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)e aim of this investigation is making mathematical model for the variation in laser pulse, rotational gravity, and magnetic fields
on the generalized thermoelastic homogeneous isotropic half-space. )e governing dynamical system equations have been
formulated considering the four thermoelastic models: coupled (CT) model, Lord and Shulman (LS) model, Green and Lindsay
(GL) theory, and Green and Naghdi (GN III) model. Normal mode analysis technique is used to obtain the analytical expressions
for the displacement components, temperature, and mechanical and Maxwell’s stresses distribution. )e effect of laser pulse,
gravity, and magnetic field is studied by numerical examples and displayed graphically. A comparison has been made between the
theories as well as the present results and agreement with it as a special case from this study.)e results predict the strong effect of
magnetic field, laser pulse, and gravity field on the wave propagation phenomenon.

1. Introduction

In last year, the magnetic field, thermal field, elastic field, and
rotation interaction received more attention due to the
various applications in astronomy, geophysics, engineering,
structures, medicine, etc. )e topic of thermoelasticity with
magnetic field has received the attention of many researchers
because of the applications, especially the practical in labs.
Biot [1] is the first to discuss the developed thermoelastic
theories to overcome the propagation of thermal signals in
infinite speed as predicted by the classical thermoelastic
coupled dynamical theory. )e theories of generalized
thermoelasticity have been developed to remove the con-
fliction of the infinite speed of thermal signals in coupled
thermoelasticity, which is a physically impossible phe-
nomenon (see [2, 3]). Green et al. [4, 5] formulated three
models of thermoelasticity named GN (types I, II, and III).

)e gravitational effect on the wave propagation in solids in
an elastic globe was investigated by Bromwich [6]. Othman
et al. [7] investigated the rotation and gravitational effect on
the generalized thermoelastic medium in the context of
model of a dual-phase lag.)e surface wave propagation in a
nonhomogeneous medium under the parameter of gravi-
tational is investigated by Das et al. [8]. Abd-Alla et al. [9]
discussed the thermoelastic wave propagation in an isotropic
homogeneous half-space of a material under gravity field.
)e Stoneley, Love, and Rayleigh waves in anisotropic fibre-
reinforced general viscoelastic media of higher order have
been pointed out [10] considering the rotational effect. )e
Earth’s material nature generally is magnetoelastic which
may affect the propagation of waves. )e thermal stress and
magnetic field effect in thermoelasticity neglecting the
dissipation of the energy is pointed out by Abo-Dahab et al.
[11]. Abo-Dahab et al. [12] pointed out S-waves propagation
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in anisotropic nonhomogeneous medium with magnetic
field initial stress, gravity field, and rotation. Some recent
works on two-temperature effect with or without rotation
are discussed in [13, 14]. Recently, Abo-Dahab et al. [15]
investigated the two-dimensional magnetic field and rota-
tion in generalized thermoelasticity. Lotfy et al. [16] intro-
duced the problem of semiconducting response in an infinite
medium with two-temperature and photothermal excitation
because of the laser pulse. Abo-Dahab [17] discussed the
generalized magneto-thermoelastic reflection waves under
two-temperature, thermal shock, and initial stress. Recently,
Saroj et al. [18] investigated the Love waves transference in
prestressed PZT-5H material stick. )e authors in [19, 20]
discussed waves propagation considering new external pa-
rameters and types of waves. Abo-Dahab et al. [21] inves-
tigated the problem of magneto-thermoelasticity under
influence of laser pulse and gravity field in the context of four
theories. )e authors in [22, 23] arrived to new results
considering the magnetization and nonlinear heat on the
flow phenomenon. Othman et al. [24] discussed the thermal
loading due to laser pulse influence on a generalized
micropolar thermoelastic solid with different theories.

