning, decreasing this number to 1200 provides very
promising results. All values in [2000, 7000] for the first
time-step iterations and all values in [600, 7000] do not lead
to overfitting/underfitting, but the best results in our ex-
periment achieved using the stated values. If the learning
rate is low, then training is more reliable, but optimization
will take a lot of time because steps towards the minimum of
the loss function are small, and on the contrary, if the
learning rate is high, then training may not converge or may
even diverge. Weight changes can be so big that the opti-
mizer overshoots the minimum andmakes the loss worse. In
this research, best values for the learning rate are found
using the genetic algorithm.

Example 1. Let us consider a European call option, in which
its interest rate, volatility, and strike price are 0.05, 0.2, and
10, respectively.)e governing equation is similar to
equation (31), and the boundary conditions set is as follows:

U(S, T) � max(S − K, 0),

U(0, t) � 0,

lim
S⟶∞

U(S, t) � S − K exp(− rt).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

With the maturity of 1, in years, the approximate price at
t � 0 is shown in Figures 2(a) and 2(b).)e exact solution of
this call option can be obtained using the following analytical
solution denoted by Uexact(S, t):

d1 �
ln(S/K) + r +(1/2)σ2 (T − t)

σ
�����
T − t

√ ,

d2 � d1 − σ
�����
T − t

√
,

N(S) �
1
���
2π

√
S

− ∞
exp −

1
2
y
2

 dy,

Uexact(S, t) � SN d1(− K exp(− r(T − t))N d2(.

(27)

When truncating the domain at 15, the cardinal of the
training dataset is 150 containing equidistant points scat-
tered between [0, 15] and η � 0.03.)e number of time
steps, N, is 20, and the average calculation time per each
epoch on the abovementioned configuration is 0.098 s.
Figure 2(a) demonstrates that when the problem domain is
truncated, the approximate price is behaving fine until it
reaches the truncation point which is 15 in these examples.

Complexity 7

To solve this issue, the problems are mapped to [0, 1]

using Section 3.4; then, U(x, t) is computed using the
proposed ANN and sigmoid functions as the activation
functions; then, U(x, t) is reverted to the original model’s
domain using the inverse mapping function so that U(S, t) is
calculated. Only 10 equidistant points are used as training
points in this case, and the logarithmic absolute errors
obtained from two approaches are compared in Figure 3. It
should be noted that, after the truncation point, the error
increases rapidly for the first approach, but when truncating
the domain, the overall error is higher at the beginning of the
interval but it remains steady and even falls at the end of the
domain. Since the mapping function converges to infinity on
x � 1, the numerical calculation on software such as Python
will not be able to perform the calculations. So, these
comparisons are done using a very big value for
x � 0.9999999. Figure 4 confirms the fact that the Adam
optimizer performs better than the other two optimizers, as
it starts to converge and moves towards the answer in earlier
epochs for the first time step.)e average calculation time
for SGD and RMSprop are, respectively, 0.45 s and 0.63 s per
epoch. It is noteworthy that RMSprop crashed due to
overflow encounters, and the depicted figure is just for
comparing, with the learning rate of 0.01 instead of 0.03
which somehow might make the comparison unreliable. But
the point is observed, and this method fails in comparison to
the other methods for solving this type of the Black–Scholes
model.

Figures 5(a) and 5(b) illustrate the incredible influence of
fine-tuning on the objective convergence.

Example 2. Consider the following fractional model of a
European option with homogeneous boundary conditions as
follows:

D
α
U(s, t) � a

z
2
U(s, t)

zt
2 + b

zU(s, t)

zt
− cU(s, t) + f(S, t) � 0,

U(0, t) � t,

U(1, t) � 0,

U(S, 0) � S
2
(S − 1).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)
)e interest rate and volatility are 0.05 and 0.25, re-

spectively. Other variables are calculated based on these two
variable, a � (1/2)sigma2, b � r − a, and c � r.)e frac-
tional order of the equation is α � 0.7. Also,

f(S, t) �
2t

2− α

Γ(3 − α)
+

2t
1− α

Γ(2 − α)
 S

2
(1 − S) − (t + 1)

2

a(2 − 6S) + b 2S − 3S
2

 − cS
2
(1 − S) .

