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Machine learning (ML) and deep learning (DL) algorithms work well where future estimations and predictions are required.
Particularly, in educational institutions, ML and DL algorithms can help instructors in predicting the learning performance of
learners. Furthermore, the prediction of the learning performance of learners can assist instructors and intelligent learning
systems (ILSs) in taking preemptive measures (i.e., early engagement or early intervention measures) so that the learning
performance of weak learners could be increased thus reducing learners’ failures and dropout rates. In this study, we propose an
intelligent learning system (ILS) powered by the mobile learning (M-learning) model that predicts learners’ performance and
classify them into various performance groups. Subsequently, adaptive feedback and support are provided to those learners
who struggle in their studies. Four M-learning models were created for different learners considering their learning features
(study behavior) and their weight values. 'e M-learning model was based on the artificial neural network (ANN) algorithm
with the aim to predict learners’ performance and classify them into five performance groups, whereas the random forest (RF)
algorithm was used to determine each feature’s importance in the creation of the M-learning model. In the last stage of this
study, we performed an early intervention/engagement experiment on those learners who showed weak performance in their
study. End-user computing satisfaction (EUCS) model questionnaire was adopted to measure the attitude of learners towards
using an ILS. As compared to traditional machine learning algorithms, ANN achieved the highest prediction accuracy for all
four learning models, i.e., model 1 � 90.77%, model 2 � 87.69%, model 3 � 83.85%, and model 4 � 80.00%. Moreover, the five
most important features that significantly affect the students’ final performance were MP3� 0.34, MP1� 0.26, MP2 � 0.24,
NTAQ � 0.05, and AST � 0.018.

1. Introduction

Despite the numerous advantages of mobile learning (M-
learning), the practicality of M-learning had been limited
due to not knowing about the exact behavior or learning
features of M-learners and how these learning features have
different meanings and values for different M-learners [1].
'e use of mobile phones for E-learning, U-learning, and
M-learning creates additional challenges for the delivery of

the adaptive learning content [2]. First, the limited space on
a mobile phone screen does not allow the learning content to
be presented in the same way as it is presented on web and
desktop applications. Moreover, due to low and inconsistent
internet speed, mobile learners feel frustration when
accessing the learning content during the learning process.
Nonetheless, M-learning has several advantages over tra-
ditional and web-based learning systems [3]. M-learning-
based education has already reached many learners as it
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provides the possibility of an adaptation process that is
difficult to achieve in traditional classroom settings. Mobile
learners (M-learners) using mobile phone technologies can
access and study the learning content at any time and from
anywhere. In M-learning settings, M-learners have the
freedom to choose the learning content they want to learn,
unlike traditional classroom settings where learners are
bound to the instructor’s provided learning content and
instructions.

Adaptive learning (AL) is an educational method that
uses computer algorithms to orchestrate the interaction with
the learner and delivers tailored learning content according
to the needs and performance of each learner [4]. In AL
systems, learning content is presented according to the
unique needs of each learner as indicated by learner re-
sponses, interactions, and feedback. 'ough the primary
target of AL systems is education, they can be used in a
variety of areas, i.e., professional training, business educa-
tion, simulation, etc. AL systems have been designed pri-
marily for desktop applications and web applications and
recently have been the prime target for mobile learning
systems [5].

Providing tailored learning content is one of the chal-
lenges that an adaptive learning system faces. To provide
needed support and to assist learners at the optimal time, it is
necessary to determine the exact learning behavior, the
strength, and weaknesses of different learners. 'e learning
features determine the learning behavior of various learners
which when collected and processed carefully can help
adaptive learning systems to guide learners properly. Ma-
chine learning (ML) and deep learning (DL) algorithms can
model the learning behavior of learners when the corre-
sponding learning features are properly provided. ML/DL
algorithms, when trained adequately, can determine the
features that have a significant impact on the performance of
learners. Moreover, ML/DL multiclass classification algo-
rithms can classify different learners into performance
groups according to their previous interaction and
performance.

Intelligent learning system (ILS) integrated with ma-
chine learning (ML) techniques can be used to create an
M-learning model that properly reflects the learning be-
havior of individual learners. A carefully developed
M-learning model based on proper learning features can
predict and identify learners’ strengths, weaknesses, pref-
erences, and performance. ML techniques that have been
used to develop the M-learning model include K-nearest
neighbors (KNNs) [6], linear discriminant analysis (LDA)
[7], multiclass logistic regression (softmax regression) [8],
support vectormachine (SVM) [9], decision trees (DTs) [10],
random forest (RF) [11], and artificial neural networks
(ANNs) [12]. Fundamental steps in developing an
M-learning model include defining proper learning features
(time, location, preferences, performance, etc.), generating a
dataset of learning features, features’ analysis, preprocessing,
transformation into the appropriate form, choosing proper

ML algorithm, training, testing, and reevaluating the
M-learning model [13]. When developed and matured, the
M-learning model can be used as a part of ILS for intelligent
guidance and adaptive support. During the learning process,
the M-learning model can recommend additional learning
content if they need it or let the learner move ahead if the
current topic is already covered. An adaptive M-learning
system performs adaptation based on the M-learning model
and updates the M-learning model when new facts are
driven from M-learners’ learning features. Information
gathered from the interaction mechanism of M-learning
systems is often imprecise, and its interpretation is typically
uncertain. Machine learning algorithms are commonly used
for learner modeling because of their ability to represent
complex feature relationships, feature weights, and com-
bined features’ effect on the learning behavior of individual
learners in the learning environment [14].

Models based on DL algorithms can focus on the right
features by themselves, requiring little intervention from
human programmers. ML and DL algorithms have the single
most important goal of AI research: allowing computers to
understand and model our real world well enough to exhibit
something identical to what we human beings call intelli-
gence. Some of the popular DL algorithms are artificial
neural network (ANN) [15], convolutional neural network
(CNN) [16], recurrent neural network (RNN) [17], self-
organizing maps (SOMs) [18], deep Boltzmann machine
(DBM) [19], and deep autoencoder [20].

'e contributions of this study are as follows:

(1) Creating an M-learning dataset: the dataset includes
learning features’ instances/records generated dur-
ing the learning process and logged on an online
Firebase cloud. 'e dataset is used as an input to the
ANN for the development of the M-learning model.

(2) M-learners’ behavior modeling: we used the
M-learners’ dataset to model learning in the
M-learning environment, i.e., creating the
M-learning model. In modeling M-learners, the
important step is to determine the effect of inde-
pendent learning features on dependent features, i.e.,
M-learners’ performance (final grades).

