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*is work consists in analyzing and controlling the walk of the compass-type bipedal walker in order to stabilize its passive
dynamic gait. *e dynamic walking of the compass-gait walker is modeled by an impulsive hybrid nonlinear system. *is
impulsive hybrid nature is considered very complex as it can generate unwanted phenomena such as chaos and bifurcations. We
show first by means of bifurcation diagrams and by varying the slope angle of the walking surface and also the length of the lower
leg segment that the passive dynamic walking exhibits successive period-doubling bifurcations leading to chaos. Furthermore, in
order to control chaos and hence obtain one-periodic walking behavior, we propose two control approaches based on tracking a
desired trajectory. *e first method consists in tracking the one-periodic passive dynamic walking generated by the compass
model itself. *e second control method lies in following a planned trajectory using the 4th-order Spline function. An opti-
mization method is also achieved to design the parameters of the desired trajectory. Some features of the period-1 passive gait are
used in the design of such Spline trajectory. Finally, we show some simulation results revealing the efficiency of the two proposed
control methods in the control of the chaotic passive gait of the compass-gait walker. Moreover, we demonstrate the stabilization
of the bipedal locomotion of the compass biped walker on different slopes: descending and ascending inclined planes and walking
on a level ground. A comparison with the OGY-based control method is also performed to further show the superiority of these
two control approaches.

1. Introduction

1.1. Background and Literature Review. Research in bipedal
robotics has continued to evolve increasingly in these recent
years. Many prototypes of biped robots were built world-
wide, and then tasks performed by different researchers in
the robotic community have become more complex and
hence a challenging issue [1–3]. Concerning bipedal robotic
walking, the latest studies have focused on the control of
two-legged bipedal robots and also on the minimization of
energy consumption. One goal that emerges from all these
studies is to try to reproduce as much as possible the human
walking. *e major challenge is to construct a biped robot
capable of walking on different types of ground. *e

researchers therefore tried to reproduce as closely as possible
the human and his locomotion by means of a biped robot via
control.

In the literature, there are several studies and methods
for the design of effective control laws to stabilize the
walking of a biped robot. *e common point between these
studies is the tracking of some desired reference trajectory,
which should be designed. *e design of reference trajec-
tories for the walking cycles of the biped robot is important
and not trivial. Several techniques have been adapted to
define the reference trajectories. *e mathematical basis for
the generation of trajectories is mainly the polynomial
calculus, which constructs the equation of motion from
spatial and temporal constraints. Most of the biped robot
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control approaches proposed in the literature are based on
the use of reference trajectories that must be followed in real
time. *is clearly shows the importance of a trajectory
generator for bipedal walking. Among these control
methods, we quote the following: methods based on sim-
plified models which consist in using the 3D inverse pen-
dulum model with one or more masses [4–7], methods
derived from biomechanics [8, 9], methods based on os-
cillators [10, 11], and methods based on splines [12]. Some
other control approaches for biped robots can be found in
[13].

As the control scheme of biped robots is generally ap-
plied during the swing phase of the bipedal walking, thus the
biped robot seems like a double pendulum and then as a
robot manipulator. Some other methods of trajectory
planning for manipulator robots, which can be applied to
biped robots, can be found, e.g., in [14–16]. Moreover, some
other control methods for robotic manipulators can be
found, for example, in [17, 18]. An adaptive fuzzy full-state
feedback control is proposed in [17] to enhance the tracking
accuracy in a robotic manipulator with uncertainties. A
reinforcement learning control strategy for flexible robot
manipulators is developed in [18], and that is based on the
actor-critic structure to enable vibration suppression while
retaining trajectory tracking.

Chaos and bifurcations are complex phenomena that can
appear in nonlinear dynamical systems and also in several
fields [19–22]. It is known that these behaviors are exhibited
in robotic systems, such as mechanical oscillators [23, 24],
mobile robots [25], and biped robots [26]. For biped robots,
the most found behavior is the route to chaos via a cascade of
period-doubling bifurcations [26]. *e first research group
that reported such behavior in the passive dynamic walking
of the compass-gait walker was that of Prof. Goswami and
his coworkers [27, 28]. After that, several works have shown
the presence of such scenarios in other related biped models,
see the review paper [26] and also the recent papers [29–37].
Moreover, it was shown in [38] that the passive dynamic
walking of the compass robot exhibits the cyclic-fold bi-
furcation. *e same bifurcation was revealed also in [39].
Furthermore, it was demonstrated in [40, 41] the exhibition
of other attractive and complex behaviors and bifurcations
in the dynamics of the passive compass biped under control,
and it was demonstrated also in [42] the birth of the Nei-
mark–Sacker bifurcation.

In the literature, there are several works achieved on the
control of chaos in dynamic systems [43–47]. Some other
recent control approaches can be found in [48–51]. How-
ever, a few works in the literature realized on control of
chaos and bifurcations in the passive dynamics of biped
robots, see, e.g., the two review papers [26, 52].*e twomain
control methods are the Ott–Grebogi–Yorke (OGY) control
and the delayed-feedback control (DFC). Some other control
methods were also recently established in [53–57].

1.2. Motivations in Studying and Controlling the Passive
Dynamic Walking. In research on biped robots, there are
two kinds of walking; namely, static walking and dynamic

walking, which is more difficult to realize than the first one.
Moreover, passive dynamic walking has been shown to be
an interesting approach to be employed as a reference or as
a basis for the control of biped robots when the energy
efficiency problem of the bipedal locomotion is posed
[58–61]. McGeer showed in [62] that a simple two-link
compass-type walker can walk down a slope without the
need of motors, in contrast to other biped robots that
require a lot of energy via motors to control every
movement. He showed that its passive-dynamics walker
can effectively mimic the human locomotion. After
McGeer’s works, many research studies have been achieved
on the analysis and control of passive-dynamics biped
robots [27, 33, 52, 58–61, 63–76], just to mention a few. As
reported in [69, 71], the passive dynamic walking of biped
robots has mainly two motivations allowing and encour-
aging the researchers to study and use it. *e first moti-
vation is that the passive-dynamics biped robot presents a
self-stabilized walking gait. *e second motivation is that
the use of the passive dynamic walking allows to increase
the energy efficiency of the bipedal walking and then there
is a considerable decrease of energy consumption for the
controlled biped robot, which constitutes one of the main
motivations of this work.

*e passive compass-type bipedal robot is considered to
be the simplest walking robot because its passive gait
presents the first determinant of the human gait [27, 28].
However, addition of degrees of freedom increases the
complexity of analytically solving the simulation models of
the human body because the large number of actuators
required to operate a biped robot increases considerably its
weight. *us, its simple morphology and efficiency make the
compass-gait biped robot to be the quintessential model that
can mimic human walking. Such compass biped robot
model is without knees and ankles and with a point contact
with the ground while walking. It is known that such bipedal
walker is characterized by a passive dynamic walking, which
is modeled by nonlinear impulsive hybrid dynamics
[27, 28, 52]. *is complex system of bipedal walking can
reveal attractive and complex behaviors such as bifurcations
and chaos [26–28].

Moreover, in order to mimic the human walk, it is
necessary to make the walk of the compass-type bipedal
robot periodic of period-1 for all values of different pa-
rameters. *erefore, it is necessary to apply a continuous
control on the walk of the compass-type bipedal robot. *e
main objective behind the control of the bipedal walking is
to mimic the human walking in order to develop efficient
limbs requiring less energy for amputees. *e limbs play an
important role in rehabilitation. *ey are used by the dis-
abled to their carriers to perform certain functionalities
compensating for their deficiencies.

1.3. Objective, Novelty, and Contributions. In this work, we
are mainly interested in the analysis and the control of the
passive dynamic walking of the compass-gait walker. We
first analyze the passive walk of the compass bipedal robot in
order to understand the phenomena that may appear by
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varying certain parameters, which present in reality some
kinds of disability that exist in the human body. Two pa-
rameters are adopted in this work, namely, the slope angle of
the inclined walking surface and the length of the lower leg
segment. For this last parameter, we study the case where the
tight length and the shank length are not equal. To the best of
our knowledge, such parameter was not considered in the
literature to study the passive walking of the compass-type
bipedal robot. We show via bifurcation diagrams that by
varying these two parameters of the compass-gait walker, the
period-doubling bifurcations and their subsequent route to
chaos are revealed.

For the control of the compass-gait biped walker, we will
propose two control approaches. *e first control method
lies in profiting of the benefits of the passive dynamic
walking that are described previously, where among them
there is the energy efficiency. *us, the impulsive hybrid
nonlinear model of the passive dynamic walking will be used
in order to generate the desired period-1 gait/trajectory to
follow by means of a controller. *e second control ap-
proach consists in designing a desired period-1 gait/tra-
jectory via a 4th-order Spline polynomial function. In order
to select the shortest path that can be traveled by the two legs
of the compass biped walker, we added a constraint, and
hence, the whole design problem of the 4th-order Spline
trajectory is transformed into a minimization of an objective
function that represents the distance between the tip of the
swing leg and the ground. Moreover, we will use two main
descriptors of the period-1 passive gait of the compass
walker, which are the state vector just before the impact with
the walking surface and also the step period of such period-1
passive walking gait.

In order to track the desired trajectories planned/gen-
erated through the two proposed control approaches, we will
consider the feedforward-plus-PD control law. Such con-
troller is composed of the feedforward part, which is only
used in the first control approach, and also the PD part
implemented in the second control approach. Recently, in
[77, 78], we applied, besides the feedforward-plus-PD
controller, the computed torque control law and the gravity
compensation-based PD control to stabilize the compass-
gait bipedal robot. Almost the same simulation results were
obtained. *e advantage behind choosing the feedforward-
plus-PD control law is that it is simpler to realize in practice
than the other two control laws.

We will show, via numerical simulations, that the first
control approach based on the passive dynamic walking
allows to control the chaotic gaits of the compass biped
walker better with less energy consumption than the second
control approach. Moreover, in order to show further the
efficiency and superiority of the two proposed control ap-
proaches, we will realize a comparison with the OGY-based
control method, which has been widely used in the control of
chaos and the stabilization of the bipedal walking of the
compass-gait walker. Such control method was recently
developed in [72] using the Poincaré mapping approach,
where authors developed an explicit mathematical expres-
sion of the controlled Poincaré map used mainly for the
design of the control law.

*e main contributions of this paper are summarized as
follows:

(i) Study of the dynamic walking of the compass-type
bipedal walker descending an inclined surface
without control, that is to say with its natural
passive gait, through bifurcation diagrams. *e
dynamics of such biped robot is governed by a
complex model, namely, an impulsive hybrid
nonlinear system.

(ii) Analysis of the walking behavior of the compass
walker using, and for the first time, the length of
the lower leg segment as a bifurcation parameter.
We show hence the occurrence of the nonlinear
phenomenon, the period-doubling route to chaos,
and also the ability of the compass walker to go
down steep slopes.

(iii) Stabilization of the chaotic passive walk of the
compass-type bipedal robot via control into a
period-1 gait, which is well selected and not any
periodic trajectory. In fact, the desired period-1
gait selected for the control is embedded within the
chaotic attractor and detected using the shooting
method.