(29)

)e exact solution for this equation is formulated as
below:

Uexact(S, t) � (t + 1)
2
S
2
(1 − S). (30)

)enumber of time steps, N, is 10, the number of hidden
neurons in this example is 6, and the average calculation
time per each epoch on the abovementioned configuration is
0.0012 s. Also, η � 0.03.)e approximate solution calculated
using the Adam neural network is plotted in Figure 6.
However, smaller number of training data points, 20 and 40,
still produced errors in [0, 10− 2], and 60 equidistant points
are used as training points in this case to reach the loga-
rithmic absolute errors illustrated in Figure 7(a), giving us
the freedom to increase the accuracy even more. Because the
number of epochs in this example is very small, the absolute
errors obtained from SGD, RMSprop, and Adam are

10
U

 (S
, 0

)

8

6

4

2

0

00 25 50 75 100
S

125 150 175 200

(a)

U
 (s

, t
)

5

4

2

3

1

0
14 12 10 8

s

t

6 4 2 0
0.2

0.4
0.6

0.8
1.0

(b)

Figure 2: Plots of the approximated solutions of Example 1 when the number of hidden neurons is 20 and dt � 1/20. (a) U(S, 0). (b) U(S, t),
t ∈ [0, T].

8 Complexity

101

100

0 10 20
#iteration

30 40

|o
bj

ec
tiv

e 0
|

(a)

101

100

0 20 40
#iteration

60 80 100

|o
bj

ec
tiv

e 0
|

(b)

0 20 40
#iteration

60 80 100

101

100

|o
bj

ec
tiv

e 0
|

(c)

Figure 4: Comparison of networks’ convergence toward the exact solution of Example 1 using (a) Adam optimizer, (b) SGD optimizer, and
(c) RMSprop (η � 0.01)

14 × 100

12 × 100

lo
g

(|U
ex

ac
t –

 U
ap

pr
|) 100

3 × 10–1

6 × 10–1

4 × 10–1

2 × 10–1

00 25 50 75 100
s

125 150 175

(a)

lo
g

(|U
ex

ac
t –

 U
ap

pr
|)

7 × 10–1

8 × 10–1

6 × 10–1

5 × 10–1

4 × 10–1

3 × 10–1

2 × 10–2

10–3

0 5 10 15 20 25 30
s

(b)

Figure 3: Plots of the logarithmic absolute error for the solution of Example 1 when the number of hidden neurons is 20 and dt � 1/20, the
logarithmic error (a) using the truncating approach and (b) using the mapping function.

6.80731 × 10–1

|o
bj

ec
tiv

e 0
|

8.97124 × 10–5

0 10 20 30
#iteration

40

(a)

|o
bj

ec
tiv

e 0
|

101

100

0 10 20 30
#iteration

40

(b)

Figure 5:)e effect of fine-tuning on the convergence rate of the method. Solving Example 1 with (a) fine-tuning and (b) without fine-tuning.

Complexity 9

compared in Figure 7. Here, it can be seen that, with a small
number of neurons and training points, the accuracy of the
model is more promising than the other optimizers.)e
average calculation time for SGD and RMSprop are, re-
spectively, 0.0059 s and 0.17 s per epoch.

Figure 8 illustrates the incredible influence of fine-tuning
on the objective convergence. When fine-tuning is used, the
objective function starts with a very small value, and hence, it
converges rapidly even for very small values of the cost (10− 4).

Example 3. Let us consider a European put option, in which
its interest rate, volatility, and strike price are 0.05, 0.2, and
10, respectively:

LU(S, t) �
zU(S, t)

zt
−
σ2

2
S
2z

2
U(S, t)

zS
2 − rS

zU(S, t)

zS
+ rU(S, t),

(31)

V(S, T) � max(K − S, 0),

V(0, t) � K exp(− rt),

lim
S⟶∞

V(S, t) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

With the maturity of 1, in years, the achieved result is
shown in Figure 9.)e exact solution of this put option can
be obtained using the following analytical solution denoted
by Uexact(S, t):

U
 (S

, 0
)

0.5

0.4

0.6

0.3

0.2

0.1

0.0

0.0 0.2 0.4
S

0.6 0.8 1.0

(a)

U
 (s

, t
)

0.5

0.4

0.2

0.3

0.1

0.0

s

t

0.0

0.0

0.2

0.2

0.4

0.4
0.6

0.8 0.6 0.8 1.0

(b)