(3) Using the artificial neural network (ANN) for
learners’ classification: ANN (with hidden layers) is a
type of deep neural network or deep learning al-
gorithm that is used for M-learners’ classification,
important features’ identification (learning features),
and feature weight determination.

(4) Deployment of the M-learning model on mobile
devices: in this step, we deployed the M-learning
model on mobile devices of M-learners to determine
how accurately the learning performance of
M-learners is predicted and how the M-learning
model helps M-learners in the learning process and
making the right decision.
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(5) Performing early intervention/engagement experi-
ment: the objective of this experiment was to de-
termine whether early intervention by ILSsmotivates
M-learners to improve their performance. 'e result
of this experiment revealed that early intervention
could be a very effective technique in encouraging
weak learners to improve their learning behavior.

2. Related Work

Recently, Kotsiantis presented a novel case study, where he
gathered demographics and learning data from written
assignments for the ML regression method to estimate
learners’ future performance [21]. In this experimental
study, Kotsiantis revealed that the education domain offers
many interesting applications to ML. A learner model was
developed based on the mapping between predictors’ fea-
tures and target feature. Linear regression ML technique was
compared to other popular and benchmark ML techniques
such as model trees (MT, the counterpart of decision trees
(DTs)) [22], artificial neural networks (ANNs) [23], locally
weighted linear regression (LWLR) [24], and support vector
machine (SVM) [25]. 'e comparison results revealed that
model trees (MTs) give accurate results for the construction
of a software support learning tool.

ML techniques used for educational purposes can be
divided into classification/regression algorithms, sequential
pattern analysis, association rules, clustering, and web in-
formation mining [26]. Campbell proposed and developed a
learner model using linear regression that demonstrated that
learner SAT scores are insignificantly predictive of learner
success [27]. With the inclusion of the LMS login feature, the
predictive power of the model was tripled. 'e author
demonstrated that the login feature is directly proportional
to the level of effort. 'emore log the learner performed, the
more the effort he/she is undertaking. It was revealed that
learners with a low or average number of SAT scores could
achieve success in the final grade through above-average
levels of effort.

One of the popular and simple ML techniques used in
educational settings is association rule mining [28]. Like
other ML techniques, association rule mining tries to find
hidden patterns in the data. Association rule mining finds
patterns by analyzing features that occur together and highly
correlated features. Rules in association rule mining are not
extracted from users’ behavior or preference but rather
finding relationships between elements in every distinct
transaction.

Numerous research studies in the past have been carried
out that used unsupervised clustering algorithms to group
learners according to similar learning features. Anaya and
Boticario used a clustering technique called expectation
maximization (EM) that groups similar important features
without knowing in advance about the structure of the data
[29]. In clustering algorithms, the features are grouped
together according to their similarities by applying the
Euclidean metric. Learners were grouped by clustering
techniques according to their online collaboration in dis-
tance learning settings. 'e results indicated that, for

successful collaborative learning, regular and frequent
evaluation of team collaboration is necessary. Lin et al.
applied two-stage clustering (self-organizing maps and K-
means) on training data of automobile driving schools [30].
'e result of clustering served as a reference point for future
training courses. 'e authors also developed an educational
training prediction model using a backpropagation neural
network. 'e prediction model was used to create a
knowledge management system that assists the learner in
automobile training courses.

Deep learning (DL) is the most trending and discussed
research area in the field of AI. DL is a subfield in ML that
uses hidden layers in neural network models to represent
data both at a granular and abstract level. DL algorithms
have small processing units inside hidden layers called
neurons or perceptions that can apply linear and nonlinear
transformations to the input data. Different DL models and
architectures have been proposed, developed, and success-
fully applied in both supervised and unsupervised problems
in the fields of image processing, natural language pro-
cessing, handwriting recognition, self-driving cars, and
computer vision. DL algorithms form a hierarchy of multiple
hidden layers where high layers drive data from lower layers.
Table 1 lists the popular DL architecture, comparisons with
baseline algorithms, evaluation method, and performance
score.

3. Proposed Mechanism

Mainly, we have divided our research work into four phases.
'e first phase is about mobile learning system (Learnit)
development, testing, and deployment. 'e development of
the mobile learning system was necessary for feature gen-
eration and gathering. Phase two describes how learners
used Learnit, the types of learning features, and how learning
features were gathered from it. Phase three (discussed in
Section 4) gives a complete description of how different
machine and deep learning algorithms were applied to
learning features for analysis and examination. Phase four
(also discussed in Section 4) detailed results generated from
the analysis and how results can be used in the adaptive
M-learning process. Figure 1 shows the steps carried out
during M-learning model development, testing, integration,
features’ collection, deployment, early intervention, and
conducting end-user computing satisfaction (EUCS)
experiment.

3.1. Mobile Learning System (Learnit). Figure 2 shows the
interaction of learners with different activities of the Learnit
app, whereas Figure 3 shows learning, problem posting, and
quiz-taking activities. For this study, three courses (com-
puter basics, C++ programming, and JAVA programming)
were offered to learners. While using Learnit, a learner can
select any course he/she is interested in. Each course is
further divided into three learning modules. Each learning
module consisted of three learning topics. After the com-
pletion of eachmodule, a quiz activity was offered to learners
to evaluate their learning. A final quiz/checkpoint was
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Table 1: DL algorithm/architecture used in education, baseline algorithms, and evaluation method.'e column values indicate whether the
DL algorithm outperformed baseline algorithms (greater), underperformed (lesser), or obtained the same results (equal).