In this paper, we suggest mathematical modeling con-
sidering the effect of variation in laser pulse, magnetic field
gravity, and rotation on a generalized thermoelastic model in
an isotropic homogeneous half-space. )e governing dy-
namical system equations have been formulated considering
the four thermoelastic models. )e four thermoelastic

theories are coupled (CT), Lord and Shulman (LS), Green
and Lindsay (GL), and Green and Naghdi (GN III) theories.
)e technique of normal mode technique is used to analyze
the expressions for the displacements, temperature, and
mechanical and Maxwell’s stresses. )e effect of gravity,
rotation, laser pulse, and magnetic field is studied and
displayed graphically. A comparison has been made between
the theories as well as the present results and the previous
results concluded by the othersand agreement with it as a
special case from this study. )e results obtained have a
significant rule in engineering, astronomy, aircrafts, dy-
namical system reactors, and aircrafts.

2. Formulation of the Problem and
Basic Equations

A coordinate of Cartesian system (x, y, z) is considered on
the surface y � 0 and pointing z-axis vertically into the half-
space medium (x≥ 0), as shown in Figure 1.

)e dynamic displacement vector in two dimension
u � (u, 0, w), and consider all the quantities are dependent
on (t, x, z).

)e fundamental equations of linear rotational gener-
alized thermoelasticity, where Ω

→
� (0,Ω, 0) considering

Coriolis component andmagnetic field H
→

� (0, Ho, 0) in the
absence of heat sources, take the following form:

μui,jj +(λ + μ)uj,ij − c 1 + ϑ0
z

zt
 T,i + +Fi + Gi � ρ

z
2
u

zt
2 −Ω2u ,

kT,ii + k
∗ _T,ii � ρCe n1

z

zt
+ τ0

z
2

zt
2 T + cT0 n1

z

zt
+ n0τ0

z
2

zt
2 (∇.u) − ρ _Q,

σij � λuk,k − 1 + ϑ0
z

zt
 T δij + 2μeij, i, j, k � 1, 2, 3,

eij �
1
2

ui,j + uj,i , i, j � 1, 2, 3.

(1)

)e laser pulse is given as

Q �
I0c

2πr
2 exp −

z
2

r
2 − cx f(t). (2)

)e temporal function f(t) takes the following form:

f(t) �
t

t
2
0
exp −

t

t0
 . (3)

Assuming a homogeneous, thermally, and conducting
electrically elastic solid, the electrodynamics system linear
equations of slowly moving in a medium are

curl h
→

� J
→

,

curlE
→

� −μ0 h
→

,

div h
→

� 0,

divE
→

� 0,

E
→

� −μ0( u
→

× H
→

).

(4)

Considering the laser pulse and gravitational field, the
governing fundamental equations of a linear homoge-
neous isotropic thermoelastic medium take the following
form:
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μ∇2u +(λ + μ)
ze

zx
− c 1 + ϑ0

z

zt
 

zT

zx
+ ρg

zw

zx
− μ0H0

zh

zx
� ρ

z
2
u

zt
2 −Ω2u , (5)

μ∇2w +(λ + μ)
ze

zz
− c 1 + ϑ0

z

zt
 

zT

zz
− ρg

zu

zx
− μ0H0

zh

zz
� ρ

z
2
w

zt
2 −Ω2w , (6)

k∇2T + k
∗ z

zt
∇2T � ρCe n1

z

zt
+ τ0

z
2

zt
2 T + cT0 n1

z

zt
+ n0τ0

z
2

zt
2 (∇.u) − ρ

zQ

zt
. (7)

In the context of the thermoelastic models, equations
(5)–(7) are applicable to the following:

(i) CT model: n0 � n1 � 1, τ0 � ϑ0 � 0, k∗� 0
(ii) L-S model: n0 � n1 � 1, τ0 > 0, ϑ0 � 0, k∗� 0
(iii) G-L model: n0 � 0, n1 � 1, ϑ0 ≥ τ0 > 0, k

∗� 0
(iv) G-N II model: n0 � 1, n1 � ϑ0 � 0, τ0 � 1, k∗ > 0

We know that the CT model considered the coupling
between the thermal and strain; assume one and two re-
laxation times for L-S and G-L models, respectively, but take
into account absence of energy dissipation for G-N II.