(iv) Proposition of two control strategies based on
tracking a desired trajectory and also based on the
properties of the desired period-1 passive bipedal
walk. Indeed, for some sets of parameters of the
biped robot, the desired period-1 passive gait and
its associated walking descriptors are used in the
control scheme.

(v) Use of the entire period-1 passive limit cycle
generated by the impulsive hybrid nonlinear dy-
namics of the compass robot as the desired ref-
erence trajectory to be tracked in the first control
approach.

(vi) Planning of a fourth-order Spline trajectory as the
reference one in the second control approach and
by using an optimization-based method. To plan
such reference trajectory, we use the state vector
just before impact, x−

∗, of the desired period-1
hybrid limit cycle and its associated step period, τ∗,
as two main descriptors of the passive gait.

(vii) Application of a feedforward-plus-PD control law
to track the desired period-1 reference trajectory.

(viii) Several simulation results and comparisons have
been presented to show the efficiency and supe-
riority of the two proposed control approaches in
the stabilization of the passive gaits of the compass
robot and then in the control chaos, compared
with the OGY-based control method.

1.4. Structure of the Paper. *e remainder of the paper is
organized as follows. A description of the compass-gait
walker is given in Section 2. In Section 3, an analysis of the
passive gaits is realized. *e two control approaches of the
passive chaotic gaits of the compass walker are detailed in
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Section 4. *e simulation results related to these control
methods are presented in Section 5. In Section 6, a com-
parison with the OGY-based control method is performed.
Finally, a conclusion and some future recommendations are
provided, respectively, in Section 7 and 8.

2. The Compass-Type Biped Walker and Its
Dynamic Model

2.1. Description of the Compass-Type Biped Walker. *e
compass-type biped walker is a two-link mechanical robotic
system illustrated by Figure 1. It consists of two identical,
rigid, straight legs that have neither knees nor ankles, and it
is assumed that the two legs have a point contact with the
ground. From a certain set of initial conditions, and while
walking down the walking surface of slope φ, the biped
walker does not use any source of actuation or control. It
walks by virtue of gravity, and hence, it is completely passive
[27, 28].

In Figure 1, ms and mns represent, respectively, the mass
points of the support leg and the nonsupport leg. mh rep-
resents the mass point of the hip, which acts here as the
upper body. *e two legs are equal with l � a + b, where a

represents the distance from the tip of the leg to the center-
of-mass of the leg, and b is the distance from the hip to the
center-of-mass. Moreover, θs represents the angle of the
stance leg and θns stands for the angular position of the swing
leg.*ese angles are taken with respect to the vertical lines as
indicated in Figure 1.

For simulating the passive dynamic walking of the
compass-type biped walker, we will take in this work the
inertial and geometrical parameters illustrated in Table 1.

2.2. Dynamic Model of the Compass Bipedal Walker. *e
bipedal walk of the compass-type walker is composed of two
successive phases: (1) the swing phase (called also the simple
support phase) and (2) the impact phase. *e first phase
begins with the support of the stance leg on the walking
surface and ends when the swing leg strikes the ground and
the support leg is hence lifted. However, the impact phase
occurs when the nonsupport leg touches the ground with a
nonzero angular velocity of the two legs. Such phase is due to
the rigidity of the two legs and also the ground that dampens
the impact and to the nonzero speed of contact between the
swing leg and the walking surface. In the sequel, we present
the equations that model the bipedal walking of the compass
walker.

2.2.1. Dynamics Model of the Swing Phase. In this walking
phase, the compass-gait walker is described as a double-
pendulum robotic system where the stance leg acts as a pivot
with the ground.*us, we use the Euler–Lagrangemethod to
determine the dynamic model of the biped robot during this
first phase. *e Euler–Lagrange equation is given by the
following expression:

d
dt

zL(q, _q)

z _q
􏼠 􏼡 −

zL(q, _q)

zq
�

zW

zq
, (1)

where q � θns θs( 􏼁
T, W stands for the work exerted via

actuators on the biped robot while walking, and L(q, _q) �

Ek(q, _q) − Ep(q) represents the Lagrangian function, with
Ek is the kinetic energy and Ep is the potential energy.

Based on expression (1), we obtain the following non-
linear dynamics:

J(q)€q + C(q, _q) _q + G(q) � Bu, (2)

with J(q) is the inertia matrix:

J(q) �
mb

2
−mlb cos θs − θns( 􏼁

−mlb cos θs − θns( 􏼁 m + mh( 􏼁l
2

+ ma
2

⎡⎢⎣ ⎤⎥⎦. (3)

C(q, _q) is the matrix of Coriolis and centrifugal forces:

C(q, _q) �
0 mbl sin θs − θns( 􏼁θ

.

s

−mbl sin θs − θns( 􏼁θ
.

ns 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(4)

G(q) is the vector of gravitational torques:

G(q) �
−gmb sin θns( 􏼁

g m + mh( 􏼁l + ma􏼂 􏼃sin θs( 􏼁
􏼢 􏼣. (5)

B is the control matrix:

mns

mh

m
s

θns

a

b
a

b

θs

φ

Figure 1: *e passive compass-type biped walker on an inclined
surface.

Table 1: Parameters used for the simulation of the passive com-
pass-type biped walker.

Notation Value Unit
a 0.5 m
b 0.5 m
l 1 m
m 5 Kg
mh 10 Kg
g 9.8 ms−2
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B �
−1 0

1 1
􏼢 􏼣, (6)

and u �
uh

us

􏼢 􏼣 is the vector of control inputs, which will be

designed next and used in order to control the passive
dynamic walking of the compass-gait biped walker. Here, uh

is the control input applied on the hip, and us is the control
input applied to the stance leg.

It is worth to note that for the passive dynamic walking
of the compass biped robot, the control vector is zero, that is,
u � 0, and hence, the biped robot is not controlled, and the
swing phase is therefore entirely passive.

2.2.2. Impact Phase. *e dynamics of the impact phase is
determined through the angular momentum conservation
method [27, 28]. For this, we consider the two following
signs: “+” or “−” that will be placed to the right of a variable

in order to refer, respectively, to the value of such variable
just after and just before the impact of the swing leg of the
biped robot with the ground.

*e impact phase occurs when the previous swing phase
is terminated, and this happens when the swing leg of the
compass walker touches the walking surface. Relying first on
Figure 1, it is straightforward to show that the impact event
occurs when the following condition (7) on the angular
positions of the two legs and the slope angle is well satisfied:

θns + θs + φ � 0. (7)

At the impact of the swing leg with the walking surface,
there is a conservation of the angular momentum according
to the following relation [27, 28]:

Qp(q) _q
+

� Qm(q) _q
−

, (8)

with _q+ and _q− are the angular velocities just after and just
before the impact, respectively, where

Qp(q) �
m b

2
− lb cos θs − θns( 􏼁􏼐 􏼑 ma

2
+ mhl

2
+ m l

2
− lb cos θs − θns( 􏼁􏼐 􏼑

mb
2

−mlb cos θs − θns( 􏼁
⎡⎣ ⎤⎦,

Qm(q) �
−mab mhl

2 cos θs − θns( 􏼁 + m 2la cos θs − θns( 􏼁 − ab( 􏼁

0 −mab
􏼢 􏼣.

(9)

2.3. Impulsive Hybrid Nonlinear Dynamics of the Compass-
Gait Walker. We pose x � q _q􏼂 􏼃

T as the state vector.
According to expressions (2), (7), and (8), the complete
dynamics of the compass-type walker is defined by the
following impulsive hybrid nonlinear dynamics:

_x � f(x) + g(x)u, if x ∉ Γ, (10a)

x
+

� h x
−

( ), if x ∈ Γ, (10b)

with f(x) �
_q

−J(q)
− 1

(C(q, _q) _q + G(q))
􏼢 􏼣, g(x) �

0
J(q)

− 1
B

􏼢 􏼣, and h(x) �
Rq

S(q) _q
􏼢 􏼣, where the two matrices

R and S are defined, respectively, as R �
0 1
1 0􏼢 􏼣 and

S(q) � Qp(q)− 1Qm(q). Moreover, Γ in the system (10a) and
(10b) defines the impact set and is expressed like so

Γ � x ∈ R4
: Cx + 2φ � 0􏽮 􏽯, (11)

where C � 1 1 0 0􏼂 􏼃.

3. Analysis of the Passive Walking Dynamics of
the Compass Biped Walker

*e impulsive hybrid nonlinear system describing the
walking dynamics of the compass-gait biped walker is
considered to be very complex to handle in analysis and that
can generate complex attractive behaviors. *e most

common behavior revealed in the passive dynamic walking
of the compass-gait walker as walking down the walking
surface is the cascade of successive period-doubling bifur-
cations and their subsequent route to chaos. In this section,
we will illustrate such behavior via bifurcation diagrams by
varying two parameters, namely, the length a of the lower-
half segment of the legs and the slope φ of the inclined
surface. It is important to note that to the best of authors’
knowledge, such parameter a was not considered in previous
works on the compass walker. Only some results are brief
given in this paper. An in-depth study of the dynamics of the
bipedal walking under variation of this bifurcation pa-
rameter a will be developed in another work.

Next and before the analysis of the passive gaits of the
compass biped walker, we present some brief details on the
method used for determining the fixed point of the hybrid
limit cycle for a given set of the two parameters a and φ. In
this work, we are only interested in determining the period-1
fixed points of the limit cycles and then of the passive gait.

We note first that for the passive gait of the compass
walker, the control input u in (10a) is zero. *us, the
continuous dynamics of the swing phase becomes

_x � f(x), if x ∉ Γ. (12)

Moreover, we note

x(t) � ϕ t, x0( 􏼁, (13)

as the solution of the differential equation _x � f(x) in (12)
emanated from the initial condition x0.

Complexity 5



3.1. Determination of the Period-1 Fixed Point of the Passive
Walk and Its Stability. It is important to note that the pe-
riod-1 fixed point defines the initial condition of the passive
gait. *e appropriate choice of such initial condition is to
take it as the state vector just after the impact phase. *us, to
find the period-1 fixed point, we fix the Poincaré section to
be the set Γ defined in (11). *e development presented in
this section can be found in [13, 79] with necessary details.

*e intersection of the continuous trajectory of the
swing phase with the Poincaré section Γ defines a sequence
of points just after the impact phase: x+

1 , x+
2 , . . . , x+

k , for k≥ 1.
*ese points define implicitly the following expression of the
Poincaré map [36]:

x
+
k+1 � P x

+
k( 􏼁. (14)

Our objective is to find the period-1 fixed point, noted
x+
∗, of the passive gait of the compass-type biped walker.