Figure 6: Plots of the approximated solutions of Example 2 when the number of hidden neurons is 60 and dt � 1/20. (a) U(S, 0) (the red
dotted plot shows the approximate solution). (b) U(S, t), t ∈ [0, T].

lo
g

(|U
ex

ac
t –

 U
ap

pr
|)

6.4 × 10–3

7.2 × 10–3

8 × 10–3

4.8 × 10–2

3.2 × 10–2

4 × 10–3

3.2 × 10–3

2.4 × 10–3

1.6 × 10–3

0.0 0.2 0.4 0.6 0.8 1.0
s

(a)

lo
g

(|U
ex

ac
t –

 U
ap

pr
|)

1.5 × 10–1

1.75 × 10–1

2 × 10–1

1.25 × 10–1

10–1

7.5 × 10–2

5 × 10–2

2.5 × 10–2

0.0 0.2 0.4 0.6 0.8 1.0
s

(b)

lo
g

(|U
ex

ac
t –

 U
ap

pr
|)

1.5 × 10–1

1.75 × 10–1

1.25 × 10–1

10–1

7.5 × 10–2

5 × 10–2

2.5 × 10–2

0.0 0.2 0.4 0.6 0.8 1.0
s

(c)

Figure 7: Comparison of networks’ convergence toward the exact solution of Example 2 using (a) Adam optimizer, (b) SGD optimizer, and
(c) RMSprop.

10 Complexity

d1 �
ln(S/K) + r +(1/2)σ2 (T − t)

σ
�����
T − t

√ ,

d2 �
ln(S/K) + r − (1/2)σ2 (T − t)

σ
�����
T − t

√ ,

N(S) �
1
���
2π

√
S

− ∞
exp −

1
2
y
2

 dy,

Uexact(S, t) � − SN − d1(+ K exp(− r(T − t))N − d2(.

(33)

Since the problem domain is unbounded according to
the boundary conditions, when truncating the domain at 15,
the cardinal of the training dataset is 110, containing the
equidistant point scattered between [0, 15] and η � 0.2.)e
number of time steps, N, is 10, and the average calculation
time per each epoch on the abovementioned configuration is
0.032 s. Increasing the number of data points will increase
the accuracy for this configuration slightly (other parameters
might need to be adjusted as well); however, we preferred
this size to reduce complexity and memory usage.

In Figure 9(a), it is shown that when the problem domain
is truncated, unlike Example 3, the approximate price is

4.1996 × 10–2
|o

bj
ec

tiv
e 0

|

2.35378 × 10–4

0 2 4 6
#iteration

8 10

(a)

1.01706 × 100

1.57646 × 10–1

0 2 4 6
#iteration

8 10

|o
bj

ec
tiv

e 0
|

(b)

Figure 8:)e effect of fine-tuning on the convergence rate of the method. Solving Example 2 with (a) fine-tuning and (b) without fine-tuning.

10

U
 (S

, 0
)

8

6

4

2

0

00 25 50 75 100
s

125 150 175 200

(a)

U
 (s

, t
)

10

8

4

6

2

0

1412108
s

t
6420

0.2
0.4

0.6
0.8

1.0

(b)

Figure 9: Plots of the approximated solutions of Example 3 when the number of hidden neurons is 60 and dt � 1/20. (a) U(S, 0) (the red
dotted plot is the approximate solution). (b) U(S, t), t ∈ [0, T].

Complexity 11

behaving fine throughout the whole unbounded interval. But
this does not state that this behavior is the expected behavior
of the option considering that the boundary condition
makes the option price move towards zero. To make it
clearer, the errors for truncated and mapped approximate
solutions are compared in Figure 10. In Figure 10(a), the
absolute error before the truncation point is relatively better
than Figure 10(b). However, after the truncation point, it
starts to increase and then again flattens out which is pre-
dictable according to the boundary condition of this specific
function. In other words, this behavior cannot be general-
ized to other options as well because farther points are
outside the training dataset and the network cannot learn
their values. So, the preferred way is employing a mapped

domain with lower accuracy but more stable behavior.
Besides, only 10 equidistant points are used as training
points in this case.