Reference DL model architecture Baseline ML model architecture Evaluation method Performance

Guo et al. [31]

Student performance
prediction network (SPPN)

based on the sparse
autoencoder

Naı̈ve Bayes, MLP, SVM Accuracy Greater

Akram et al. [32] LSTM SVM, RF, majority class Accuracy, precision,
recall, F1

Greater

Fok et al. [33] Deep neural networks DT, association rules Accuracy Greater
Abhinav et al.
[34] MLP K-NN, SVD RMSE, MAE Greater

Amazona and
Hernandez [35] ANN DT, Naı̈ve Bayes Accuracy Greater

Alvarado et al.
[36] WE N-grams Precision, recall,

F-measure Equal

Kim et al. [37] GritNet, bidirectional long
short-term memory (BLSTM) Standard logistic regression Performance Greater

Fei and Yeung
et al. [22] RNN, LSTM SVM, LogReg, IOHMM Accuracy Greater

Samuel-Soma
et al. [38] Ensemble techniques NB, DT, K-NN, disc, PWC Accuracy,

performance Greater

Alam et al. [39] Artificial neural network Random forest, Chi2 Classification,
accuracy Equal

Khajah et al.
[40] LSTM BKT Accuracy Equal

Ma et al. [41] DNN DT, SVM Prediction, accuracy Lesser
Lalwani and
Agrawal et al.
[42]

LSTM PFA, BKT Accuracy Equal

El Fouki and
Aknin [43] DNN PCA Prediction —

Abidi et al. [44] DL

Generalized linear model (GLM), logistic
regression (LR), decision tree (DT),

random forest (RF), and gradient boosted
trees (XGBoost)

Learners’ confusion
prediction

Greater for RF,
GLM, XGBoost,

and DL

Hadullo et al.
[45] MLP — Performance

prediction factors —

Wang et al. [46] CNN, RNN SVM, LogReg, DT, AdaBoost, GTB, RF,
GNB

Accuracy, precision,
recall, F-measure Equal

Ndukwe et al.
[47] DNN — Classification —

Whitehill et al.
[48] FNN — Accuracy —

Chai et al. [49] ANN — Accuracy Greater
Yeung and
Yeung [50] LSTM — Accuracy —

Sun et al. [51] CNN ANN Prediction, feature
reconstruction Greater

Tanuar et al. [52] ANN Linear model, DT Accuracy Greater
Yang et al. [53] LSTM — MSE —

Dyuti Islam [54] MLP RF, SVM Accuracy, precision,
recall, F-measure Greater

Wang et al. [55] Convolutional GRU RF, SVM, BPNN, RNN, LSTM Accuracy, F1-score Greater
Saa et al. [56] NN RF Prediction accuracy Lesser
Adam et al. [57] LSTM — — —
Sharma et al.
[58] CNN, AlexNet, VGG16, LSTM SVM, HMM Accuracy Greater
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administered after the completion of three courses to
evaluate the overall learning outcomes of the learners.
Learners were provided with two types of learning content
(video and PDF text) for every learning topic.

3.2. Features’ Extraction. As mentioned earlier, the learners’
features were extracted and gathered from learners while
they used the Learnit app. Table 2 shows the preprocessed
features along with their category and description.

875 learners from the Institute of Computing, Depart-
ment of Physics, and Institute of Numerical Science par-
ticipated in using the Learnit app. After data cleansing and
security, 850 learners’ data were finally selected to be in-
cluded in the dataset and to be further used as an input to the
learner model. 'ese features were further preprocessed and
converted into a form that the learner model can accept as an
input. 'e features’ preprocessing steps include features’
encoding, features’ scaling, and splitting features into
training and testing sets.

4. ANN-Based M-Learning Model (Modeling
Learner Using ANN)

To develop the M-learning model, ANN with two hidden
layers was used as shown in Figure 4. For the ANN-based
learning model, the most important element is historical
feature instances. 'e more the feature instances are pro-
vided to the learner model, the better it will learn and will
generate accurate results. In this study, the ANN-based
learner model should accurately categorize learners into 5
(A, B, C, D, and F) different groups based on their learning
performance.

4.1. Training ANN-Based M-Learning Model. Training the
ANN-based M-learning model includes the following steps:

(1) Feeding the M-learning model with feature in-
stances, i.e., feed-forward technique or forward
propagation where data flow in one direction, from
the input to the output layer.

(2) Selecting the activation function for hidden layer
neuron activation. In our experiment, we have se-
lected the ReLU activation function.

(3) Using the activation function at the output layer. As
our problem is categorical, therefore, we have used
the softmax function.

(4) Backpropagation: to reduce the difference between
the actual result and generated result, i.e., to reduce
the loss.

Forward propagation is the core process during the
model training and learning phase. It is the forward
propagation along with the backpropagation technique,
where a model learns the weights and bias values for neural
network synapses. Our input features’ data are in the form of
n∗ 13, where 13 is the number of input features and n is
feature instances/records. 'e default configuration of the
ANN accepts one feature instance at a time, but multiple
feature instances can be entered into the ANN by a tech-
nique called matrix multiplication. Using matrix multipli-
cation, multiple feature instances can enter the ANN at a
time, speeding up the training and learning process as a
result. To perform matrix multiplication, we defined two
matrices, X and W1, where X represents the input features’
data and W1 is the weight of the synapse between the input
layer and hidden layer 1. Matrix X is in the form N∗M,
where M is the input features and N is the feature instances.
Similarly, the W1 matrix represents the weights of the
synapses between the input layer and hidden layer 1, having
13∗ 11 dimensions, where 13 is the input neurons and 11
represents the values of the weights of the synapses attached
to each input neuron (11 synapses per neuron). We used the
Python Dense class to initially initialize weights on synapses.
Later, synapses’ weights get updated according to the error
value backpropagated from the output layer. Mathemati-
cally, matrices X and W1 can be represented as

X �

X11 X21 X31 . . . X131
X12 X22 X32 . . . X132
X13 X23 X33 . . . X133
. . . . . . . . . . . . . . .

X1n X2n X3n . . . X13n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W1 �

W11 W12 W13 . . . W111
W21 W22 W23 . . . W211
W31 W32 W33 . . . W311
. . . . . . . . . . . . . . .

W131 W132 W133 . . . W1311

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Matrix X, when multiplied by matrix W1, yields matrix
a1 having n∗ 11 dimensions as illustrated in equation (2).
For simplicity, the resultant matrix multiplication process is
represented in equation (3).
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a1 �

X11 ∗W11 + · · · + X131 ∗W131􏼈 􏼉 X11 ∗W12 + · · · + X131 ∗W132􏼈 􏼉 . . . X11 ∗W111 + · · · + X131 ∗W1311􏼈 􏼉

X12 ∗W11 + · · · + X132 ∗W131􏼈 􏼉 X12 ∗W12 + · · · + X132 ∗W132􏼈 􏼉 . . . X12 ∗W111 + · · · + X132 ∗W1311􏼈 􏼉

X13 ∗W11 + · · · + X133 ∗W131􏼈 􏼉 X13 ∗W12 + · · · + X133 ∗W132􏼈 􏼉 . . . X13 ∗W111 + · · · + X133 ∗W1311􏼈 􏼉

. . . . . . . . . . . .