*us, according to the Poincaré map (14), such fixed point
should satisfy the following relation:

x
+
∗ � P x

+
∗( 􏼁. (15)

To find this period-1 fixed point x+
∗, we must solve the

following equation:

H x
+
∗( 􏼁 � P x

+
∗( 􏼁 − x

+
∗ � 0. (16)

To find the period-1 fixed point x+
∗, we use the New-

ton–Raphson algorithm to solve this previous nonlinear
equation (16) and then the following iterative scheme:

x
+
i+1 � x

+
i − DH

−1
x

+
i( 􏼁 × H x

+
i( 􏼁, (17)

where DH(x+) is the Jacobianmatrix of the functionH(x+),
and it is defined by the following expression:

DH x
+

( 􏼁 � In −
f x τr x

+
( 􏼁( 􏼁( 􏼁C

Cf x τr x
+

( 􏼁( 􏼁( 􏼁
􏼠 􏼡Φ+ τr x

+
( 􏼁, x

+
( 􏼁 − In,

(18)

where τr(x+) stands for the return time of the trajectory of
the swing phase emanated from the state x+, to the Poincaré
section Γ.*us, the quantity τr(x+) defines the time from the
state x+

i to the new state x+
i+1. As the impact phase is in-

stantaneous, then τr(x+) is the time from x+
i to x−

i+1. In (18),
In is the identity matrix.

Moreover, Φ+(τr(x+), x+) denotes the monodromy
matrix, which is the fundamental solution matrix Φ(t, x+)

evaluated just after the impact phase. Because of the impact
phase, such matrix Φ(t, x+) undergoes a jump and it is then
related to the fundamental solution matrix just before the
impact, noted Φ−(τr(x+), x+), via the jump matrix noted S

as follows:

Φ+ τr x
+

( 􏼁, x
+

( 􏼁 � S x
+
, x

−
( 􏼁Φ− τr x

+
( 􏼁, x

+
( 􏼁, (19)

where x− denotes the state just before the impact.
*e matrix Φ−(τr(x+), x+) in (19) is the fundamental

solution matrix evaluated just before the impact. Such
matrix is defined and computed according to the following
expression:

Φ− τr x
+

( 􏼁, x
+

( 􏼁 �
zϕ τr x

+
( 􏼁, x

+
( 􏼁

zx
+ , (20)

where ϕ(τr(x+), x+) is the solution during the swing phase
and is defined previously by expression (13).

*e jump matrix S(x+, x− ) in (19) is defined by the
following expression:

S x
+
, x

−
( 􏼁 � h

−
x −

h
−
xf

−
− f

+
( 􏼁C

Cf
− , (21)

where h−
x � (zh/zx)(x− ), with h(x) is the nonlinear func-

tion given in the algebraic equation of the impact phase in
(10b).

By choosing an initial guess x+
0 for iterative scheme (17),

this last will converge then after some iterations to the
period-1 fixed point x+

∗. For such fixed point x+
∗, it corre-

sponds the fixed step period τ∗, which is τr(x+
∗).

*e stability of this fixed point x+
∗ is investigated via the

eigenvalues of the Jacobian matrix of the Poincaré map.
Relying on expression (16) and (18), the Jacobian matrix of
the Poincaré map, noted DP(x+), is defined by the following
expression:

DP x
+

( 􏼁 � In −
f x τr x

+
( 􏼁( 􏼁( 􏼁C

Cf x τr x
+

( 􏼁( 􏼁( 􏼁
􏼠 􏼡Φ+ τr x

+
( 􏼁, x

+
( 􏼁.

(22)

If all the eigenvalues of the Jacobian matrix DP(x+)

evaluated at the period-1 fixed point x+
∗ are strictly inside the

unit circle, then such fixed point x+
∗ is stable. However, if at

least only one eigenvalue is outside the unit circle, then the
period-1 fixed point is unstable.

3.2. Behavior of the Passive Gait for a � 0.5 and as φ Varies.
In this first analysis, we fix the parameter a to a � 0.5, which
is the classical value adopted in the literature for the two legs
of the compass biped robot. *us, by varying the slope φ, we
obtain the bifurcation diagram in Figure 2, which reveals the
period-doubling route to chaos. Initially and for small angles
of the slope, the passive gait is with period-1. An increase of
the slope φ induces the appearance of the first period-
doubling bifurcation at the slope φ � 4.391°. A further in-
crease of φ causes then the exhibition of subsequent period-
doubling bifurcations, which lead to the formation of chaos.
At the value of the slope φ � 5.21°, the chaotic behavior is
terminated provoking hence the fall of the biped robot.
Notice that at the first period-doubling bifurcation, the
period-1 passive gait, which is initially stable, becomes
unstable. Such period-1 unstable passive gait is depicted in
Figure 2 with the dashed curve. Notice that after the critical
value φ � 5.21°, only the unstable motions with different
period numbers exist, and then the period-1 unstable passive
gait continues to exist.

It is worth to note that here in Figure 2 and also in
Figures 3 and 4 presented in the two next sections, the
dashed curves reveal the unstable period-1 fixed point of the
bipedal gait. Such fixed point was determined according to
the previous section.
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In Figure 5, we plotted two different behaviors in the
state space. Figure 5(a) reveals a one-periodic attractor,
namely, the period-1 passive hybrid limit cycle obtained for
the slope φ � 3° , whereas Figure 5(b) shows a chaotic
attractor depicted for the slope φ � 5.2°. In these figures, the
pink curve reveals the behavior of the swing leg, and the cyan
curve represents the motion of the support leg. However, the
green lines show the transition event that occurs at the
impact phase.

3.3. Behavior of the Passive Gait for φ � 4° and as a Varies.
In this part, we fix the slope angle at the value φ � 4° and we
vary the parameter a. As a result, we obtain the bifurcation
diagram in Figure 6. Note that, according to the bifurcation
diagram in Figure 2, for φ � 4° and a � 0.5, the passive gait is
of period-1. *en, by increasing and decreasing the value of
a from this nominal value a � 0.5, we obtained the scenario
in Figure 6. It is obvious that by increasing a, only the
period-1 passive gaits have been generated. *ese period-1
gaits were found to be terminated at the value a � 0.9936
and then leading to the fall of the compass biped. However,
by decreasing the value of the parameter a, we observe the
exhibition of the period-doubling route to chaos. *e first
period-doubling bifurcation occurs at the value a � 0.4615,
at which the period-1 stable gait becomes unstable. *e
chaotic motions were found to be ended at the value a �

0.3995 and hence causing the fall of the biped robot.
Relying on the bifurcation diagram in Figure 6, we se-

lected two values of the parameter a in order to show the
resultant behavior in the state space. Figure 4(a) shows the
period-1 passive limit cycle depicted for a � 0.8, whereas
Figure 4(b) reveals the chaotic attractor plotted for the
parameter a � 0.4. It is obvious that the period-1 limit cycle
in Figure 4(a) is larger than that in Figure 5(a). Moreover, at
the impact phase, the transition in the velocity of the two legs
in Figure 4(a) is more important (bigger) than that in
Figure 5(a). *is is because there is a considerable difference
between the two values of the parameter a: a � 0.5 in
Figure 5(a) and a � 0.8 in Figure 4(a). However, there is no

clear difference between the chaotic attractor in Figure 5(b)
and that in Figure 4(b). Almost the same form was obtained.

3.4. Behavior of the Passive Gait for a � 0.8 and as φ Varies.
In this analysis, we fix the parameter a to the value a � 0.8.
As reported in Figure 6, for such value of a, the behavior of
the passive walking of the compass biped robot is periodic of
period-1.*en, emanating from this value of a, we varied the
parameter φ. As a result, we obtained the bifurcation dia-
gram in Figure 3. Obviously, the passive walking dynamics
of the biped robot experiences the period-doubling route to
chaos as φ increases. *is behavior is emanated from the
period-1 gait at the near-zero slope and continues to the
chaotic motion, which is terminated at the slope φ � 8.337°.

In Figure 7(a), we plotted the period-1 limit cycle ob-
tained for the slope angle φ � 6° , whereas in Figure 7(b), we
present the chaotic attractor obtained for the slope φ � 8.3°.
It is widely clear the difference between the chaotic attractor
in Figure 7(b) and that in Figure 4(b). In Figure 4(b), the
maximum angular position that can be reached by the swing
leg is around 26°. However, the maximum angular position
for the present case in Figure 7(b) is around 70°. Moreover,
in Figure 4(b), the impact of the swing leg occurs with an
angular position almost equal to 12°, whereas in Figure 7(b),
the angular position of the swing leg at the impact is about 5° .
*is shows that the step length of the biped robot, in this case
of study, becomes smaller than that investigated in the
previous case, which is given in Figure 4(b).

4. Control Approaches of the Compass-Gait
Biped Walker

As discussed previously, the passive dynamic walking of the
compass-gait biped walker exhibits a period-doubling route
to chaos, and hence, unstable period-1 passive gaits are
generated through the first period-doubling bifurcation.
Note that the period-p gaits, for p> 1, are all asymmetric,
and then only the period-1 gaits are symmetric and that
resemble to that of the human walking. In order to eliminate
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Figure 2: Bifurcation diagram showing the step period of the passive gait as the slope parameter φ varies and for the fixed parameter a � 0.5.
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the chaotic behavior and also in order to control these
asymmetric gaits, we need to apply a well-designed control
law u to introduce in the impulsive hybrid nonlinear dy-
namics (10a) and (10b).

4.1. Methodology and Adopted Control Law. In order to
control the passive gaits of the compass-gait biped robot into a
period-1 gait for all values of the lower leg segment length a and
of the slope angle of the walking surface φ, we will apply two
approaches. *e first control approach is mainly based on the
passive dynamic walking. Indeed, we will use the period-1
passive gait that can be either stable or unstable, as a reference

trajectory to be tracked by the biped robot during the swing
phase. *e second control approach lies in the design of a
trajectory by our-self using the Spline polynomial method.
Such planned trajectory will be also used as a desired one to be
tracked by the biped robot. *ese two control approaches will
be detailed in the sequel.

To define the reference trajectory, we need to generate/
design the desired joint variables qd(t), _qd(t), and €qd(t).
Here, the term generate is used for the first control approach
since these variables will be generated via the model of the
passive dynamic walking. However, the term design is used
for the second control approach since these variables will be
obtained by means of a well-designed trajectory using the
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Figure 4: Attractors plotted for the fixed slope φ � 4° and for two different values of the parameter a. (a) a � 0.8. (b) a � 0.4.
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Figure 3: Bifurcation diagram showing the behavior of the passive gaits of the compass-gait walker for the fixed parameter a � 0.8 and as φ
varies. (b) An enlargement of (a) demonstrating the period-doubling route chaos.
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Spline polynomial function. To control the gait of the
compass walker to follow the desired period-1 trajectory
definedmainly by the desired joint variable qd(t), we will use
a compound tracking control law, which is called as the
feedforward-plus-PD (FF +PD) controller, and which is
defined as follows:

u(t) � uFF + uPD, (23)

where uFF is the feedforward control law and is defined by
the following expression:

uFF � B
−1

J qd( 􏼁€qd + C qd, _qd( 􏼁 _qd + G qd( 􏼁( 􏼁, (24)

and uPD is the proportional-derivative (PD) control law
defined as follows:

uPD � −B
−1

Kpe(t) + Kv _e(t)􏼐 􏼑, (25)

where e(t) and _e(t) are, respectively, the tracking error and
its derivative, with e(t) � q(t) − qd(t) and _e(t) � _q(t)−

_qd(t). Moreover, Kp and Kv are two symmetric positive-
definite matrices.
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It is worth to mention that the subcontroller uFF in (24)
or the subcontroller uPD in (25) can be applied solely. *us,
we will have two possible control laws that can be used to
control the passive gaits of the compass biped robot.
However, the FF +PD compound controller in (23) will be,
in general, the improved one.