Figure 11 shows the superiority of the Adam optimizer as
it starts to converge and moves towards the answer in earlier
epochs for the first time step.)e average calculation time
for SGD and RMSprop are, respectively, 0.038 s and 0.045 s
per epoch. Figures 12(a) and 12(b) illustrate the influence of
fine-tuning on the objective convergence.

Remark for future work: this paper did not cover the
application of the method on space fractional or time-space
fractional equations [61]. As the sigmoid functions are not
fractional, the end result will lack the proper accuracy;

6.4 × 10–2

5.6 × 10–2

lo
g

(|U
ex

ac
t –

 U
ap

pr
|) 4.8 × 10–2

4 × 10–2

3.2 × 10–2

2.4 × 10–2

1.6 × 10–2

8 × 10–3

0 5 10 15
s

20 25 30 35

(a)

lo
g

(|U
ex

ac
t –

 U
ap

pr
|)

4 × 10–2

3.5 × 10–2

3 × 10–2

2.5 × 10–2

2 × 10–2

1.5 × 10–2

5 × 10–3

10–2

0 5 10 15 20 25 4030 35
s

(b)

Figure 10: Plots of the convergence and logarithmic absolute error for the solution of Example 3 when the number of hidden neurons is 60
and dt � 1/30. (a) Cost function in each ANN iteration. (b) |Uexact(S, T) − Uapp(S, 0)|.

101

102

101

0 5 10
#iteration

15 20

|o
bj

ec
tiv

e 0
|

(a)

0 5 10
#iteration

15 20

101

102

100

|o
bj

ec
tiv

e 0
|

(b)

0 5 10
#iteration

15 20

101

102

100

|o
bj

ec
tiv

e 0
|

(c)

Figure 11: Comparison of networks’ convergence toward the exact solution of Example 3 using (a) Adam optimizer, (b) SGD optimizer, and
(c) RMSprop.

12 Complexity

therefore, readers are encouraged to use other basis func-
tions such as fractional Chebyshev functions to approximate
space fractional models.

5. Conclusion

)is study investigates neural networks with the famous
Adam optimizer for solving financial Black–Scholes
equations. Converting the PDE into a series of time-de-
pendent ODEs using the backward Euler finite difference
method and then solving each of these equations using the
proposed model confirm the satisfactory result and fast
calculation of the method.)e speed of the method is
caused by the parallel computations in the neural network
for each independent neuron, the straightforward cal-
culations of sigmoid activation functions that do not add
to the complexity of the model, and also the small number
of training points and hidden neurons for achieving very
promising accuracy.)e neural network outperforms
other methodologies regarding the consistency and ac-
curacy of the model in confrontation with machines or
calculation mistakes because of its fault tolerance. Fine-
tuning plays a significant role in this method by reducing
the building, validation, and calculation time. It also helps
the method converge faster by finding the appropriate
direction for gradients as depicted in three examples in
Section 4. Domain mapping, which has not been used in
ANNs before to the best of found knowledge, is employed
to make calculations possible on bigger or infinite
problem domains. As a result of combining these ap-
proaches into one single ANN, reliable, fast, and accurate
results were calculated.)e methodology is applicable to
other types of options priced by either ordinary or frac-
tional models as well as other partial differential equations
in any other field of study that can be solved using this
network.

Data Availability

)e data used to support the findings of the study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e authors thank Prof. John P. Boyd (University of
Michigan) for his thorough guidance and answering our
questions about the methods borrowed from his articles to
apply on the problems of the present work.

References

[1] B. Mandelbrot, “)e variation of certain speculative prices,
)e Journal of Business,” 8e Journal of Business, vol. 3,
pp. 394–413, 1963.

[2] E. Peters, “Fractal structure in the capital market,” Financial
Analyst, vol. 7, pp. 434–453, 1989.

[3] H. Q. Li and C. Q. Ma, “An empirical study of long-term
memory of return and volatility in Chinese stock market,”
Journal of Finance and Economics, vol. 31, pp. 29–37, 2005.

[4] T. F. Huang, B. Y. Li, and J. X. Xiong, “Test on the chaotic
characteristic of Chinese futures market,” Systems Engineering,
vol. 30, pp. 45–53, 2012.

[5] J. A. Rad, K. Parand, and L. V. Ballestra, “Pricing european and
american options by radial basis point interpolation,” Applied
Mathematics and Computation, vol. 251, pp. 363–377, 2015.