)e previous quantities in the dimensionless variables
are as follows:

x′, z′  �
ω∗

c0
x, z{ },

ϑ0′ � ω∗ϑ0,

t′ � ω∗t,

τ0′ � ω∗τ,

Q′ �
Q

w
∗
T0Ce

,

Ω′ �
Ω
ω∗

,

u′, w′  �
ρc0ω
∗

υT0
u, w{ },

T′ �
T

T0
,

δij
′ �

δij

υT0
,

g′ �
g

c0w
∗,

h′ �
h

H0
,

(8)

where

ω∗ �
ρCEc

2
0

K
,

c
2
0 �

λ + 2μ
ρ

.

(9)

Equations (5)–(7) in the nondimensional form with
dropping primes for convenience take the following form:

y

x 

z

H

 g 

Ω

Figure 1: Schematic of the problem.
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∇2u + b1
ze

zx
− b2 1 + ϑ0

z

zt
 

zT

zx
+ b3

zw

zx
− Rh

zh

zx
� b2

z
2
u

zt
2 −Ω2u , (10)

∇2w + b1
ze

zz
− b2 1 + ϑ0

z

zt
 

zT

zz
− b3

zu

zx
− Rh

zh

zz
� b2

z
2
w

zt
2 −Ω2w , (11)

ε3∇
2
T + ε2

z

zt
∇2T � ε4 n1

z

zt
+ τ0ω

∗ z
2

zt
2 T + ε1 n1

z

zt
+ n0τ0

z
2

zt
2 e −

zQ

zt
, (12)

where

ε1 �
c
2
T0

w
∗
c
2
0ρCe

,

ε2 �
k
∗
w
∗

ρc
2
0Ce

,

ε3 �
k

ρc
2
0Ce

,

ε4 �
1
ω∗

,

b1 �
λ + μ
μ

,

b2 �
ρc

2
0

μ
,

b3 �
ρgc

2
0

μ
,

Rh �
μ0H

2
0

μ
.

(13)

)e components of displacement u(x, z, t) andw(x, z, t)

considering the rigid body take each of the functions of
potential ψ1(x, z, t) and ψ2(x, z, t) in the dimensionless
forms as follows:

u �
zψ1

zx
−

zψ2

zz
, (14)

w �
zψ1

zz
+

zψ2

zx
, (15)

with

e � ∇2ψ1,

zu

zz
−

zw

zx
  � ∇2ψ2.

(16)

Using (14) and (15) into (10)–(12), we get

1 + b1 − Rh( ∇2 − b2
z
2

zt
2 − b2Ω

2
 ψ1 + b3

z

zx
ψ2 − b2 1 + θ0

z

zt
 T � 0, (17)

−b3
z

zx
ψ1 + ∇2 − b2

z
2

zt
2 + b2Ω

2
 ψ2 � 0, (18)

−ε1
n1

ω∗
z

zt
+ n0τ0

z
2

zt
2 ∇2ψ1 + ε3 + ε2

z

zt
 ∇2T − ε4 n1

z

zt
+ τ0ω

∗ z
2

zt
2 T � −

z

zt
Q. (19)

)e stress-strain (constitutive) relation gives the fol-
lowing form: σxx �

zu

zx
+ L

zw

zz
− 1 + ϑ0

z

zt
 T, (20)
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σyy � Le − 1 + ϑ0
z

zt
 T, (21)

σzz �
zw

zz
+ L

zu

zx
− 1 + ϑ0

z

zt
 T, (22)

σxz �
1
b2

zu

zz
+

zw

zx
 , σxy � σyz � 0. (23)

τzz � G
zu

zx
+

zw

zz
 , (24)

where

L �
λ

λ + 2μ
,

G �
μeH

2
0

λ + 2μ
.

(25)

3. Technique of Normal Mode Analysis

)ephysical quantities solution in terms of the normal mode
technique as an amplitude functions is multiplied by an
exponential function as follows:

ψ1,ψ2, T (x, z, t) � ψ∗1 ,ψ∗2 , T
∗

 (x)exp[(ωt + iaz)] ,

(26)

where [ψ∗1 ,ψ∗2 , T∗](x) are the physical quantities amplitudes
and i �

���
−1

√
.