Moreover, for adopted control law (23), the symmetric
positive-definite matrices Kp and Kv are taken as

Kp � diag w
2
1, w

2
2􏽮 􏽯, (26)

Kv � diag 2w1, 2w2􏼈 􏼉, (27)

where the values of w1 and w2 will be selected arbitrary.

Remark 1. It is worth to note that the design parameters Kp

and Kv of the adopted control law, namely, the FF +PD
controller (23), are selected according to expressions (26)
and (27). *e main objective behind the choice of these
expressions of Kp and Kv is to obtain in the closed loop a
second-order polynomial function with a damping ratio,
saying ζ, equal to 1. *is choice of ζ is in fact in order to
avoid some little overshoot and hence to obtain a critical
damping with a rapid response of the controlled biped robot
during the swing phase.

4.2. First Approach: Control Based on the Passive Dynamic
Walking. In this first control approach based on the passive
dynamic walking of the compass biped walker, the desired

joint variables qd(t), _qd(t), and €qd(t), which define the
period-1 passive trajectory and which will be used in
FF + PD control law (23), are generated from the dynamic
model of the passive walking during the swing phase. *us,
according to Section 2 and from dynamics (2) and for a
passive gait, that is, for u � 0, the desired dynamics that
generates the desired period-1 passive trajectory along the
swing phase is defined as follows:

J qd( 􏼁€qd + C qd, _qd( 􏼁 _qd + G qd( 􏼁 � 0. (28)

Moreover, in order that such system (28) generates the
period-1 passive trajectory, we should well choose the
initial condition just after the impact phase, x+

0 . Actually, in
order to have exactly the period-1 passive gaits that are
investigated in the previous section, the trajectory should
start with the period-1 fixed point x+

∗, which was already
determined according to Section 3.1. Moreover, we em-
phasize that as the period-one fixed point x+

∗ can be un-
stable for some values of the biped’s parameters, then and
in order to ensure the desired period-1 passive gait to be
same at each new step, dynamic model (28) should always
start with the same initial condition, that is with the same
period-1 fixed point x+

∗. Furthermore, such dynamics will
end and then start again with the same initial condition x+

∗,
if the swing leg of the compass-gait biped walker under the
controller u, touches the walking surface. Hence, the
complete model of the controlled dynamic walking of the
compass robot using this first control approach is defined
as follows:
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d
dt

q

_q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � f(q, _q) + g(q)u q, _q, qd, _qd, €qd( 􏼁

€qd � −J
−1

qd( 􏼁 C qd, _qd( 􏼁 _qd + G qd( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

, if x �

q

_q

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∉ Γ,

(29)

q
+

_q
+􏼢 􏼣 � h

q
−

_q
−􏼢 􏼣􏼠 􏼡

q
+
d

_q
+
d

􏼢 􏼣 � x
+
∗

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, if x �
q

_q
􏼢 􏼣 ∈ Γ. (30)

Note that in (29), u(q, _q, qd, _qd, €qd) is the FF+PD con-
troller u(t) defined by expression (23). Moreover, we stress that
in this first control approach based on the passive dynamic
walking of the compass robot, and relying on the desiredmodel
defined by expression (28) to track, the feedforward controller
uFF in (24) is zero (uFF � 0) and then has no action on the
tracking problem of the period-1 passive gait. Hence, only PD
controller (25) will be considered. As a result, we will have

u(t) � uPD � −B
−1

Kpe(t) + Kv _e(t)􏼐 􏼑. (31)

4.3. Second Approach: Control Based on Tracking a Designed
Spline Trajectory

4.3.1. Presentation of the Control Approach. *e design of a
reference trajectory for the walking cycles of the biped robot is
important [80, 81]. Our goal is to design a one-periodic tra-
jectory that satisfies a certain objective in terms of position and
velocity along the swing phase. As the compass biped walker
has two links, we will then design a period-1 reference tra-
jectory for each link, which is a reference trajectory for the
swing leg and another one for the stance leg. In order to design
such period-1 trajectories, we adopt the Spline polynomial
method, for which the trajectory depends on the order (of
time). In order to design these one-periodic reference trajec-
tories, we mainly need the angular position and the angular
velocity of each leg just after and just before the impact phase.

In the sequel, let θi,0 � θi(t0), for i � ns, s{ }, be the initial
joint position just after the impact phase for t � t0. Let also
θi,f � θi(tf) be the final joint position just before the impact
phase for t � tf. Moreover, at these times t0 and tf, it
corresponds the joint velocity θ

.

i,0 � θ
.

i(t0) and θ
.

i,f � θ
.

i(tf).
It is worth to note that the time tf will be fixed as the

desired step period of the passive dynamic walking of the
compass biped robot. *us, we will have tf � τ∗. Moreover,
the final angular positions and velocities of the two legs, that
is, θi,f and θ

.

i,f with i � ns, s{ }, will be chosen to be the state of
the period-1 fixed point just before the impact phase. Such
fixed point is noted as x−

∗. *us, in the sequel, we will use the
following notions: θ−

i,∗ � θi,f and _θ
−

i,∗ � _θi,f.
In fact, it is possible to choose other values for tf, but as our

objective is to control the passive gaits, then we will be in-
terested in the features of the period-1 passive gaits, which are
defined by their own period-1 fixed point x−

∗ and also their own
step period τ∗.

4.3.2. Design of the Order-4 Spline Reference Trajectory.
Our goal in this section is to design an order-4 Spline
trajectory to be tracked by the compass-gait walker. Such
trajectory has the following form:

θi(t) � eit
4

+ dit
3

+ cit
2

+ bit + ai, (32)
where ai, bi, ci, di, and ei, are scalars to be designed next.

*en, by substituting all the initial and final conditions,
we obtain

θi,0 � eit
4
0 + dit

3
0 + cit

2
0 + bit0 + ai,

θi,f � eit
4
f + dit

3
f + cit

2
f + bitf + ai,

_θi,0 � 4eit
3
0 + 3dit

2
0 + 2cit0 + bi,

_θi,f � 4eit
3
f + 3dit

2
f + 2citf + bi.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

As t0 � 0 and tf � τ∗, the equations in (33) are recast as
follows:

θi,0 � ai,

θ−
i,∗ � eiτ

4
∗ + diτ

3
∗ + ciτ

2
∗ + biτ∗ + ai,

_θi,0 � bi,

_θ
−

i,∗ � 4eiτ
3
∗ + 3diτ

2
∗ + 2ciτ∗ + bi.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

*ese previous conditions in (34) can be rearranged in
the following matrix form:

θi,0

θ−
i,∗

_θi,0

_θ
−

i,∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 0 0 0 0

1 τ∗ τ2∗ τ3∗ τ4∗
0 1 0 0 0

0 1 2τ∗ 3τ2∗ 4τ3∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ai

bi

ci

di

ei

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Notice that linear matrix equality (35) with unknown
scalars ai, bi, ci, di, and ei admits an infinity of solutions.
*en, the desired trajectories to impose to be traveled by the
two legs can have several possible paths. *erefore, the
objective is to find the optimal trajectory allowing the tip of
the swing leg of the compass biped robot to travel the
shortest trajectory from the just-after-impact state to the
just-before-impact state, which is from the state
x0 � θns,0 θs,0

_θns,0
_θs,0􏽨 􏽩

T
, which can be either just-after-

impact or any state at the swing phase, to the state just before
impact x−

∗ � θ−
ns,∗ θ−

s,∗
_θ

−

ns,∗
_θ

−

s,∗􏽨 􏽩
T
.

*us, in order of find the optimal values of these con-
stants ai, bi, ci, di, and ei, for i � ns, s{ }, we should minimize
the following criterion:

L � 􏽚
τ∗

0
θns(t) + θs(t) + 2φ( 􏼁

2dt. (36)

From the conditions in (34), it follows that the two
constants ai and bi are well defined as follows:

ai � θi,0, (37)

bi � _θi,0. (38)
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However, the three parameters ci, di, and ei depend on
each other. We adopt the constant ci to be the unknown
parameter to be optimized according to the previous ob-
jective by minimizing the criterionL in (36). *us, we need
to define the two constants di and ei in function of the
parameter ci. According to the conditions in (34), it is easy to
show that di and ei are defined with respect to ci like so

di � mi −
2
τ∗

ci, (39)

ei � ni +
1
τ2∗

ci, (40)

where mi and ni are expressed as follows:

mi �
4
τ3∗

θ−
i,∗ − ai − biτ∗􏼐 􏼑 −

1
τ2∗

_θ
−

i,∗ − bi􏼐 􏼑, (41)

ni � −
3
τ4∗

θ−
i,∗ − ai − biτ∗􏼐 􏼑 +

1
τ3∗

_θ
−

i,∗ − bi􏼐 􏼑. (42)

Using expression (32), the criterion L in (36) can be
rewritten as follows:

L � 􏽚
τ∗

0
a + bt + ct

2
+ dt

3
+ et

4
􏼐 􏼑

2
dt, (43)

where a � ans + as + 2φ, b � bns + bs, c � cns + cs,
d � dns + ds, and e � ens + es.

Relying on expressions (37)–(40), we obtain

a � θns,0 + θs,0 + 2φ, (44)

b � _θns,0 + _θs,0, (45)

d � m −
2
τ∗

c, (46)

e � n +
1
τ2∗

c, (47)

where in (46) and (47), m � mns + ms and n � nns + ns.
Relying on relations (41) and (42), we can easily dem-

onstrate that the two parameters m and n are defined by the
following expressions:

m � −
4
τ3∗

a −
1
τ2∗

Dx
−
∗ + 3b( 􏼁, (48)

n �
3
τ4∗

a +
1
τ3∗

Dx
−
∗ + 2b( 􏼁, (49)

where D � 0 0 1 1􏼂 􏼃.
Accordingly, the criterionL in (43) can be reformulated

and rewritten under the following expression:

L � a
2τ∗ + abτ2∗ +

1
3

b
2

+ 2ac􏼐 􏼑τ3∗ +
1
2

(bc + ad)τ4∗ +
1
5

c
2

+ 2ae + 2bd􏼐 􏼑τ5∗

+
1
3

(be + cd)τ6∗ +
1
7

2ce + d
2

􏼐 􏼑τ7∗ +
1
4

de τ8∗ +
1
9
e
2τ9∗.