[6] R. Farnoosh, A. Sobhani, H. Rezazadeh, and M. H. Beheshti,
“Numerical method for discrete double barrier option pricing
with time-dependent parameters,” Computers & Mathematics
with Applications, vol. 70, pp. 2006–2013, 2015.

[7] R. Farnoosh, H. Rezazadeh, A. Sobhani, and M. H. Beheshti,
“A numerical method for discrete single barrier option pricing

3.42255 × 10–1
|o

bj
ec

tiv
e 0

|

1.31551 × 10–4

0 5 10 15
#iteration

20

(a)

|o
bj

ec
tiv

e 0
| 101

102

101

0 5 10 15
#iteration

20

(b)

Figure 12:)e effect of fine-tuning on the convergence rate of the method. Solving Example 3 with (a) fine-tuning and (b) without fine-
tuning.

Complexity 13

with time-dependent parameters,” Computational Economics,
vol. 48, no. 1, pp. 131–145, 2016.

[8] R. Farnoosh, A. Sobhani, and M. H. Beheshti, “Efficient and
fast numerical method for pricing discrete double barrier
option by projection method,” Computers & Mathematics
with Applications, vol. 73, no. 7, pp. 1539–1545, 2017.

[9] A. Golbabai and E. Mohebianfar, “A new method for eval-
uating options based onmultiquadric rbf-fd method,”Applied
Mathematics and Computation, vol. 308, pp. 130–141, 2017.

[10] A. Golbabai and E. Mohebianfar, “A new stable local radial
basis function approach for option pricing,” Computational
Economics, vol. 49, pp. 271–288, 2017.

[11] J. Rashidinia and S. Jamalzadeh, “Collocation method based
on modified cubic b-spline for option pricing models,”
Mathematical Communications, vol. 22, pp. 89–102, 2017.

[12] J. Rashidinia and S. Jamalzadeh, “Modified b-spline collo-
cation approach for pricing american style asian options,”
Mediterranean Journal of Mathematics, vol. 14, p. 111, 2017.

[13] A. Sobhani and M. Milev, “A numerical method for pricing
discrete double barrier option by legendre multiwavelet,”
Journal of Computational and Applied Mathematics, vol. 328,
pp. 355–364, 2018.

[14] Á. Cartea and D. del-Castillo-Negrete, “Fractional diffusion
models of option prices in markets with jumps,” Physica A:
Statistical Mechanics and Its Applications, vol. 374, no. 2,
pp. 749–763, 2007.

[15] W. Wyss, “)e fractional black–scholes equation,” Fractional
Calculus and Applied Analysis, vol. 3, pp. 51–61, 2000.

[16] T. Björk and H. Hult, “A note on wick products and the
fractional black–scholes model,” Financial Stoch, vol. 9,
pp. 197–209, 2005.

[17] A. Meerschaert and M. M. Sikorskii, Stochastic Models for
Fractional Calculus, Walter de Gruyter, Berlin, Germany,
2012.

[18] A. Golbabai, O. Nikan, and T. Nikazad, “Numerical analysis of
time fractional black–scholes european option pricing model
arising in financial market,” Computational and Applied
Mathematics, vol. 38, p. 173, 2019.

[19] W. Chen, X. Xu, and S.-P. Zhou, “Analytically pricing double
barrier options based on a time-fractional black–scholes
equation,” Quarterly of Applied Mathematics, vol. 72,
pp. 597–611, 2015a.

[20] S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayewand, and
L. Wei, “Analytical solution of fractional black–scholes eu-
ropean option pricing equation by using laplace transform,”
Computational and AppliedMathematics, vol. 2, pp. 1–9, 2012.

[21] G. Jumarie, “Derivation and solutions of some fractional black
scholes equations in coarse-grained space and time. appli-
cation to merton’s optimal portfolio,” Computational and
Applied Mathematics, vol. 59, pp. 1142–1164, 2010.

[22] H. Q. Li and C. Q. Ma, “)e numerical solution of fractional
order equation in financial models and its application,”
Hangzhou University of Electronic Science and Technology,
Hangzhou, China, 2009pp. 29–37, Master’s thesis.