X1n ∗W11 + · · · + X13n ∗W131􏼈 􏼉 X1n ∗W12 + · · · + X13n ∗W132􏼈 􏼉 . . . X1n ∗W111 + · · · + X13n ∗W1311􏼈 􏼉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

a1 � XW1. (3)

Two processes are performed during ANN forward
propagation when input data are transferred from the input
layer to hidden layer 1. First, at each neuron, at hidden layer
1, the input feature value is multiplied by synapses’ weights.
'is multiplication task is done at each neuron in hidden
layer 1 for all features’ data and synapses connected to the
corresponding neuron. 'e multiplication results are then
added together, and the activation function is applied to the
result. 'e processing at each neuron in hidden layer 1 can
be summarized by the following equation. θ represents the
activation function performed after the sum of the product
operation.

θ 􏽘
11

k�1
XiWi

⎛⎝ ⎞⎠. (4)

Secondly, the activation function is performed on the
result obtained from the sum of the product operation. We
used the rectified linear unit (ReLU) activation function at
each hidden layer neuron because it is computationally less
expensive, efficient, and can easily propagate errors during
the backpropagation process. ReLU activation function is
represented in the following equation:

z1 � f a1( 􏼁, (5)

where f(a1) is

f(a) �
0, for a1 < 0,

a1, for a1 > �0.
􏼨 (6)

'e ReLU activation function is applied independently
to each entry in matrix a1, and a new matrix is generated
called z1. 'e size of matrix z1 is the same as that of matrix
a1. All the neurons at hidden layer 1 perform the ReLU
activation function on their input matrix and generate
modified matrices ready for feed-forwarding to hidden layer
2.'ematrix data are propagated forward from hidden layer
1 to hidden layer 2 in the same way as it was propagated from
the input layer to hidden layer 1. Similarly, the operation at
hidden layer 2 neurons is the same as hidden layer 1 neu-
rons’ operation. At hidden layer 2 neurons, first, the input
values from hidden layer 1 are multiplied by corresponding
synapses’ weights and then added together to perform the
ReLU activation function. 'e z1 matrix stored at hidden
layer 1 has an n∗ 11 dimension, whereas the dimension of
the W2 matrix is 11∗ 11, where 11 represents neurons at
hidden layer 1 and their corresponding weights. 'e mul-
tiplication of the z1 matrix with W2 yields the a2 matrix
having the dimension of n∗ 11 and can be represented by the
following equation:

Phase 1 Phase 2

Phase 4 Phase 3

Feature weight tuning

Best model selection

M-learning model testing

M-learning model training

Making training and testing sets

Features' scaling

Features' encoding

Features' extraction

Features' collection

M-learning model implementation

M-learners' classification

M-learning model updation

Early intervention and using EUCS

Development

Testing

Deployment

M-learning
system

Figure 1: Workflow steps during M-learning model development and deployment.
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a2 � z1W2. (7)

After the matrix multiplication operation, the ReLU
activation function is performed on each entry in matrix a2
resulting in a new matrix called z2. Mathematically, the
equation can be written as

z2 � f a2( 􏼁. (8)

Similarly, using the forward propagation technique,
matrix z2 at hidden layer 2 is propagated to the output layer.
'e neurons at the output layer, after performing softmax
activation function (for categorical/multiple classification
results) on input data, generate pj ̂, which is the ANN-based
M-learning model-predicted value of the learner’s final
grade (FG). It is very likely that initially, there is a difference
between the predicted result pĵ and actual result “a.” For

(a) (b) (c)

(d) (e) (f )

Figure 2: Learner interaction with the Learnit app. (a) Learner login activity. (b) Learner registration activity. (c) Course selection activity.
(d) Computer basics topics. (e) C++ topics. (f ) JAVA topics.
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minimizing the difference between the predicted result and
the actual result, we used a technique called back-
propagation, which is further explained in the following
section.

4.1.1. Minimizing Model Cost/Loss Using Backpropagation.
M-learning model cost or loss function tells us the difference
between the predicted and actual output result. Ideally, the
predicted result should be equal or very near to the actual
result, but in a scenario where the difference is substantial,
the backpropagation technique is used to reduce the dif-
ference between predicted and actual output results. We

expressed the learner model cost function in the following
expression:

C � 􏽘
1
2

a − 􏽢pj􏼐 􏼑. (9)

In the above expression, “a” is the learner’s actual final
grade, whereas pĵ is the predicted final grade result. For an
accurate and reliable learner model, this difference must be
as minimum as possible. As a result, the M-learning model
will convey an accurate picture of learners’ learning behavior
and performance. For minimizing the learner model cost
function, we had two choices: (1) changing the input

(a) (b) (c)

(d) (e) (f )

Figure 3: Learner learning, problem posting, and quiz activities. (a) Video or text selection activity. (b) Learner reading text content.
(c) Learner watching video content. (d) Problem posting related to a particular topic. (e) Module quiz activity. (f ) Final quiz activity.
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features’ data and (2) tweaking weights on ANN synapses.
Input feature instances are static and will not change;
therefore, the only option left with us is to adjust weights on
ANN synapses. To determine suitable weights for synapses,
we used a technique called stochastic gradient descent (SGD)
along with backpropagation. SGD technique is efficient and
reduces time and computation costs during the back-
propagation process. Furthermore, when we have high-di-
mensional data and we are looking for suitable weights
across millions of synapses, the SGD technique is more
impressive in determining suitable synapses’ weights and
therefore reducing the overall model cost. Looking at our
ANN model architecture, we can observe that the weights
that are responsible for generating cost/error are spread
across three matrices, i.e., W1, W2, and W3. We calculated
the derivative of cost C concerning W1, W2, and W3, i.e.,
(d(C)/d(W1)), (d(C)/d(W2)), and (d(C)/d(W3)), result-
ing in the same number of gradient values as the number of
synapses’ weights across the ANN. 'e derivative of C
concerning W1, W2, and W3 determines how many weight
values are responsible for generating error/cost in the
M-learning model.

'e key in the training of theM-learning model is to find
the appropriate values for weights across the model so that
the model can build good approximator functions that can
be applied to the new learner features for their performance
prediction. In other words, we want to have a set of weights
that minimize the error/loss/cost at the output layer. To
demonstrate the backpropagation process in detail, consider
the simplified M-learning model in Figure 5.