(50)

*e criterion L in (50) is expression in function of the
parameters a, b, c, d, and e, and also the nominal step period τ∗
of the desired period-1 trajectory to be tracked. *us, this
quantity, that is, τ∗, is predefined and then prefixed. *e two
parameters a and b depend on the initial state vector x0
according to relations (44) and (45).*e two parametersd and e

depend, respectively, on the scalarsm and n, and also the design
parameter c, which is unknown at this level. However,
according to relations (48) and (49), the two scalars m and n are
defined with respect to the desired state vector just before
impact x−

∗, the nominal step period τ∗, and the precomputed

parameters a and b.*us, to solve this issue, wewill substitute in
the criterion L in (50), the two parameters d and e by their
expressions (46) and (47). Accordingly, the criterionLwill only
depend on the unknown parameter c to design in the sequel.
*us, it is straightforward to show that the criterionL in (43) is
recast as the following second-order polynomial defined with
respect to the design parameter c:

L � μc
2

+ ηc + ξ, (51)

with

μ �
1
630

τ5∗,

η �
1
126

nτ7∗ +
1
84

mτ6∗ +
1
30

bτ4∗ +
1
15

aτ3∗,

ξ � a
2τ∗ + abτ2∗ +

1
3
b
2τ3∗ +

1
2

amτ4∗ +
2
5

(an + mb)τ5∗ +
1
3

nbτ6∗ +
1
7
m

2τ7∗ +
1
4

mnτ8∗ +
1
9
n
2τ9∗.

(52)
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By deriving with respect to c, it follows that the criterion
L in (51) is minimum for the following optimal value of the
parameter c:

c � −
η
2 μ

. (53)

As c � cns + cs, then we can choose cns and cs as follows:

cns � cs � −
η
4 μ

. (54)

Remark 2. It is important to note that the two previous adopted
control approaches are based on some features of the passive
dynamic walking of the compass biped walker. *e use of the
passive gait in the control loop comes from the following fact:

(i) *e passive compass biped robot presents a
mechanically self-stabilized dynamic gait. *us, the
biped robot will try to stabilize its gait by itself.

(ii) *e use of the passive dynamic walking allows to
significantly increase the energy efficiency of the
bipedal walking of the compass robot.

*us, by considering these two motivations behind the
use of the passive dynamic walking in the control loop of the
compass biped robot, we employed in the first approach the
whole passive trajectory during the swing phase. *us, the
biped robot will follow a passive trajectory that requires a
zero energy. However, for the second control approach,
which is based on the design of the 4th-order polynomial
trajectory, we will use two features of the passive gait,
namely, the state vector just before impact x−

∗ and the as-
sociated step period τ∗. *is methodology will at least allow
to approach the passive gait.

5. Simulation Results for the Control of Chaos

Simulation results are presented and discussed in the fol-
lowing section to show through figures the effectiveness of
proposed FF +PD control law (23) in the control of chaos
and then in the stabilization of the compass-gait bipedal
walker. We will show the results for the two control ap-
proaches. Moreover, the two gain matrices Kp and Kv in
control law (23) are selected according to expressions in (26)
and (27) to be such that w1 � w2 � 20.

5.1. Simulation Results for the First Control Approach. In this
part, we show the validity of proposed FF +PD control law
(23) or, as discussed previously, PD control law (31), in the
first control approach based on the passive dynamic walking.
*us, we will consider two cases with two different sets of the
parameters a and φ. *e first case is for φ � 5.2° and a � 0.5,
whereas the second one is for φ � 8.3° and a � 0.8. For these
two cases, the passive gait of the compass bipedal robot is
chaotic.

5.1.1. First Case: φ � 5.2° and a � 0.5. We consider the first
case of a chaotic passive gait exhibited for the slope φ � 5.2°
and for the segment length a � 0.5. *e chaotic attractor is

illustrated in Figure 5(b), inside which we have determined
the period-1 unstable limit cycle defined by its unstable
period-1 fixed point just after impact:

x
+
∗ � −23.9357 13.5357 −0.7928 −67.1831􏼂 􏼃. (55)

*e initial condition for the simulation is fixed at

x0 � −10 5 50 −10􏼂 􏼃. (56)

*e simulation results of the tracking problem of the
desired period-1 passive gait are given in Figure 8.
Figure 8(a) shows the variation of the controlled trajectory in
the state space.*e two red circles reveal the initial condition
x0, (56), from which the compass biped starts its walking.
*e large curves colored in cyan and green reveal the desired
period-1 passive hybrid limit cycle. Obviously, the trajectory
of the controlled gait converges to and remains on this
desired limit cycle. Figure 8(b) shows the variation of the
step period of the controlled gait. It is clear that after almost
6 steps, the gait converges to the desired one and also the
obtained gait has the same desired step period. Figure 8(c)
depicts the temporal variation of the control law u, which is
composed of the two inputs us and uh. It is obvious that
when the controlled gait tracked the desired one, the two
controllers us and uh are zero. *erefore, the controlled gait
converges to the desired one and becomes entirely passive.

5.1.2. Second Case: φ � 8.3° and a � 0.8. We have realized
also another simulation by adopting two different values of
both φ and a. Indeed, we have chosen a chaotic gait for φ �

8.3° and a � 0.8. Recall that for such values of these two
parameters φ and a, the chaotic attractor was illustrated in
Figure 7(b). For such adopted parameters of φ and a, the
period-1 fixed point just after impact of the unstable limit
cycle is

x
+
∗ � −28.1735 11.5735 240.6451 −72.3556􏼂 􏼃. (57)

*e simulation results are given in Figure 9. It is obvious
that the passive gait is controlled and stabilized at the desired
period-1 hybrid limit cycle. When the tracking is realized,
and relying on Figure 9(c), the control law u becomes zero
and hence the gait of the compass biped walker becomes
passive.

To check the efficiency of the method, we simulated the
solution of impulsive hybrid nonlinear dynamics 10(a) and
10(b) using the Poincaré section Γ defined in (11). *e
simulation results are illustrated in Figure 10 without and
with the control for φ � 8.3° and a � 0.8. Without control,
we observe in Figure 10(a) an infinity of points which in-
dicates a chaotic behavior. *is phenomenon disappears
after applying the control based on the passive dynamic
walking as it is shown in Figure 10(b) where it is presented
only one single point of intersection with the Poincaré
section Γ.

5.1.3. Further Simulation Results for Tracking the Passive Gait
with φ � 5.2° and a � 0.5. In this section, we will propose
some additional simulation results showing the effectiveness
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of the adopted control law in the tracking of the designed
period-1 trajectory (period-1 passive gait). We will con-
sidered the desired period-1 passive trajectory to be that
generated by the compass-gait biped walker during the
swing phase and for the nominal parameters φ � 5.2° and
a � 0.5. *us, the nominal initial condition is given by the
state vector x+

∗ defined in (55). In addition, we propose to
vary the slope angle to a different value and hence the
compass biped robot walks down a slope different to the
desired one. We will take four cases: φ � 7°, φ � 10°, φ � 0°,
and φ � −5°. It is important to note that for each slope, the
desired period-1 passive gait is always the same. *en, the
objective is to track the same period-1 trajectory. Notice that
for the case φ � 0°, the biped robot walks on a level ground.
However, for the case where the slope is negative, and then

for the fourth case φ � −5°, the compass robot goes on an
inclined surface compared to the other cases where the biped
robot descends the inclined walking surface. It is important
to note that for these four different slopes, the passive
compass walker cannot experience a successful bipedal
walking on the walking surface. Emanated from any initial
condition, the biped robot falls down after some few steps.
We note that the initial condition for the simulation of the
compass biped robot is adopted to be x0 given by (56).

(1) Bipedal Walking for the Slope. φ � 7°. Figure 11 shows the
simulation results for the first slope φ � 7°. Figure 11(a)
reveals the desired period-1 passive limit cycle (formed by
the green and cyan large curves) and the controlled tra-
jectory of the biped robot emanated from the initial
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Figure 8: Control of the chaotic passive gait of the compass biped walker for the parameters a � 0.5 and φ � 5.2°, using the passive dynamic
walking-based control approach.
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condition x0. It is worth to note that by increasing the slope
angle, the passive and then the uncontrolled compass-gait
biped robot needs a bit more time to reach the walking
surface. *erefore, the state vector just before impact as-
sociated to the slope φ � 5.2°, saying x−

∗ ,φ�5.2° , is completely
different to the state vector just before impact associated to
the slope φ � 7°, that is, x−

∗ ,φ�7° . Nevertheless, as the pre-
defined objective is to track the desired period-1 passive gait
generated for the slope φ � 5.2°, and since the compass biped
robot walks down the slope φ � 7°, the period-1 passive gait
will be re-emanated just after the impact from the state
vector x+

∗ ,φ�5.2° and not from the state vector x+
∗ ,φ�7° , as

described previously in the algebraic equation in (30). *is
methodology will allow to generate always the desired pe-
riod-1 (unstable) passive gait.

We can also observe clearly the tracking of the desired
trajectory from Figures 11(c)–11(f ), where Figures 11(c) and
11(d) (resp., Figures 11(e) and 11(f)) show the in-time
trajectory of the angular position and the angular velocity of
the swing leg (resp., the stance leg). *e tracking of the
desired period-1 passive gait is obvious. It is clear from these
two figures, Figures 11(c) and 11(d), that just after the
impact of the swing leg with ground, the two trajectories (the
desired gait and the controlled one) are different since they
start from two different initial conditions, as explained
previously. However, and via adopted control law (31), the
compass robot follows the desired period-1 passive gait.
Figure 11(b) reveals the applied control law u, defined by
expression (31). It seems that the biped robot requires some
nonnegligible energy to track the desired period-1 passive
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Figure 9: Simulation results showing the controlled chaotic gait of the compass-type biped walker for φ � 8.3° and a � 0.8 and using the first
control approach based on the passive dynamic walking.
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gait. When the bipedal walking is controlled, the control
effort applied at the hip, uh, converges to zero. Moreover, the
stance leg’s controller hs decreases along the swing phase.
Nevertheless, as this phase ends and the two initial condi-
tions of the two trajectories become different at the be-
ginning of a new walking step, the control effort increases
again. *is scheme continues for every step.

(2) Bipedal Walking for the Slope. φ � 10°. We consider now a
different slope angle φ � 10°, on which the compass biped
robot walks down. *e desired period-1 passive gait is that
generated for the slope φ � 5.2°. *e simulation results are
illustrated in Figure 12. In Figure 12(a), we observe the tracking
of the desired period-1 passive gait during the swing phase.*e
biped robot requires some milliseconds to follow the desired
trajectory. *e temporal evolution of the angular position and
the angular velocity of the swing leg, respectively, in
Figures 12(c) and 12(d), and that of the stance leg, respectively,
in Figures 12(e) and 12(f), confirm this fact. As noted pre-
viously, at the beginning of the swing phase, the desired passive
trajectory and the controlled one are completely different. *is
difference requires a control effort to allow the compass walker
tracks the desired passive gait. Figure 12(b) reveals the temporal
evolution of the applied control law u. Compared to
Figure 11(b), the control effort is increased.