[23] J. Liang, J. Wang, W. Zhang, W. Qiu, and F. Ren, “Option
pricing of a bi-fractional black-merton-scholes model with the
hurst exponent h in [1/2 , 1],” Applied Mathematics Letters,
vol. 23, pp. 859–863, 2010.

[24] G. Hariharan, S. Padma, and P. Prabhaharan, “An efficient
wavelet based approximation method to time fractional
black–scholes european option pricing problem arising in
financial market,” Computational and Applied Mathematics,
vol. 7, pp. 3445–3456, 2013.

[25] W. Chen, “Numerical methods for fractional black–scholes
equations and variational inequalities governing option
pricing,” Ph. D. thesis, University of Western Australia, Perth,
Australia, 2014.

[26] A. A. Elbeleze, A. Kılıçman, and B. Taib, “Homotopy per-
turbation method for fractional black–scholes european op-
tion pricing equations using sumudu transform,”
Mathematical Problems in Engineering, vol. 41, pp. 697–704,
2013.

[27] S. Kumar, D. Kumar, and J. Singh, “Numerical computation
of fractional blackescholes equation arising in financial
market,” Egyptian Journal of Basic and Applied Sciences, vol. 2,
pp. 177–193, 2014.

[28] D. Kumar, J. Singh, and D. Baleanu, “Numerical computation
of a fractional model of differential–difference equation,”
Journal of Computational and Nonlinear Dynamics, vol. 11,
Article ID 061004, 2016.

[29] J. S. Duan, L. Lu, L. Chen, and Y. An, “Fractional model and
solution for the black–scholes equation,” Mathematical
Methods in the Applied Sciences, vol. 41, pp. 697–704, 2018.

[30] O. Marom and E. Momoniat, “A comparison of numerical
solutions of fractional diffusion models in finance,” Nonlinear
Analysis Real World Applications, vol. 10, pp. 3435–3442, 2009.

[31] L. Song and W. Wang, “Solution of the fractional black-
scholes option pricing model by finite difference method,”
Abstract and Applied Analysis, vol. 2013, Article ID 194286,
2013.

[32] X. Zhang, S. Sun, and W. Lifei, “θ-difference numerical
method for solving time-fractional black–scholes equation,”
Chinese Academy of Science and Technology Papers, vol. 7,
pp. 1287–1295, 2014.

[33] M. N. Koleva and L. Vulkov, “Numerical solution of time-
fractional black–scholes equation,” Computational and Ap-
plied Mathematics, vol. 36, pp. 1699–1715, 2017.

[34] W. Chen, X. Xu, and S.-P. Zhu, “A predictor-corrector ap-
proach for pricing American options under the finite moment
log-stable model,” Applied Numerical Mathematics, vol. 97,
pp. 15–29, 2015b.

[35] W. A. Khan and F. A. Ansari, “European option pricing of
fractional black-scholes model using sumudu transform and
its derivatives,” General Letters in Mathematics, vol. 1,
pp. 74–80, 2016.

[36] P. Pradip Roul, “A high accuracy numerical method and its
convergence for time-fractional black–scholes equation
governing european options,” Applied Numerical Mathe-
matics, vol. 151, pp. 472–493, 2020.

[37] P. Roul, “A high accuracy numerical method and its con-
vergence for time-fractional black-scholes equation governing
european options,” Applied Numerical Mathematics, vol. 151,
pp. 472–493, 2020.

[38] M. Malliaris and M. Salchenberger, “A neural network model
for estimating option prices,” Applied Intelligence, vol. 3,
pp. 193–206, 1993.

[39] J. T. Yao, Y. L. Li, and C. L. Tan, “Option price forecasting
using neural networks,” Omega-international Journal of
Management Science, vol. 28, pp. 455–466, 2000.

[40] S. Amornwattana, D. Enke, and C. H. Dagli, “A hybrid option
pricing model using a neural network for estimating vola-
tility,” International Journal of General Systems, vol. 36, no. 5,
pp. 558–573, 2007.

[41] P. C. Andreou, C. Charalambous, and S. H. Martzoukos,
“Pricing and trading european options by combining artificial
neural networks and parametric models with implied

14 Complexity

parameters,” European Journal of Operational Research,
vol. 185, no. 3, pp. 1415–1433, 2008.

[42] H. Jang and J. Lee, “Generative bayesian neural network
model for risk-neutral pricing of american index options,”
Quantitative Finance, vol. 19, pp. 587–603, 2019.