If the weights W1 get changed, the values across hidden
layers 1 and 2, W1, W2, and the output result would also
change. Here, the output result is functional dependent on
W1, W2, and W3 weights and activation function in hidden
layers 1 and 2.We can, mathematically, formulate the output
as an extension of the composite function:

output � act w3 ∗ act w2 ∗ act w1 ∗ input data( 􏼁( 􏼁( 􏼁. (10)

If we have an error on the output layer, then it means
that the error is functionally dependent on the output
function which in turn is dependent on the function of
input, weights, and activation functions. To know howmany
arbitrary weights, i.e., W1, are responsible for the generated
error, we compute the derivative of the error w.r.t w1, and
the result would be

d(j)

d W1( 􏼁
�

d(j)

d(output)
.
d(output)
d(hidden2)

.
d(hidden2)

d(hidden1)
.
d(hidden1)

d W1( 􏼁
.

(11)

In the backpropagation process, we are traversing from
the output error to W1, taking iterative steps using the chain
rule. We take the derivative of the error w.r.t the output,
derivative of the output w.r.t to hidden neurons, and finally
derivative of hidden neurons w.r.t weights. 'is process is
shown in Figure 6.

To get a comprehensive intuition of the backpropagation
process, we are going to determine the derivative of the error
w.r.t the weights at the input layer denoted by W1

ij in

Figure 7. 'e architecture of the learner model in Figure 7 is
simplified for a better understanding of the backpropagation
process. Mathematically, we are trying to obtain how many
input layer weights are responsible for the error as shown in
the following equation:

d(error)
d W

1
ij􏼐 􏼑

�
d(j)

d W
1
ij􏼐 􏼑

. (12)

Looking at Figure 7, we also know that

d(error)
d W

1
ij􏼐 􏼑

�
d(j)

d W
1
ij􏼐 􏼑

�
d(j)d pj􏼐 􏼑

d pj􏼐 􏼑d W
1
ij􏼐 􏼑

. (13)

'is implies that the derivative of the output error w.r.t
to input layer weights is equal to the derivative of the error
w.r.t the predicted result multiplied by the derivative of the
predicted result w.r.t input layer weights. 'e term
(d(j)/d(pj)) tells us the derivative of the error w.r.t output
prediction which can be written as
(Pj − a)where a is the actual output result.

'erefore, the equation becomes

d(j)

d W
1
ij􏼐 􏼑

� Pj − a􏼐 􏼑
d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

. (14)

Going one layer further back and applying the chain rule,
we can write (d(pj)/W1

ij) as

d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

�
d pj􏼐 􏼑

d pj􏼐 􏼑

d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

. (15)

From equation (15), we can deduce that the derivative of
the predicted result w.r.t input weights is equal to the de-
rivative of the output w.r.t the derivative of the input (pi) at
the output layer multiplied by the derivative of the input
value w.r.t input weights. Similarly, applying the chain rule,
(d(pj)/d(pj)) can be written as

d pj􏼐 􏼑

d pj􏼐 􏼑
� pj 1 − pj􏼐 􏼑. (16)

In the above expression, the term at the right-hand side
corresponds to the derivative of the ReLU function which is
equal to the output result multiplied by one minus the
output. Pj denotes the output of the activation function at the
output layer. Now, equation (15) can be written as

d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

� pj 1 − pj􏼐 􏼑
d pi( 􏼁

d W
1
ij􏼐 􏼑

,

d(j)

d W
1
ij􏼐 􏼑

� pj − 1􏼐 􏼑
∗
pj 1 − pj􏼐 􏼑

d pi( 􏼁

d W
1
ij􏼐 􏼑

.

(17)

Moving backward to hidden layer 2, we can notice that
the red lines spread out in multiple directions. Since multiple
weight values affect the value of pi, we must take all of them
into derivative which can be represented by sigma notation:
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d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

� 􏽘
j

d pi( 􏼁

d zj􏼐 􏼑

d zj􏼐 􏼑

d W
1
ij􏼐 􏼑

. (18)

Looking at Figure 7, we can observe that pi is the
summation of hidden layer 2 weights multiplied by zj (ac-
tivation performed on the sum of products). Taking the
derivative of pi with zj would give us connecting weights
between hidden layer 2 and the output layer and can be
expressed as

d pi( 􏼁

d zj􏼐 􏼑
� W

3
ij. (19)

We can express the rate of change of pi and zjw.r.t W1
ij as

d pj􏼐 􏼑

d W
1
ij􏼐 􏼑

� W
3
ij

d zj􏼐 􏼑

d W
1
ij􏼐 􏼑

. (20)

Since we cannot quite put the derivative of zj w.r.t Wi
ij

into a numerical form, we continue to use the chain rule and
follow the fourth red line back in Figure 7 to determine that

d zj􏼐 􏼑

d W
1
ij􏼐 􏼑

�
d zj􏼐 􏼑

d zi( 􏼁

d zi( 􏼁

d W
1
ij􏼐 􏼑

� zj 1 − zj􏼐 􏼑
d zi( 􏼁

d W
1
ij􏼐 􏼑

. (21)

Since zj is the result of applying the activation function to
zi, therefore, we use the same logic as in the previous layer
and apply the ReLU derivative. 'e derivative of zi w.r.t W1

ij

established by the fifth line back is based on the same idea of
spreading out and taking the summation of all contributions:

d zi( 􏼁

d W
1
ij􏼐 􏼑

� 􏽘
j

d zi( 􏼁

d yj􏼐 􏼑

d yj􏼐 􏼑

d W
1
ij􏼐 􏼑

� 􏽘
j

W
2
ij

d yj􏼐 􏼑

d W
1
ij􏼐 􏼑

. (22)

We move on to performing more reduction and find the
derivative of yj w.r.t W1

ij.

d yj􏼐 􏼑

d W
1
ij􏼐 􏼑

�
d yj􏼐 􏼑

d yj􏼐 􏼑

d yi( 􏼁

d W
1
ij􏼐 􏼑

� yj 1 − yj􏼐 􏼑
d yi( 􏼁

d W
1
ij􏼐 􏼑

. (23)

Traversing further back in our network, we notice that, at
red line number six in Figure 7, we still must deal with
another activation function. 'e last line in the back-
propagation process traverses from the input at yi to xjwhich
represent the weights W1

ij between the input and hidden
layer 1. In fact, W1

ij are the weights which we were
attempting to backprop to. At this point, we can determine
the change in yi w.r.t W1

ij which can be expressed by the
following equation:

d yi( 􏼁

d W
1
ij􏼐 􏼑

� 􏽘
j

xj. (24)

Notice here that the coefficient of W1
ij is xj. Combining

all the individual expressions gives us the final expression.
Here, the final expression tells us how many weights to
adjust at each layer to reduce to the generated error.

d(j)

d W
1
ij􏼐 􏼑

� pj − a􏼐 􏼑∗ pj 1 − pj􏼐 􏼑􏼐 􏼑􏼐 􏼑∗ 􏽘
j

W
3
ij ∗ zj 1 − zj􏼐 􏼑􏼐 􏼑􏼐 􏼑∗ 􏽘

j

W
2
ij ∗ yj 1 − yj􏼐 􏼑􏼐 􏼑􏼐 􏼑∗ 􏽘

j

xj
⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (25)

Table 2: Preprocessed features along with their category and description.