In Figures 11 and 12, the tracking of the desired passive
gait of the stance leg (Figures 11(e) and 11(f) for φ � 7° , and
Figures 12(e) and 12(f) for φ � 10°), is not completed and
requires more time. However, this fact cannot happen since
the duration of the swing phase is constraint by the impact of
the swing leg with the walking surface and then limited by
the time of the walking step. To overcome this problem, the
solution is to increase the values of the two gains Kp and Kv

of control law (23). *us, in (26) and (27), we choose
w1 � w2 � 40. Figure 13 reveals the simulation results with
these new matrix gains Kp and Kv. Compared to
Figure 12(a), the shape of the controlled attractor (period-1

limit cycle) in Figure 13(a) is changed. Furthermore, the
temporal evolution of the four states in Figures 13(c)–13(f )
shows the tracking of the desired period-1 passive gait of the
compass biped robot better than that in Figure 12 by
adopting w1 � w2 � 20. However, as seen in Figure 13(b),
the increase of w1 and w2 � 20 and then of the two gains Kp

and Kv of the PD control part provokes a considerable
increase of the control effort applied to the biped robot.

(3) Bipedal Walking on a Level Ground, for the Slope. φ � 0°.
We choose now the slope angle φ � 0° and then the compass
walker walks on a level ground. We reselect w1 � w2 � 20 for
the feedback gains Kp and Kv of adopted FF+PD control law
(23). Figure 14 shows the simulation results. Compared to the
previous cases for φ � 7° and φ � 10°, the swing leg of the
compass robot needs a smaller time to encounter the walking
surface. Hence, the step period of the bipedal walking for the
slope φ � 0° is shorter than that for φ � 5.2°. *is fact can be
observed for the passive and controlled attractors in
Figure 14(a). Indeed, and compared to the previous cases, the
state vector just after the impact of the desired period-1 passive
attractor (color in green and cyan) is located at the left side with
respect to the state vector just before the impact.

Figures 14(c)–14(e) and Figure 14(e) show the curves of the
angular positions and the angular velocities of the two legs of
the compass bipedal walker. *e tracking of the desired tra-
jectory is obvious. In addition, Figure 14(b) reveals the control
effort u applied to the biped robot while walking. As in the
previous cases, the hip controller uh requires small energy
compared to the stance leg’s controller us.

(4) Bipedal Walking Ascending the Slope. φ � −5°. In this last
case, we consider a negative slope angle, φ � −5°. *us, the
compass biped walker ascends an inclined plane. Recall that
the desired period-1 passive gait to be tracked by the
compass robot is generated for the slope φ � 5.2°. *e
simulation results are illustrated in Figure 15. Figure 15(a)
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Figure 10: Simulation results showing the uncontrolled (a) and the controlled (b) passive gait of the compass-type biped walker for φ � 8.3°
and a � 0.8 using the Poincaré section Γ defined in (11).
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Figure 11: Continued.
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Figure 11: Simulation results revealing the tracking of the desired period-1 passive gait of the compass-type biped walker for φ � 7° and
a � 0.5. Here, the desired period-1 passive dynamic walking is generated for the slope φ � 5.2°. In addition, we selected w1 � w2 � 20 for the
two feedback gains Kp and Kv in (26) and (27) of adopted control law (23).
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shows the controlled attractor and the desired period-1
passive hybrid limit cycle to track by the compass robot.
Figure 15(b) reveals the control effort applied to the biped
robot while ascending the inclined plane. Compared to the
case φ � 0° and then Figure 14(b), the biped walker needs
more control effort to track the desired trajectory and then to
walk on the walking surface. Figures 15(c)–15(f ) show the
temporal evolution of the angular positions and the angular
velocities of the two legs. Obviously, the swing leg tracks the
desired trajectory. However, for the stance leg, there is a clear
gap between the desired trajectory and the controlled one.
Nevertheless, the angular position of the stance leg reaches
the desired trajectory at the end of the swing phase. It seems

that the stance leg needs more time to track the desired
passive gait. However, as noted previously, the tracking
procedure is restricted by the period of the swing phase and
hence of the bipedal walking. In order to improve the
tracking scheme, and as we have realized previously in the
second case for φ � 10°, it is possible to increase the value of
w1 and w2 and then of the two feedback gains Kp and Kv in
(26) and (27) of control law (23).

5.1.4. Further Simulation Results for Tracking the Passive
Walk with φ � 8.3° and a � 0.8. As the previous part, the
objective here is to track the passive dynamic walking of the
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Figure 12: Simulation results showing the tracking of the desired period-1 passive gait of the compass-gait bipedal walking robot for φ � 10°
and a � 0.5, and for Kp and Kv in (26) and (27) of control law (23) with w1 � w2 � 20. As previously, the desired period-1 passive gait is
generated for the slope φ � 5.2°.
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Figure 13: Continued.
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compass-gait bipedal robot generated for a different set of
parameters φ and a, namely, φ � 8.3° and a � 0.8. Actually, we
have obtained almost the same simulation results and remarks.
*us, we will consider two cases: φ � 15° and φ � 0°. *e first
case φ � 15° is for steeper slope, whereas the second case φ � 0°
corresponds to a bipedal walking on a level ground. *e initial
condition for the simulation of the compass robot is fixed as
previously to be x0 given by (56).

(1) Bipedal Walking down the Slope. φ � 15°. Let us consider
the first case of the slope φ � 15°. *us, the compass robot
will walk down an inclined plane of slope φ � 15° and will
track the desired period-1 passive gait generated for the
nominal slope φ � 8.3°. Figure 16 shows the obtained
simulation results. Figure 16(a) reveals the controlled
attractor approaching the desired period-1 passive limit
cycle. Figure 16(c)–16(f ) confirm the tracking scheme. As
previously, the stance leg needs more control effort to ef-
ficiently track the desired passive gait. Figure 16(b) reveals
the control effort applied to the biped robot to track the
desired period-1 passive gait. Like previous studies, the
stance leg needs an important control effort, us, to track the
desired gait. However, the control effort applied at the hip,
uh, is low.

(2) Bipedal Walking on the Level Ground. φ � 0°. In this part,
the compass-gait biped robot under adopted control law (23)
walks on the level ground and then the slope angle of the
inclined surface is φ � 0°. *e desired period-1 passive gait
to be tracked is generated for the nominal slope φ � 8.3° and
for a � 0.8. Simulation results are illustrated in Figure 17. It
is obvious that the controlled gait tracks the desired period-1
passive gait. Figure 17(b) reveals the control effort u applied

to the biped robot while walking on the level ground. As
previously, the stance leg needs an important control level to
track the desired trajectory.

5.2. Simulation Results for the Second Control Approach.
In this section, we present the simulation results for the
second control approach by tracking a 4th-order Spline
trajectory, which was designed in Section 4.3.2. Recall that
the control law is FF + PD controller (23). For such con-
troller, we have adopted the same gainmatricesKp andKv in
(26) and (27). In addition, for the simulation of the con-
trolled behavior, we have selected the same initial condition
x0 taken in the previous control approach based on the
passive dynamic walking, that is, the state x0 in (56).
Moreover, we have considered the two same cases of the
parameters a and φ.

It is important to mention that we have achieved several
simulations with different values of Kp and Kv and we have
found (almost) the same behavior of the controlled passive
gaits. We have selected, for example, Kp � 0 and Kv � 0 and
as result, and we obtained the same control picture. Notice
that with these values of the matrix gains Kp and Kv, the PD
action in FF +PD control law (23) is canceled, uPD � 0, and
then such control law becomes feedforward controller uFF
(23). It is worth noting that such controller has interesting
advantages that it offers in implementation compared to the
PD controller uPD that was used in the previous analysis, and
also compared to FF +PD control law uFF+PD (23). Indeed,
the controller uFF does not depend on the angular position q

nor on the angular velocity _q of the biped robot. Moreover,
such controller uFF does not possess any design parameter.
*erefore, the control process of the compass-gait walker
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Figure 13: Simulation results showing the tracking of the desired period-1 passive gait of the bipedal compass robot for φ � 10° and a � 0.5.
*e twomatrix gains Kp and Kv in (26) and (27) of adopted control law (23) are fixed such that w1 � w2 � 40. Moreover, the desired period-
1 passive walking to be tracked is generated for the slope φ � 5.2°.
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Figure 14: Continued.
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using this second approach and also using the FF control law
uFF does not require the use of sensors to measure the
angular quantities q and _q. One only needs to design and
compute the desired trajectory qd(t) and hence _qd(t) and
€qd(t) (maybe off-line).

5.2.1. First Case: φ � 5.2° and a � 0.5. Let start with the first
simulation results by considering the case of the chaotic
passive gait for a � 0.5 and φ � 5.2°. Recall that the chaotic
attractor generated using these values of a and φ is illustrated
in Figure 5(b). As noted previously, the design of the
constants ai, bi, ci, di, and ei, for i � ns, s{ }, depends on the
desired step period τ∗ of the period-1 passive gait. *us, for
such values of a and φ, we have τ∗ � 0.7647.

Figure 18 shows the simulation results for this first case,
that is, for a � 0.5 and φ � 5.2°. It is obvious from
Figure 18(a) that, starting from the departure point x0
(marked with red circles), the trajectory converges rapidly to
the planned period-1 gait. Initially, and in the first walking
step (the curve colored in blue for the swing leg and the
curve colored in magenta for the stance leg), the trajectory
converges to the desired period-1 fixed point x−

∗. *us, in the
next step and just after the impact, the trajectory starts with
the state x+

∗. *e trajectory goes then from the initial point
x+
∗ to the desired final point x−

∗, and the period of this travel
is always fix and equal to τ∗ � 0.7647.

Figure 18(b) reveals the temporal evolution of the ap-
plied control law u. It is obvious that the compass biped
walker requires a considerable energy to be applied on it in
order to follow the desired planned trajectory. Compared to
the previous control approach based on the passive dynamic
walking (see Figure 8(c)), the amplitudes of the two

controllers uh and us are considerably high when the
tracking was achieved.

5.2.2. Second Case: φ � 8.3° and a � 0.8. We consider now
the second case using the following parameters: φ � 8.3°
and a � 0.8, for which the chaotic passive gait is revealed by
the chaotic attractor given by Figure 7(b). For such set of
parameters, the desired period-1 gait has the following step
period τ∗ � 0.5222. Figure 19 shows the obtained simu-
lation results. Note that we have considered the initial point
x0 as previously. Obviously, the results in Figure 19(a)
reveal the same observation captured in Figure 18(a), where
the biped robot needs only one walking step to reach and
then follow the reference trajectory. Figure 19(b) shows the
control law u. We have also obtained almost the same result
as in Figure 18(b). *e only remarkable difference, which is
quite reasonable, lies in the amplitude of the controller us

during the first step. *is high level of the amplitude comes
from the fact that the selected departure condition x0 was
taken far away from the reference trajectory. *us, the
biped robot needs more control effort to reach the desired
trajectory.