Substituting equation (26) into equations (17)–(19), we
get

D
2

− B1 ψ∗1 + B2Dψ∗2 − B3 1 + θ0iω( T
∗

� 0, (27)

−b3Dψ∗1 + D
2

− B2 ψ∗2 � 0, (28)

B5 D
2

− a
2

 ψ∗1 + D
2

− a
2

 T
∗

− B6T
∗

� B7
z

zt
Q, (29)

where

B1 � a
2

−
b2ω

2
+ b2Ω

2

1 + b1 − RH

,

B2 �
b3

1 + b1 − RH

,

B3 �
b2

1 + b1 − RH

,

B4 � a
2

− b2ω
2

− b2Ω
2
,

B5 �
ε1ω n1i − n0τ0ω

∗ω( 

ε3 + ε2iω( 

B6 �
−ε4ω −n1i + τ0ω

∗ω( 

ε3 + ε2iω( 
,

B7 �
−1

ε3 + ε2iω( 
,

D �
d

dx
.

(30)

Eliminating ψ∗1 ,ψ∗2 , and T∗ from equations (27)–(29)
gives the following differential equations:

D
6

− B8D
4

+ B9D
2

− B10 ψ∗1 � B11 1 −
t

t0
 exp −

z
2

r
2 +

t

t0
+ cx + iωt + iaz  , (31)

D
6

− B8D
4

+ B9D
2

− B10 T
∗

� B12 1 −
t

t0
 exp −

z
2

r
2 +

t

t0
+ cx + iωt + iaz  , (32)

D
6

− B8D
4

+ B9D
2

− B10 ψ∗2 � B13 1 −
t

t0
 exp −

z
2

r
2 +

t

t0
+ cx + iωt + iaz  , (33)
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where

B8 � B1 + B4 + B6 + B2b3 − B3B5 − B3B5ϑ0i + ω + a
2
,

B9 � a
2
B1 + a

2
B4 + a

2
B2b3 − a

2
B3B5 − B3B5B4 + B1B4 + B6B4 + B1B6 + b3B2B6

+ B3B5a
2
iωϑ0 + B3B4B5iωϑ0,

B10 � a
2
B1B4 − a

2
B3B5B4 + B1B4B6 − B3B4B5a

2
iωϑ0,

B11 � B3B7 c
2

+ iωϑ0c
2

− B4 − B4iωϑ0 
I0c

2πr
2
t
2
0
,

B12 � B7 c
2

− B1  c
2

− B4  + c
2
B2b3  

I0c

2πr
2
t
2
0
,

B13 � −B3B7b3 1 + iϑ0ω( 
I0c

2

2πr
2
t
2
0
.

(34)

Equation (31) can be taken in the following form:

D
2

− k
2
1  D

2
− k

2
2  D

2
− k

2
3 ψ∗1

� B11 1 −
t

t0
 exp −

z
2

r
2 +

t

t0
+ cx + iωt + iaz  ,

(35)

where k2n(n � 1, 2, 3) are the characteristic equation roots of
the homogeneous equations (31)–(33).

)e general solutions of equations (31)–(33) bounded as
x⟶∞ are given as follows:

ψ1(x, z, t) � 
3

n�1
Rn exp −knx + iωt + iaz(  + L1B11f1,

(36)

ψ2(x, z, t) � 

3

n�1
H1nRn exp −knx + iωt + iaz(  + L1B13f1,

(37)

T(x, z, t) � 
3

n�1
H2nRn exp −knx + iωt + iaz(  + L1B12f1.

(38)

Here,

H1n �
−b3kn

k
2
n − B4 

, n � 1, 2, 3,

H2n �
k
2
n − B1  − B2H1nkn

B3
, n � 1, 2, 3,

L1 � −
1

c
6

− B8c
4

+ B9c
2

− B10
,

f1 � 1 −
t

t0
 exp −

z
2

r
2 −

t

t0
− cx ,

(39)

where Rn(n � 1, 2, 3) are the coefficients.
To get the displacement vector components, substituting

equations (36) and (37) into equation (14), we obtain

u(x, z, t) � 
3

n�1
M1nRn exp −knx + iωt + iaz( 

− cI1 +
2zI2

r
2 exp −

z
2

r
2 −

t

t0
− cx ,

(40)

w(x, z, t) � 
3

n�1
M2nRn exp −knx + iωt + iaz( 

+ −cI2 +
2zI1

r
2 exp −

z
2

r
2 −

t

t0
− cx ,

(41)
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where M1n � −kn − iaH1n, M2n � ia − knH1n, n � 1, 2, 3. To get the stress tensor components, substituting
equations (38)–(41) into equations (20)–(24), we get