Features’ categories Features Description

Behavioral features

ODGP Online discussion group participation, i.e., the number of times a learner has participated in the online
discussion group (numeric)

NPP Number of times problem posted online related to study topics (numeric)
NPS Number of times solved the posted problem online by other learners during learning (numeric)

NTAQ Total number of quiz attempts in three modules (numeric)
TRR Learning topic average repetition rate in three modules (numeric)

Context features

AST Average study time per learning topic (numeric)
NTRA Number of times text resource accessed during the learning process (numeric)
NVRA Number of times video resource accessed during the learning process (numeric)

MP1 Learner performance in module 1, numeric: (18 to 20� very good), (15 to 18� good), (12 to
15� average), (9 to 12� satisfactory), and (0 to 9� fail)

MP2 Learner performance in module 2, numeric: (18 to 20� very good), (15 to 18� good), (12 to
15� average), (9 to 12� satisfactory), and (0 to 9� fail)

MP3 Learner performance in module 3, numeric: (18 to 20� very good), (15 to 18� good), (12 to
15� average), (9 to 12� satisfactory), and (0 to 9� fail)

APV Academic places visited. Degree of academic places visited during the learning process, i.e., library and
classrooms, numeric: 0 to 1

SPV Social places visited. Degree of social places visited during the learning process, i.e., playgrounds and
hostels, numeric: 0 to 1

Final performance
feature FG Final grades showing the final performance of a learner in three modules, categorical: (18 to 20� very

good), (15 to 18� good), (12 to 15� average), (9 to 12� satisfactory), and (0 to 9� fail)
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4.2. Implementation of the M-Learning Model Using the Ar-
tificial Neural Network (ANN). We developed and imple-
mented the M-learning model using the ANN. Firstly, we
initialized the weights of synapses with numbers very close
to zero with the help of the Keras Dense class. Secondly, the
Keras Sequential class was used to propagate dataset fea-
tures’ observations from the ANN input layer to the output
layer. During forward propagation, the activation function
at every neuron in the ANN is restricted by the weights of the
synapses. 'e output of the M-learning model is learners’
performance grades, i.e., A, B, C, D, and F. Table 3 shows
learners’ performance scores classified into five-level grades.

We assumed that features such as module performance 1
(MP1), module performance 2 (MP2), and module per-
formance 3 (MP3) have the highest impact on the learners’
final grades; therefore, we performed multiclass classifica-
tion on four learning models as discussed in the following
briefly:

(1) M-learning model 1: this model contains all the
features from the dataset except final grades

(2) M-learning model 2: this model is similar to
M-learning model 1 but without the MP3 feature

(3) M-learning model 3: this model is similar to
M-learning model 2 but without the MP2 feature

(4) M-learning model 4: this model is similar to
M-learning model 3 but without the MP1 feature

We compiled M-learning model 1 and achieved an
accuracy of 90.77 percent. To better analyze and visualize the
results of M-learning model 1, we constructed a confusion
matrix on actual grade scores and predicted grade scores as
shown in Figure 8 (without normalization and normalized
confusion matrices). 'e confusion matrix for M-learning
model 1 revealed that 107 out of 130 grades were predicted
correctly, whereas the remaining 23 grades were predicted
incorrectly.

'e confusion matrices (without normalization and
normalized) for M-learning models 2, 3, and 4 are shown in
Figures 9–11. 'e diagonal elements in confusion matrices
are those elements that are predicted accurately, whereas the
remaining elements are predicted inaccurately. 'ose

Input
layer

Hidden
layer

1

Hidden
layer

2

Output
layer

A

B

C

D

F

Figure 4: Artificial neural network-based M-learning model with 2 hidden layers, 1 input layer, and 1 output layer.

Activation () Activation () Activation () J Error

Input
Hidden

1
Hidden

2 Output

W1 W2 W3

Figure 5: 'e simplified M-learning model learning process.
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elements that are predicted accurately are called true pos-
itives, whereas those elements that are predicted inaccurately
are called false positives.

From confusion matrices in Figures 9–11, we can ob-
serve that the accuracy of models decreases as we remove the
modules’ performance, i.e., features MP1, MP2, and MP3
from independent features. 'is concludes that module
performance scores are an important factor in predicting the
final grades of learners. Moreover, to know whether our
M-learning models suffer from overfitting, we plot training
accuracy, testing accuracy, training loss, and testing loss over
the number of epochs passed.

Figures 12–15 show the model accuracy and model loss
for M-learning models 1–4. In Figure 12, initially, during
early epochs, the model accuracy of the training and testing
dataset somewhat matched up, but later on, during the last
50 epochs, the model accuracy of the training and testing
dataset somewhat deviates, but overall, it does not seem that
overfitting is a huge problem for M-learning model 1, and
the accuracy of the model is acceptable. 'e model loss of
M-learning model 1 decreases as the number of epochs
passes away.

'is concludes that M-learning model 1 is successful in
minimizing cost/loss function over time and is gradually
learning the exact relationship between independent fea-
tures and final grades. 'e results of the model accuracy and
the model loss for M-learning model 2 and M-learning

model 3 are somewhat similar to M-learning model 1 as
shown in Figures 13 and 14, but we can observe that the case
for model accuracy andmodel loss for M-learning model 4 is
different. In Figure 15, we can perceive that, as more and
more epochs are completed, the difference between the
model accuracy andmodel loss of the training set and testing
set increases.

'is is because now, due to the absence of module
performance features (MP1, MP2, and MP3), M-learning
model 4 is not able to predict the final grades, and the model
loss increases and the model accuracy decreases on the
testing set.'e results in Figure 15 also divulged that module
performance features are important in predicting the overall
final grades of learners.