It is worth to note that after these investigations, the use
of the second control approach of a designed trajectory
needs much control efforts compared to the first control
approach based on tracking an entirely passive dynamic
walking generated from the dynamic model of the compass-
gait biped walker. We can say therefore that the first control
approach is more efficient and also more attractive in terms
of energy consumption. *is result shows the great interest
in the study and the use of the passive dynamic walking to
control the locomotion of biped robots.
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Figure 14: Simulation results showing the tracking of the desired period-1 passive gait of the compass walker for φ � 0° and a � 0.5, and for
Kp andKv in (26) and (27) of adopted FF+PD control law (23) withw1 � w2 � 20.*e desired period-1 passive gait is obtained for the slope
φ � 5.2°.
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Figure 15: Simulation results revealing the tracking of the desired period-1 passive gait of the compass-gait walker while ascending the slope
φ � −5°. *e desired period-1 passive gait is obtained for the slope φ � 5.2°. Moreover, we fixed w1 � w2 � 20.
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Figure 16: Simulation results showing the tracking of the desired period-1 passive gait of the compass biped robot while walking down the
slope φ � 15° and for the leg length’s parameter a � 0.8. *e desired period-1 passive gait is obtained for the slope φ � 8.3°.
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Figure 17: Simulation results revealing the tracking of the desired period-1 passive gait generated for the slope φ � 8.3° and the lower leg
segment’s length a � 0.8, while walking on the level ground and then for φ � 0°.
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5.2.3. Further Simulation Results for Tracking the 4th-Order
Spline Trajectory with φ � 5.2° and a � 0.5. In this part, we
will consider further simulation results showing the effec-
tiveness of adopted control law (23) in the tracking of the
designed period-1 order-4 Spline trajectory. It is worth to
note that such desired trajectory depends on the state vector
just before impact x−

∗ and the nominal step period τ∗ ob-
tained for the nominal parameters φ � 5.2° and a � 0.5. Two
different slopes are chosen to verify the efficiency of adopted
control law (23) in the tracking of the designed order-4
Spline trajectory, namely, φ � 10° and φ � 0°. *e initial
condition for the simulation of the compass-gait biped
walker is adopted to be x0 given by (56).

(1) Bipedal Walking for the Slope. φ � 10°. Figure 20 shows
the simulation results for the slope φ � 10° and the length
parameter a � 0.5. Obviously, in Figure 20(a), the con-
trolled gait of the compass robot converges to the desired
gait in only three walking steps. *is behavior can be
observed in Figure 20(b), where the control effort con-
serves its oscillation after three steps (notice that a
walking step can be understood as the time between two
successive transitions in the control law u in
Figure 20(b)). As in the first control approach and the
previous nominal cases, the control effort uh applied at
the hip is smaller than that of the stance leg, us.

(2) Bipedal Walking on the Level Ground. φ � 0°. We con-
sider now the case of a bipedal walking on the level ground,
and then for φ � 0°. *e length of the lower leg segment of
the two legs is kept to its nominal value, that is, a � 0.5.
Figure 21(a) reveals the controlled attractor and the desired
period-1 trajectory. Figure 21(b) depicts the control effort u

applied to the biped robot as it walks on the ground. *e
compass robot walks steadily and with a 1-periodic behavior
on the level ground with an acceptable control effort.

5.2.4. Further Simulation Results for Tracking the 4th-Order
Spline Trajectory with φ � 8.3° and a � 0.8. Let us consider
now the case of the nominal passive gait obtained for the
slope φ � 8.3° and the lower leg segment a � 0.8. As noted
previously, the design of the desired 4th-order Spline tra-
jectory depends on the state vector just before impact x−

∗ and
the step period τ∗ obtained for these nominal parameters
φ � 8.3° and a � 0.8. For the bipedal walking of the compass
robot, we will select two slopes: φ � 15° and φ � 0°. *e
initial condition for the simulation of the compass-gait biped
walker is x0 defined by (56).

(1) Bipedal Walking down the Slope. φ � 15°. Figure 22 re-
veals the simulation results of the controlled compass biped
robot while walking down the slope φ � 15° and for the
lower leg segment length φ � 15°. *e nominal parameters
x−
∗ and τ∗ for planning the desired period-1 Spline trajectory

were computed for the nominal parameters φ � 8.3° and
a � 0.8. Figure 22(b) shows the temporal evolution of the
control law u. Obviously, and as previously, the controlled
gait becomes one-periodic just after three walking steps.

(2) Bipedal Walking on the Level Ground. φ � 0°. We con-
sider now the case of bipedal locomotion on the level ground
and then for φ � 0°. Recall that the nominal parameters
adopted for the design of the 4th-order Spline trajectory to
be tracked are φ � 8.3° and a � 0.8. Simulation results are
depicted in Figure 23. As previously, the gait of the compass
robot is controlled and becomes one-periodic just after three
steps.

6. Comparison

In this section, we compare the efficiency of the two previous
control approaches to control chaos in the compass-gait
walker with another approach. *e well-known method
adopted for the control of chaos in the bipedal walking is the
OGY control approach [26, 52]. Such approach is based on
the linearization of the controlled Poincaré map [45, 46].
*is OGY control method was adopted in [71] to control
chaos in the compass-gait biped robot and in [82] for the
torso-driven biped robot. In these works, authors developed
a mathematical expression of the constrained (or hybrid)
controlled Poincaré map, which has not the classical form,
but it was found to be constrained to a transcendental map
that should be solved at each walking step. Some simplified
versions of this constrained controlled Poincaré map were
developed in [13, 40] for the compass biped robot and in [83]
for the biped robot with torso. In all these previous works,
such constrained/hybrid controlled Poincaré map is
expressed as follows:

x
−
k+1 � P x

−
k , uk, τk( 􏼁,

Q x
−
k , uk, τk( 􏼁 � 0,

􏼨 (58)

where x−
k is the state vector just before impact of the swing

leg with the ground, τk is the step period, and uk is the
controller applied during the kth step and remains constant.
*e first equation in (58) represents the controlled Poincaré
map, whereas the second equation defines the constraint that
should be solved numerically to find τk, which will be used
next in the Poincaré map to iterate it.

In order to design this constrained controlled Poincaré
map (58), authors linearized the impulsive hybrid nonlinear
system (10a) and (10b) around a desired period-1 passive
hybrid limit cycle for some desired slope φ. *us, they
developed a reduced impulsive hybrid nonlinear/linear
system. By means of this simplified system and via some
mathematical developments, such expression (58) was
therefore obtained.

Recently, authors in [84, 85] designed an explicit ex-
pression of the Poincaré map, different to (58), and that has
the conventional form. *ey used in [84] the first-order
Taylor series expansion, whereas they used in [85] the
second-order Taylor approximation. *ey showed in these
works the validity of the developed expression of the
Poincaré map in investigating the complex behavior of the
passive dynamic walking of the compass-gait bipedal walker.
Moreover, they developed in [72] an analytical expression of
the controlled Poincaré map to stabilize the passive gaits of
the compass robot and then to control chaos. Such
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controlled Poincaré map has the following expression, as the
classical form:

z
−
k+1 � P z

−
k , uk( 􏼁. (59)

Compared to mapping (58), z−
k+1 � P(z−

k , uk). in (59) is
a reduced state vector and is defined with respect to the state
vector x−

k like so z−
k � O3×1 I3􏼂 􏼃x−

k , where, and in the
sequel, O is the zero matrix and I is the identity matrix.

For the stabilization of the period-1 fixed point, z−
∗, of

uncontrolled Poincaré map (58) or (59), the following state
feedback control law was adopted:

uk � K z
−
k − z

−
∗( 􏼁, (60)

where K is the feedback control gain designed using the LMI
approach [85].

Note that for constrained controlled Poincaré map (58),
the control law uk in (60) is defined with respect to the state
vectors x−

k and x−
∗, and the control gain K is of dimension

(1 × 4). In contrast, for reduced Poincaré map (59), the
controller gain K is of dimension (1 × 3). *e vector z−

∗ (or
x−
∗) stands for the state of the period-1 passive gait (or the

period-1 passive hybrid limit cycle) just before the impact
phase.
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Figure 18: Simulation results showing the controlled chaotic gait of the compass-gait biped walker for a � 0.5 and φ � 5.2° using the second
control approach by designing the 4th-order Spline trajectory.
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Figure 19: Simulation results of the controlled gait of the compass biped walker for φ � 8.3° and a � 0.8 and by adopting the second control
approach.
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It is worth to note that such control law (60), when applied
to impulsive hybrid nonlinear dynamics (10a) and (10b) of the
compass walker, remains constant during a walking step. It
only updates its value at the impact. In addition, an important
remark revealed from the previous works [71, 82, 85] using
controlled Poincaré map (58) or (59), and then state feedback
control law (60), is that the control amplitude used for the
control of chaos and the stabilization of the passive bipedal
walking is very low.*is fact reveals then the energy efficiency
of such control law (60) for bipedal robots.

In the sequel, we will use this OGY-based state feedback
control law (60) for comparison. We note that in the works
realized in [71, 85] for the compass-gait walker, only one
control input at the hip was considered. *us, as in the
present work we have two control inputs, uh and us, then we
will extend the work realized in [85] for the design of
controlled Poincaré map (58) and then for the computation
of the feedback control gain K by considering these two
control inputs. Accordingly, the dimension of K becomes
(2 × 3).
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Figure 20: Simulation results of the controlled gait of the compass biped walker using the order-4 Spline trajectory for φ � 10° and a � 0.5.
*e nominal parameters for the design of the desired trajectory are φ � 5.2° and a � 0.5.
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Figure 21: Simulation results of the controlled motion of the compass-gait biped robot using the order-4 Spline trajectory and while walking
on the level ground, which is for φ � 0°, and with a � 0.5. *e nominal parameters for the design of the desired trajectory are φ � 5.2° and
a � 0.5.
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Note that in the previous simulations in Section 4, we
used the state vector x, and then the initial condition for
simulation was x0. *us, as OGY-based state feedback
control law (60) depends on the reduced state vector just
before impact z−

k , then and for the simulation purpose,
the initial condition z−

0 used for the computation of the
initial vector of control law (60) to be applied to the
compass robot at the first walking step can be computed
from the state vector just after impact z+

0 using mainly
the algebraic equation in (10b) and condition (7), as
follows:

z
−
0 � O3×1 I3􏼂 􏼃x

−
0 , (61)

x
−
0 �

R O2×2

O2×2 Q
−1
m Qp

􏼢 􏼣x
+
0 , (62)

x
+
0 �

−􏽢C

I3
􏼢 􏼣z

−
0 +

−2φ
O3×1

􏼢 􏼣, (63)

where 􏽢C � 1 0 0􏼂 􏼃.
Moreover, in order to apply the OGY-based state

feedback control law, the initial condition x+
0 should belong
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Figure 22: Simulation results of the controlled compass-gait biped robot descending the inclined surface of slope φ � 15° and for a � 0.5.
*e nominal parameters for the trajectory design are φ � 8.3° and a � 0.8.
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Figure 23: Simulation results of the controlled gait of the compass robot while walking on the level ground, φ � 0°, by adopting the second
control approach using the order-4 Spline trajectory and by choosing a � 0.8. *e nominal parameters for the design of the desired
trajectory are φ � 8.3° and a � 0.8.
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to the impact set Γ defined by (11). *en, we should select x+
0

such that
Cx

+
0 + 2φ � 0. (64)

*erefore, compared to the simulations realized in the
previous section, the choice of the initial condition x+

0
cannot be arbitrary, as we have done previously. It should
imperatively satisfy condition (64). *us, in order to make a
comparison, we will realize our two previous control ap-
proaches adopted in the present work using a different initial
condition that should be used then for the OGY-based
control approach. Moreover, we will adopt the same set of
parameters φ and a used in the previous section.