σxx(x, z, t) � 

3

n�1
H3nRn exp −knx + iωt + iaz(  + I4 exp −

z
2

r
2 −

t

t0
− cx ,

σyy(x, z, t) � 
3

n�1
H4nRn exp −knx + iωt + iaz(  + I5 exp −

z
2

r
2 −

t

t0
− cx ,

σzz(x, z, t) � 
3

n�1
H5nRn exp −knx + iωt + iaz(  + I6 exp −

z
2

r
2 −

t

t0
− cx ,

σxz(x, z, t) � 
3

n�1
H6nRn exp −knx + iωt + iaz(  + I7 exp −

z
2

r
2 −

t

t0
− cx ,

τxx � 
3

n�1
H7n exp −knx + iωt + iaz(  + I8 exp −

z
2

r
2 −

t

t0
− cx .

(42)

Here,

H3n � −M1nkn + LiaM2n − H2n − iωθ0H2n,

H4n � −knM1nL + iaLM2n − H2n − iωθ0H2n,

H5n � iaM2n − LknM1n − H2n − iωθ0H2n,

H6n �
1
b2

iaM1n − knM2n( ,

H7n � iaGM2n − knGM1n,

I1 � −B10L1 1 −
t

t0
 ,

I2 �
B12

B10
I1,

I3 �
B11

B10
I1,

I4 � c cI1t − n
2z

r
2qI2  +

2z

r
2 cI2t + n

2zI1

r
2 L − I3 −

θ0
t0

I3,

I5 � E1c cI1t − n
2zI2

r
2  +

2z

r
2 L cI2t + n

2zI1

r
2  − I3 −

θ0
t0

I3,

I6 �
2z

r
2 cI2t + n

2zI1

r
2  + Lc cI1t − n

2zI3

r
2  − I3 −

θ0
t0

I3,

I7 �
1
b2

2z

r
2 cI1t − n

2zI3

r
2  + c cI2t − n

2zI1

r
2  ,

I8 � cG cI1t − n
2zI2

r
2  +

2z

r
2 G cI2t + n

2zI1

r
2 .

(43)

4. Boundary Conditions

Wewill obtain the constants Rn(n � 1, 2, 3), so the boundary
conditions considered and should suppress the positive
exponentials to avoid them at infinity unboundedness. )e
chosen coefficients R1, R2, andR3 will be obtained from the
boundary conditions on the surface at x � 0 as follows.

(i) )e mechanical boundary conditions:

σzz + τzz � −p1 exp(ωt + iaz),

σxz � 0.
(44)

(ii) On the surface of the half-space, the thermal
boundary condition is

zT

zx
� 0. (45)

From the above boundary conditions, we get



3

n�1
H5n + H7n( Rn � −p,



3

n�1
H6nRn � 0,



3

n�1
−knH2nRn � 0.

(46)

Using the method of matrix, we get the coefficient values
of Rn(n � 1, 2, 3):
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R1

R2

R3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

H51 + H71(  H52 + H72(  H53 + H73( 

H61 H62 H63

−k1H21 −k2H22 −k3H23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1
−p1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(47)

After that, we obtain the displacements, temperatures,
and stresses.

5. Numerical Results and Discussion

Following Dhaliwal and Singh [25], to calculate the nu-
merical values of the considered variables, the magnesium
material was chosen:

λ � 2.17 × 1010N/m2
,

μ � 3.278 × 1010N/m2
,

K � 1.7 × 102W/mK,

ρ � 1.74 × 103kg/m3,
,

Ce � 1.04 × 103j/kgK,

ω∗ � 3.58 × 1011/s,

μ0 � 4 × π × 10− 3
,

T0 � 298.