4.3. Multiclass Benchmark Machine Learning Algorithms’
Prediction Accuracy in Comparison with the ANN. Before
fitting all four learning models to different machine learning
algorithms, some preprocessing was performed. 'e pa-
rameters adopted for artificial neural networks were 200
epochs and a batch size of 5, whereas a total sample of 200
trees was selected for the random forest ensemble method.
For support vector machines, we selected sequential mini-
mal optimization (SMO) algorithm. To estimate the pre-
dictive accuracy of each algorithm, the 5-fold cross-
validation resampling technique was used. Under such a

Activation () Activation () Activation () J Error

Input
Hidden

1
Hidden

2 Output

W1 W2 W3

Figure 6: Backpropagation process where the generated error is backpropagated to weights W1.

xi

W1
ij W2

ij W 3
ij

yi
zi zj pi

pjxj yj

J Error

Figure 7: Simplified ANN-based M-learning model architecture.

Table 3: Learners’ performance scores classified into five-level grades.

Final grades’ classification Very good Good Average Satisfactory Fail
Earned points 18–20a 15–17 12–14 9–11 0–8
Grades A B C D F
a'e number is inclusive in the range.
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scheme, the data are randomly divided into 5 subsets of
equal size. Subsequently, out of 5 subsets, one set is used as
the validation data for testing the model, while the
remaining 4 subsets are used as a training set. From Table 4,
it can be noted that ANN and random forest algorithms have
superior prediction accuracy for all four learning models,
while linear discriminant analysis exhibited inferior
accuracy.

4.4. Features’Weights and Importance. We used the random
forest ensemble method to determine each feature’s im-
portance and weight in predicting the final performance
grades. Random forest is based on an adaptive learning
methodology that combines several models to generate
better results than the individual model result. Feature
weights and importance give good evidence of what features
contribute most in predicting the final grades of learners.
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Figure 8: Confusion matrices of M-learning model 1, without normalization and normalized confusion matrix. (a) Without normalization.
(b) With normalization.
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Figure 9: Confusion matrices of M-learning model 2, without normalization and normalized confusion matrix. (a) Without normalization.
(b) With normalization.
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'e features’ weights were integrated with the M-learning
model to provide adaptive content and tailored navigation to
learners during their interaction with the Learnit app.
Table 5 shows the values of the weights of each feature in
predicting the final grades.

5. Early Intervention Experiment during the
Learning Process

In the last stage of our research, we conducted an early
intervention experiment to figure out whether preventive
measures have an influence on learners in improving their

study performance.'e experiment was carried out on those
learners who achieved performance grades D and F (learners
having 11 or less than 11 scores in their final performance
quiz). At this point, our M-learning model is trained with
learners’ features and is matured enough to predict the
learning performance of the existing and new learners. 'e
goal of carrying out an early intervention experiment was to
motivate and encourage weak learners to improve their
learning performance and make M-learning model pre-
dictions false. A total of 425 learners (having D and F grades)
were selected and were divided into control and experi-
mental groups (the control group having 212 learners
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Figure 11: Confusion matrices of M-learning model 4, without normalization and normalized confusion matrix. (a) Without normal-
ization. (b) With normalization.
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Figure 10: Confusion matrices of M-learning model 3, without normalization and normalized confusion matrix. (a) Without normal-
ization. (b) With normalization.
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whereas the experimental group having 213 learners).
Control group learners were independent of preventive
measures and early intervention and received normal
learning content, guidance, and quizzes, whereas experi-
mental group learners received motivational triggers,
adaptive triggers, and adaptive learning content. Moreover,
adaptive navigational paths were recommended to experi-
mental group learners during their learning process. 'e
early intervention experiment lasted for 50 days.

During the early intervention experiment, different
adaptive triggers were presented to experimental group
learners during their learning process. 'e adaptive triggers

were presented according to learners’ preferred learning
content types and how adaptive triggers are assigned to the
learning content.

'e timings of the adaptive triggers are before and after.
Before triggers refer to those triggers that are presented to
learners before they have started the learning activity,
whereas after triggers mean presenting triggers to learners
after they have finished a learning activity. 'e purpose of
adaptive triggers was to assist learners during their learning
process and help them in understanding exhaustive and
difficult topics. Likewise, different motivational triggers were
presented to learners on their smartphones according to
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Figure 12: Model accuracy and model loss for M-learning model 1. (a) Model 1 accuracy. (b) Model 1 loss.
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Figure 13: Model accuracy and model loss for M-learning model 2. (a) Model 2 accuracy. (b) Model 2 loss.
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their performance scores. Table 6 shows learners’ perfor-
mance state, the assigned motivational triggers, and their
examples.

BJ Fogg in his Fogg behavior model (FBM) suggests that
three elements, i.e., ability, motivation, and the trigger
(prompt or message), must be present at the same time for a
learning behavior to occur [59]. Adaptive triggers aimed to
help learners while they study, whereas motivational triggers
aimed to increase learners’ motivation towards learning.
One of the important factors related to adaptive and mo-
tivational triggers is the opportune time. Opportune time is
the right time at which adaptive and motivational triggers
are sent to the learners on their smartphones. An example of
sending motivational triggers at the opportune time is right
after the learner quiz activity in case the performance of the

learner in that quiz is not good. Similarly, praise and ap-
preciation triggers were sent to the good consistent learners
once a week as too many motivational triggers may over-
whelm or annoy learners during the learning process.

6. Early Intervention Experiment Results

After 50 days, we analyzed the final score results of the
experimental and control group. Figure 16 shows a line
graph representing the final score of both the experimental
and control group. 'e line graph confirms that the inter-
vened learners showed overall better performance than
unintervened learners in the final quiz. Moreover, the sta-
tistical analysis result revealed that intervened learners
showed an overall 12.30% higher performance than
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Figure 14: Model accuracy and model loss for M-learning model 3. (a) Model 3 accuracy. (b) Model 3 loss.
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Figure 15: Model accuracy and model loss for M-learning model 4. (a) Model 4 accuracy. (b) Model 4 loss.
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unintervened learners. 'ese results confirm that proactive
or preemptive measures do affect learners’ behavior and can
improve their learning performance scores.