[43] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep
learning for financial applications: a survey,” Applied Soft
Computing, vol. 93, Article ID 106384, 2020.

[44] J. A. González Cervera, “Solution of the black-scholes
equation using artificial neural networks,” Journal of Physics:
Conference Series, vol. 1221, Article ID 012044, 2019.

[45] S. Eskiizmirliler, K. Günel, and R. Polat, “On the solution of
the black–scholes equation using feed-forward neural net-
works,” Computational Economics, vol. 41, pp. 697–704, 2020.

[46] H. Robbins and S. Monro, “A stochastic approximation
method,” Annals of Mathematical Statistics, vol. 22,
pp. 400–407, 1951.

[47] W. Chen, X. Xu, and S.-P. Zhu, “Analytically pricing double
barrier options based on a time-fractional Black-Scholes
equation,” Computers & Mathematics with Applications,
vol. 69, no. 12, pp. 1407–1419, 2015.

[48] A. HadianRasanan, N. Bajalan, K. Parand, and J. Rad,
“Simulation of nonlinear fractional dynamics arising in the
modeling of cognitive decision making using a new fractional
neural network,” Mathematical Methods in the Applied
Sicences, vol. 43, pp. 1437–1466, 2019.

[49] Z. Suna and X. Wub, “A fully discrete difference scheme for a
diffusion-wave system,” Applied Numerical Mathematics,
vol. 56, pp. 193–209, 2006.

[50] B. C. Csáji, “Approximation with artificial neural networks,”
M. Sc. thesis, Eötvös Loránd University (ELTE), Budapest,
Hungary, 2001.

[51] J. Boyd, Chebyshev & Fourier Spectral Methods, Springer-
Verlag, Berlin, Germany, 1989.

[52] J. A. Rad, K. Parand, and S. Abbasbandy, “Local weak form
meshless techniques based on the radial point interpolation
(rpi) method and local boundary integral equation (lbie)
method to evaluate european and american options,” Com-
mun Nonlinear Sci Numer Simul, vol. 22, pp. 1178–1200, 2015.

[53] L. N. Smith, “Cyclical learning rates for training neural
networks,” in Proceedings of the IEEE Winter Conference on
Applications of Computer Vision, pp. 464–472, Santa Rosa,
CA, USA, March 2017.

[54] C. Darken, J. Chang, and J. Moody, “Learning rate schedules
for faster stochastic gradient search,” in Proceedings of the
Neural Networks for Signal Processing II Proceedings of the
1992 IEEE Workshop, pp. 3–12, Helsingoer, Denmark, Sep-
tember 1992.

[55] T. Schaul, I. Antonoglou, and D. Silver, “Unit tests for sto-
chastic optimization,” in Proceedings of the International
Conference on Learning Representations 2014, Scottsdale, AZ,
USA, May 2013.

[56] T. Tieleman and G. Hinton, “Lecture 6.5—rmsprop: Divide the
gradient by a running average of its recent magnitude,”
COURSERA:Neural Networks forMachine Learning, vol. 4, 2012.

[57] D. P. Kingma and J. Ba, “Adam: a method for stochastic op-
timization,” in Proceedings of the 3rd International Conference
for Learning Representations, San Diego, CA, USA, May 2015.

[58] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
adam and beyond,” 2018, http://arxiv.org/abs/1904.09237.

[59] S. Bock and M. Wei, “A proof of local convergence for the
adam optimizer,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Budapest,
Hungary, July 2019.

[60] E. Ekström and J. Tysk, “A fully discrete difference scheme for
a diffusion-wave system,” 8e Annals of Applied Probability,
vol. 19, pp. 1369–1384, 2009.

[61] S. O. Edeki, R. M. Jena, S. Chakraverty, and D. Baleanu,
“Coupled transform method for time-space fractional black-
scholes option pricing model,” Alexandria Engineering
Journal, vol. 59, no. 5, pp. 3239–3246, 2020, https://www.
sciencedirect.com/science/article/pii/S1110016820304087.

Complexity 15

http://arxiv.org/abs/1904.09237
https://www.sciencedirect.com/science/article/pii/S1110016820304087
https://www.sciencedirect.com/science/article/pii/S1110016820304087