(48)

)e laser pulse constants are

I0 � 102j/m2
,

r � 0.2,

c � 25/m,

t0 � 10.

(49)

Consider

p1 � 0.25N/m2
,

k
∗

� 100W/mK,

a � 0.5,

ω � 2.9rad/s,

z � 2m,

t � 0.9 s,

g � 9.8m/s2, 0≤ x≤ 3.5m.

(50)

Figures 2–33 display the distributions calculated with
respect to the range x(0≤x≤ 3.5). )e variation presented in
two-dimensional figures shows the change in behavior of the
values of the displacement components u and w, stresses
σxx, σzz, and σxz, and also Maxwell’s stress and temperature
distribution T with distance x. In the context of G-N III
theory, a schematic has been shown in generalized thermo-
elasticity medium with constants H0 � 9 × 105,
g � 9.8, and t � 0.9 with different values of gravity, laser
pulse, and magnetic field taking into account two values of
rotation. Figures 2–9 present a comparison between the
variation in the four thermoelastic models: (i) CT theory:

n0 � 0, n1 � 1, τ0 � 0, ϑ0 � 0; (ii) LS theory: n0 � 1, n1 �

1, τ0 � 0.2, ϑ0 � 0; (iii) GL theory: n0 � 0, n1 � 1, τ0 �

0.2, ϑ0 � 0.3; and (iv) GN theory: n0 � 0, n1 � 1,
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Figure 23: Stress τzz concerning x with laser pulse “t” and rotation.
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Figure 25: Temperature T concerning x with laser pulse “t” and
rotation.
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Figure 26: Horizontal displacement u concerning x with magnetic
and rotation.

0.5 1 1.5 2 2.5 3 3.5
x

H0 = 5∗105, Ω = 0.2
H0 = 3∗105, Ω = 0.2
H0 = 2∗105, Ω = 0.2
H0 = 0, Ω = 0.2

H0 = 5∗105, Ω = 0.7
H0 = 3∗105, Ω = 0.7
H0 = 2∗105, Ω = 0.7
H0 = 0, Ω = 0.7

0

4

2

0

–2

–4

–6

–8

–10

–12

w

Figure 27: Vertical displacement w concerning x with magnetic
and rotation.
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Figure 28: Stress σxx concerning x with magnetic and rotation.
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τ0 � 1, ϑ0 � 0. We show that the displacement, stresses, and
temperature demonstrates clearly the difference between the
coupled and the generalized theories of thermoelasticity (see
Figures 2–9). It implies that applying G-L theory provides
good results compared with the remaining theories, and this
physically indicates the developed generalized thermoelastic
theories in the positive direction. Figures 10–17 display the
values of the displacement, stresses, and temperature with
respect to x-axis for different values of gravity field
g � 0, 5, 7, 9.8 considering two values of rotation
Ω � 0.2, . . . ,Ω � 0.7 . It appears that u, σzz, σxz, τzz, σzz +

τzz, andT decreased (i.e., affects negatively) with the increased
values of the rotation but increased (i.e., affects positively)
concerning the remaining distributions, which indicates
strong effect with the strong values of rotation. It is observed
that the component of displacement u decreases in the interval
0<x< 1.3 with an increasing gravity field but increases in the
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Figure 30: Stress σxz concerning x with magnetic and rotation.
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Figure 29: Stress σzz concerning x with magnetic and rotation.
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Figure 31: Stress τzz concerning x with magnetic and rotation.
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Figure 32: Stress τzz + σzz concerning x with magnetic and
rotation.
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Figure 33: Temperature T concerning x with magnetic and
rotation.
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interval [1.3, 2.5], while it coincides if x> 2.5 tends to zero, as
well as the displacement component w decreases with in-
creasing gravity field in the interval [0, 0.8], but increases in
the interval 0.8<x< 1.8 and it coincides if x> 1.8. From
Figure 12, it obvious that the stresses σxx, σzz, τzz, σzz + τzz