6.1. Analyzing Learners’ Satisfaction Using the EUCS Model.
To elicit learners’ experience of using the Learnit application,
end-user computing satisfaction (EUCS) model was used. As
discussed in the proposed system section, the Learnit ap-
plication is based on the M-learning model which uses an
artificial neural network (ANN) to determine how inde-
pendent learning features affect the final learning perfor-
mance of learners. 'e EUCS model is composed of a
questionnaire that can be used to measure the attitude of

users towards using a computer application. With little
modification in the EUCS questionnaire, an online survey
was steered on 213 experimental group learners. Six di-
mensions of the Learnit application, namely, usefulness, ease
of use, engaging, timeliness, adaptiveness, and attitude to-
wards the Learnit application, were measured by the EUCS
questionnaire. 'e online survey comprised 12 questions
covering the 6 dimensions of the Learnit application. 'e 6
dimensions were measured on the 5-point Likert scale,
where 5 represents “strongly agree,” 4 represents “agree,” 3
represents “neutral,” 2 represents “disagree,” and 1 repre-
sents the “strongly disagree” option. During the experiment,
the mean learner satisfaction was set to greater than 4, which
infers that overall, the learners were satisfied while they used

Table 4: Accuracy results of machine learning algorithms and ANN on five-level grades’ classification.

Models/
algorithms

Linear discriminant
analysis (LDA)

Multiclass logistic
regression (softmax

regression)

Support vector
machine (SVM)

Decision tree
(DT)

Random
forest (RF)

Artificial neural
network (ANN)

Learning
model 1 85.56 88.67 87.56 88.56 90.11 90.77

Learning
model 2 78.55 79.56 79.44 76.59 86.89 87.69

Learning
model 3 67.78 70.45 74.45 67.43 83.67 83.85

Learning
model 4 54.12 55.98 59.64 56.89 80.23 80.00
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Figure 16: Performance comparison of the experimental and control groups after the early intervention experiment.

Table 5: Independent feature weights in predicting the final grades.

Feature Feature weight Feature Feature weight
MP3 0.345631 NPS 0.010292
MP1 0.264391 NTRA 0.009293
MP2 0.246556 APV 0.009143
NTAQ 0.051794 SPV 0.007157
AST 0.018429 TRR 0.006407
ODGP 0.013156 NVRA 0.005492
NPP 0.012259
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the Learnit application. Table 7 shows the 6 dimensions, the
related questions, and learners’ satisfaction mean score.

'e response to dimensions 1 and 2 (usefulness) indi-
cates that the Learnit app was successful in increasing the job
ability, i.e., programming skills of learners (m� 4.68 and
m� 4.59).'e response to dimensions 3 and 4 shows that the
Learnit app interaction with learners was very simple and
user-friendly (m� 4.52 and m� 4.58). 'e response to di-
mensions 5 and 6 indicates that the Learnit app was able to
draw the attention of learners in giving time to learn
computer programming using mobile devices (m� 4.78 and
m� 4.71). 'e response to dimensions 7 and 8 implies that
the Learnit app considered the experimental group preferred
learning time and sent the programming content accord-
ingly (m� 4.34 and m� 4.53). 'e learner replies to di-
mensions 9 and 10 revealed that tailored programming
content was delivered to learners according to their learning
abilities and performance by the Learnit app (m� 4.78 and
m� 4.23). 'e answer to dimensions 11 and 12 reflects that
learners agreed to use a Learnit or a similar type of appli-
cation in the future to increase their programming skills
(m� 4.55 and m� 4.34).

7. Conclusion and Future Work

In this research study, we have developed the M-learning
model powered by the ANN. M-learning model is a part of a
larger system called ILS.'e purpose of ILS is to process and
analyze M-learners’ features to determine which features
have the most influence on the learners’ performance. 'e
experimental results revealed that the ANN outperformed
traditional ML algorithms such as LDA, softmax regression,
SVM, DT, and RF and achieved a prediction accuracy of
90.77%, 87.69%, 83.85%, and 80.00% for four M-learning
models. Moreover, by using the RF algorithm to determine
the most important features having a significant impact on
the M-learners’ final performance, we enlighten that MP3,
MP1, MP2, NTAQ, and AST have the highest weights and
contribute most in increasing M-learners’ performance.

In the future, we would like to test the M-learning model
on a larger scale and integrate it with the Learning Man-
agement System (LMS). By doing so, the M-learning model
will help us in making LMS an adaptive and more user-
friendly system. One of the disadvantages of traditional LMS
systems is that they are based on a one-size-fits-all approach

Table 7: End-user computing satisfaction (EUCS) questionnaire result.

Dimensions Questions Mean score
1 Usefulness I contemplate the use of the Learnit app enhanced my programming skills 4.68
2 Usefulness I think the Learnit app helped me a lot in understanding computer programming 4.59
3 Ease of use 'e use of the Learnit app was very easy 4.52
4 Ease of use I think learners can use the Learnit app without the instructor’s help 4.58
5 Engaging I was interested in using the Learnit app for enhancing my programming skills 4.78
6 Engaging Learnit app was able to involve me in learning computer programming daily 4.71
7 Timeliness 'e learning content was provided on time by the Learnit app 4.34
8 Timeliness Learnit app knew when and what to send to learners while using it 4.53
9 Adaptive 'e learning content provided by the Learnit app was tailored and adaptive 4.78
10 Adaptive Learnit app enabled me to learn computer programming at my own pace 4.23
11 Attitude towards using the application I will use similar types of applications in the future 4.55
12 Attitude towards using the application I will continue to use the Learnit app to enhance my programming skills 4.34

Table 6: Learners’ performance state, type of motivational triggers, and their example.

Learners’ performance
state

Type of motivational
trigger Motivational trigger example

Below-average learners

Fear Continuous poor performance will result in your relegation/ceased state.

Hope Consistent 3 hours of study per day will make you one of the best learners of the
class.

Suggestion Refers to the class group for newly uploaded videos by the class instructor.

Average learners

Praise Well done and congratulations. You now are in the top 5 learners of your class.

Appreciation Your improving academic performance was praised by instructors in the meeting.
Keep it up.

Social acceptance Imran Ahmed is now among the top 5 learners (trigger sent to all class learners).

Good consistent learners

Reward 'e chairman will award you the best performance certificate for showing consistent
performance.

Praise You showed excellent performance in the quiz. Well done.

Appreciation All the instructors and chairman appreciate your consistent performance
throughout the semester.
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where all learners are treated equally not considering in-
dividual weaknesses, strengths, preferences, and personal-
ized learning behavior. By integrating the M-learning model
with LMS, we might be successful in making the learning
process self-paced and adaptive. Moreover, we would also
like to improve approaches presented in this research study
by combining other deep neural network algorithms such as
recurrent neural network (RNN), deep autoencoders, self-
organizing maps (SOMs), and long short-term memory
(LSTM) with the proposed M-learning model [60].
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