6.1. Simulation Results for a � 0.5 and φ � 5.2°. We consider
here the first scenario of the bipedal walking for which a �

0.5 and φ � 5.2°. For such set of parameters, the period-1
fixed point just after impact, x+

∗, associated to the desired
period-1 hybrid limit cycle embedded inside the chaotic
attractor is given by (55). Using relations (61) and (62), it is
possible to calculate the reduced state vector just before
impact z−

∗ to be used for OGY-based state feedback control
law (60). Moreover, using the approach introduced in [72]
for the computation of the feedback gain K of controller (60)
via the design of the explicit expression of controlled
Poincaré mapping (60), the controller gain K is obtained as
follows:
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Figure 24: Simulation results of the controlled chaotic passive gait of the compass-gait walker for the parameters a � 0.5 and φ � 5.2° using
the OGY-based state feedback control law uk in (60) and the initial condition x+

0 in (66).
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K �
35.0024 0.7880 −7.3465

260.1874 3.5781 −27.2967
􏼢 􏼣. (65)

Using then this gain K and the period-1 fixed point z−
∗ in

control law (60) and then to impulsive hybrid nonlinear
dynamics (10a) and (10b) of the compass-gait walker, the
bipedal waking will be stabilized and chaos will be therefore
controlled. To show this fact and also for comparison, we
consider first the following initial condition:

x
+
0 � −25.4 15 100 −50􏼂 􏼃. (66)

Recall that the first initial condition z−
0 for control law

(60) is calculated via relations (61) and (62). Moreover, the
first element, −25.4, in the state vector x+

0 in (66) is calculated
according to expression (64). *us, such initial condition x+

0

will be used for the OGY-based control method and also for
the two adopted control methods proposed in this work.

*e simulation results revealing the behavior of the
bipedal walking of the compass robot under OGY-based
state feedback control law (60) are given in Figure 24. *e
simulation results obtained using the first control approach
based on tracking the passive dynamic walking of the biped
robot itself are given in Figure 25, whereas those obtained via
the second control approach based on the 4th-order Spline
trajectory are shown in Figure 26. All these results reveal that
the chaotic passive gait is well controlled and hence the
behavior becomes one-periodic, as shown in Figures 24(a),
25(a), and 26(a). In Figure 24(b), the chaotic gait needs
almost 7 steps to be stabilized, where the step period of the
controlled gait converges to the desired step period. *e
same observation can be revealed from 25(b). In 26(b), and
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Figure 25: Simulation results of the controlled bipedal gait for the set of parameters a � 0.5 and φ � 5.2°, using the first control approach
based on the passive dynamic walking. *e same initial condition x+

0 in (66) as in Figure 24 is used here.
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as reported in the previous section, the passive gait is
controlled into a single walking step.

*e clear difference between the three control ap-
proaches lies in the control effort applied to the compass-gait
walker. Indeed, in the OGY-based control approach, and
then in Figure 24(c), the maximum amplitude of the control
law, and more particularly of the control input of the stance
leg us, is about −15[N]. *is value was applied at the first
walking step and remains constant during this first step. At
the first step, the new control effort applied to the stance leg
is around 9[N]. *e value of control law us decreases
progressively after each step and converges to zero. In
contrast, the control effort applied at the hip uh is relatively
small and converges to zero after almost 5 seconds. Using
now the first control approach adopted in this work, and
then relying on Figure 25(c), the two control inputs us and
uh converge to zero after almost 3 seconds. Nevertheless, the
amplitude of these controllers is relatively high at the first
step.*e maximum value of the amplitude of the signal uh is
around 60[N] and that of the signal us is about −80[N]. *e
control effort of the two controllers decreases and converges
to zero. However, compared to the OGY-based control
method, the convergence of the controlled chaotic gait to the
desired period-1 passive gait using the first control approach
is faster as it is clearly depicted in Figures 24(a) and 25(a).
*is shows the superiority of the control method using the
tracking based on the passive dynamic walking of the
compass walker itself. For the second control approach
adopted in this work, and then for the results in Figure 26,
there is no clear difference with the results reported in
Figure 18. *e only difference lies in the control signals
applied at the first walking step. *e other steps are identical
since the passive chaotic gait is controlled into only one step
and also as the initial condition x+

0 is modified. As noted in

the previous section, the control of the passive gait by
tracking the planned 4th-order Spline trajectory needs an
important control effort during each step and this behavior
remains as is while the biped robot walks.

As the OGY-based control method and the first control
approach are both entirely based on the passive dynamic
walking of the compass biped robot, then and as revealed by
the simulation results, the controlled chaotic gait becomes
one-periodic and also becomes (almost) passive. In fact, a
very weak control effort u is required to remain the gait at the
desired one. *erefore, we can conclude that the controlled
gait becomes nearly passive. Nevertheless, as discussed
previously, the tracking-based control method is faster than
the OGY-based control approach.

Actually, we have modified the previous initial condition
x+
0 given by (66), and we have adopted that selected in the

previous section using the two proposed tracking-based
control approaches, that is, state (56), but with a minor
rectification in order to satisfy constraint (64). Such new
initial condition is

x
+
0 � −15.4 5 50 −10􏼂 􏼃. (67)

However, starting from this initial state x+
0 and by ap-

plying the OGY-based control method, and then control law
(60) with matrix gain K (65), the compass-gait biped walker
falls down from the first step. *is result reveals the supe-
riority of the two control approaches proposed in this work
compared with the OGY-based control method.

6.2. Simulation Results for a � 0.8 and φ � 8.3°. Recall that
for the parameters a � 0.8 and φ � 8.3°, the chaotic
attractor of the passive bipedal gait of the compass walker
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Figure 26: Simulation results showing the controlled chaotic gait for the parameters a � 0.5 and φ � 5.2° and using the 4th-order Spline
trajectory.
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is given by Figure 7(b). Moreover, the period-1 fixed point
just after impact, x+

∗, of the desired period-1 hybrid limit
cycle is given by (57) and its associated step period is
τ∗ � 0.5222. As noted previously, the reduced state vector
just before impact z−

∗ that will be used in OGY-based state
feedback control law (60) is computed relying on relations
(61) and (62). Moreover, based on [72], the matrix gain K

of this OGY-based control law (60) is computed to be as
follows:

K �
14.6513 0.2120 −4.4529

381.7472 1.6166 −17.6538
􏼢 􏼣. (68)

*e initial condition x+
0 adopted for the simulation in

this second scenario is

x
+
0 � −36.6 20 350 −100􏼂 􏼃. (69)

As in the previous case for initial condition (66), the first
element, −36.6, in the previous state vector x+

0 is calculated
according to expression (64).

Using then matrix gain K (68) in OGY-based control law
(60) and by applying it to the impulsive hybrid nonlinear
dynamics of the dynamic walking of the compass-gait walker,
we obtain the simulation results in Figure 27. It is obvious that
the chaotic gait is controlled and the behavior becomes one-
periodic and also becomes the desired one. Emanating from the
initial state x+

0 given by (69), and according to Figure 27(a), the
bipedal gait experiences first some long and short walking steps,
before it converges to the desired period-1 gait after about 15
steps, as seen in Figure 27(b). From Figure 27(c), the control
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Figure 27: Simulation results showing the controlled gait of the compass-gait bipedal robot for a � 0.8 and φ � 8.3° by applying the OGY-
based state feedback control law uk in (60) and the initial condition x+

0 in (69).
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effort of the stance leg us reaches the highest value about 55[N].
While the biped robot walks down the sloped surface, this value
decreases and converges to zero. However, the control effort
applied to the hip takes very small values, around ±5[N], and
this value (inmodule) decreases in function of steps and reaches
zero. Accordingly, as in the previous scenario, the controlled
gait becomes nearly passive.

By considering now the first control approach adopted in
this paper, and then by selecting initial condition (69), we
obtain the simulation results in Figure 28. Relying on
Figure 28(b), the controlled gait needs about 8 steps in order
to be stabilized at the desired one. Moreover, according to
Figure 28(c), the highest amplitude of the control law us is
about −80[N]. *e amplitude of the control law us and that
of uh decrease in time and converge to zero. Hence, the
controlled gait becomes, as in the OGY-based control

method, passive. As noted in the previous scenario, the
convergence of the control process using the first control
approach based on the passive dynamic walking is faster
than that using the OGY-based control method.

Figure 29 shows the simulation results using the second
control approach based on tracking the 4th-order Spline
trajectory. As in the previous cases, the controlled biped robot
needs only one step to follow the planned trajectory. Nev-
ertheless, as seen in Figure 29(b), this control method requires
a considerable energy compared to the two other control
techniques.

In order to further investigate the efficiency of the
proposed control methods, we have modified the previous
initial condition x+

0 given by (69) and we have selected the
initial condition used for the simulation results in the
previous section using the two proposed tracking-based
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Figure 28: Simulation results of the controlled chaotic passive gait of the bipedal walker for the set of parameters a � 0.8 and φ � 8.3°, using
the first control approach based on the passive dynamic walking.
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control approaches. Such new initial condition is as
follows:

x
+
0 � −21.6 5 50 −10􏼂 􏼃. (70)

Using then this initial condition x+
0 for the OGY-based

control method, and by applying the control law (60), we
found that the compass-gait bipedal robot falls down from
the first step, without finishing it. As in the previous sce-
nario, this result shows the superiority and efficiency of the
two proposed control approaches compared with the OGY-
based control method.

7. Conclusion

In this work, we have analyzed and controlled the passive
dynamic walking of the compass-gait walker. For the analysis
part, we have mainly used the bifurcation diagrams and we
showed the production of the period-doubling route to chaos
by varying either the slope angle or the length of the lower leg
segment. For the control part, we have proposed two ap-
proaches for the reference trajectory tracking via the feed-
forward-plus-PD controller. *e first approach lies mainly on
the use of the generated period-1 passive gait as the reference
trajectory. *e second control approach results mainly in the
planning of a 4th-order Spline trajectory. Furthermore, we
proposed the OGY-based control method for comparison
purpose. We showed via simulation the efficiency of the
proposed controller in the tracking of the desired period-1
trajectories using the two proposed control approaches. *e
superiority of these control approaches compared with the
OGY-based control technique was also demonstrated. It was
revealed that the control approach based on the passive dy-
namic walking provides a considerable energetic efficiency.

8. Future Recommendations

As a future work, we will develop other control approaches
by considering also the problem of uncertainties and ex-
ternal disturbances. Furthermore, our goal is to extend the
proposed control approaches to other models of biped ro-
bots. In addition, as a perspective that can improve our
research, we will control the passive dynamic walk of the
compass-type bipedal robot while minimizing energy by
introducing a function of energy minimization. Moreover,
in order to prevent the abrupt switching in the control law
observed in almost all of the simulation results, our future
direction is to use the static output feedback controller and
using only the angular positions of the two legs as mea-
surable states.
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Figure 29: Simulation results of the controlled chaotic passive gait of the compass robot for the parameters a � 0.8 and φ � 8.3° by adopting
the control approach based on tracking the planned 4th-order Spline trajectory.
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