and temperature T increase, decrease, and then coincide
tending to zero as distance tends to infinity that agrees with the
physical meaning of the phenomena (i.e., if the wave is far
from the origin, then the distributions tend to infinity “un-
known”), but the shear stress σxz decreases with an increasing
gravity field. )e distributions are shown graphically in
Figures 18–25 considering variation in laser pulse: t� 0, 0.3,
0.6, 0.9, and it obvious that the displacement components u
and w, stresses σzz, τzz, σzz + τzz, and temperature T increase,
decrease, and then coincide tending to zero as distance x tends
to infinity, but only the normal stress σxx decreases with an
increasing gravity. Figures 26–33 plot the variation in the
displacement and stresses components, also the temperature
distribution with respect to the distance and various values of
the magnetic field and two values of rotation. It shows that the
magnetic field has a strong sense on all the distributions; we
concluded that, except the normal stress on the x-direction
whichmakes a slight decreasing change with an increasing H0,
one can be obvious that u, w, σzz, τzz, σzz + τzz, and T in-
creased with an increasing magnetic field.

Physically, the gravity, magnetic field, laser pulse, and
thermoelasticity with the model theories have a significant
effect on the propagation of the wave phenomenon.

Finally, it strong obvious that all variables calculated
satisfied the boundary conditions exactly either the calculus
or the graphs (the figures display total normal stress
σzz + τzz, shear stress σxz, and temperature distribution T).

If the gravity and magnetic field considered the thermal
loading influence due to laser pulse on generalized micro-
polar-thermoelastic solid with comparison of different
theories, the results obtained have been deduced and are in
agreement with the previous results by Othman et al. [7].

On the contrary, when the laser pulse and gravity are
neglected, the obtained results are deduced as a special case
from the present investigation and are in agreement with the
results obtained by Abo-Dahab et al. [15].

6. Conclusion

In the view of illustrating the numerical results, we con-
cluded the following remarks:

(1) )e technique of normal mode technique is used in
wide range of applications in diverse fields such as
engineering, geophysics, thermodynamics, geology,
acoustics, eyes medicine, and engineering.

(2) )e magnetic field, rotation, gravity, and laser pulse
have a significant role in temperature, displacements,
and stresses and all the physical quantities by de-
creasing or increasing.

(3) )e results described for the medium of crystal,
which may provide interesting information for the
experimental researchers work on this field, satisfy
the boundary conditions.

(4) )e values of all physical quantities converge to zero
with an increasing distance x, and all functions are
exactly continuous.

(5) Applying G-L theory has good results compared with
the remaining theories, and this physically indicates
the developed thermoelastic theories in the positive
direction.

(6) )e results obtained should be useful for re-
searchers/scientists in designing new materials,
material sciences, physicists, and the develop-
ment of the magneto-thermoelasticity and in
practical situations such as in optics, geophysics,
petroleum extraction, acoustics, and oil
prospecting.

Finally, we conclude that the results obtained have a
significant rule in engineering, astronomy, aircrafts, dy-
namical system reactors, and aircrafts.

Nomenclature

A: Wave number
B: Induced magnetic field vector
Ce: Specific heat at constant strain
E: Induced electric field vector
eij: Strain tensor components
Fi: Lorentz force tensor
f(t): Temporal profile
g: Acceleration due to gravity
Gi: Gravity force tensor
H: Initial uniform magnetic intensity vector
I0: Absorbed energy
J: Current density vector
K: )ermal conductivity
k∗: Characteristic of the GN II theory constant
n0, n1: Parameters
p1: Mechanical force magnitude
Q: Heat input of the laser pulse
r: Beam radius
T: Absolute temperature
T0: Reference temperature of the medium

|(T − T0)/T0|≤ 1
t: Time variable
t0: Pulse rising time
u, v, w: Displacement components
x, y, z: Coordinates of the system
∇2: Laplacian operator
αt: )ermal expansion
δij: Kronecker delta
ε1, ε2, ε3: Coupling constants
c � αt(3λ + 2μ): Material constant
λ, μ: Lame’s constants
ρ: Density
ϑ0, τ0: )ermal relaxation times
σij: Stress tensor components
μe: Magnetic permeability
ω: Angular frequency
Ω: Angular velocity.
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