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Generally, the performance of deep learning-based classification models is highly related to the captured features of training
samples. When a sample is not clear or contains a similar number of features of many objects, we cannot easily classify what it is.
Actually, human beings classify objects by not only the features but also some information such as the probability of these objects
in an environment. For example, when we know further information such as one object has a higher probability in the en-
vironment than the others, we can easily give the answer about what is in the sample. We call this kind of probability as local
probability as this is related to the local environment. In this paper, we carried out a new framework that is named L-PDL to
improve the performance of deep learning based on the analysis of this kind of local probability. Firstly, our method trains the
deep learning model on the training set. Then, we can get the probability of objects on each sample by this trained model. Secondly,
we get the posterior local probability of objects on the validation set. Finally, this probability conditionally cooperates with the
probability of objects on testing samples. We select three popular deep learning models on three real datasets for the evaluation.
The experimental results show that our method can obviously improve the performance on the real datasets, which is better than

the state-of-the-art methods.

1. Introduction

In these days, deep learning models have been proved ef-
ficient in many applications [1-8]. Generally, the perfor-
mance of a deep learning-based classification model depends
on the captured features [9-11]. When using a deep learning
mode for the classification, the probability of each object is
outputted. Then the object that has max value is selected as
the final result.

In some cases, the probability of wrong object may be
higher than that of the correct one. This is caused by similar
features among these or the low efficiency of training
models. To capture more features for higher accuracy, the
structure of models becomes bigger while this is limited by
many factors like the computational resource or the van-
ishing gradient problem [12-14]. Thus, there should be
another way to improve the performance of deep learning
model in real applications.

Different from deep learning models, human beings
classify an object based on not only the features but also
other factors. Figure 1 illustrates this kind of examples. The
probabilities of person and animal may be both high in these
samples, which may easily cause wrong classification results.
In Figure 1(a), if we know there are no big animals in this
area, the object is more likely to be a person. In Figure 1(b), if
we know there is no human activity in this area, the object is
more likely to be an animal. We call this as local probability,
which presents the probability of objects in an environment.
We believe that this is the reason why human beings can
classify an object although they have not clearly seen it.

In this paper, we built a novel framework (L-PDL, Local
Probability-based Deep Learning) to improve the perfor-
mance of classification on the samples based on the analysis
of local probability. Firstly, our method trains the deep
learning model on the training set. Then, we can get the
probability of objects on each sample by this trained model.
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FIGURE 1: Two examples. (a) If there are no big animals in this area, this object is more likely to be a person. (b) If there is no human activity

in this area, this object is more likely to be an animal.

Secondly, we get the local probability of objects on the
validation set. Finally, this probability conditionally coop-
erates with the probability of objects on testing samples.

Our contribution can be summarized as follows. (1) We
built a novel framework that uses the local probability to
increase the classification accuracy. Our framework does not
need bigger models or more training samples while it can
achieve higher accuracy than the existing methods. (2) Our
framework increases the robustness of deep learning models
for classification task. The local probability may be various in
different environments. In this kind case, our framework
only needs to update the local probability whose cost is lower
than the retraining or transferring of models.

We performed our framework and the existing methods
on the samples of CIFAR-10 [15-17], CIFAR-100 [18-20],
and Mini-ImageNet [21-23]. All of these evaluations proved
the effectiveness of our framework. We organize the paper as
follows. Section 1 introduces the background and our
contributions. Section 2 introduces the existing methods and
their problems. In Section 3, we present our framework and
related analyses. The experiment is organized in Section 4.
Section 5 gives the conclusion and future work.

2. Related Work

(i) VoVNet-57 is designed for object detection task,
which consists of a block including 3 convolution
layers and 4 stages of OSA modules that output
stride 32 [24]. An OSA module is comprised of 5
convolution layers with the same input/output
channel for minimizing MAC. Whenever the stage
goes up, the feature map is downsampled by 3 x 3
max pooling with stride 2. VoVNet-57 has more
OSA modules at the 4th and 5th stage where
downsampling is done in the last module.

(ii) VGGI16 is a variant of VGG models for image
recognition [25]. Figure 2 shows the structure of this
model. The image is passed through a stack of
convolutional layers, where the filters were used
with a very small receptive field: 3 x3. The con-
volution stride is fixed to 1 pixel. The padding is 1

pixel for 3 x 3 convolutional layers. Spatial pooling
is carried out by five max-pooling layers, which
follow some of the convolutional layers. Max
pooling is performed over a 2 x2-pixel window,
with stride 2. Three fully connected layers follow a
stack of convolutional layers: the first two have 4096
channels each, and the third performs 1000-way
ILSVRC classification and thus contains 1000
channels (one for each class). The final layer is the
soft-max layer. All hidden layers are equipped with
the rectification (ReLU) nonlinearity.

(iii) ResNeSt50 is a state-of-the-art deep learning
framework for image classification that uses a
modular Split-Attention block and enables atten-
tion across feature-map groups [26]. By stacking
these Split-Attention blocks ResNet-style, it obtains
anew ResNet variant which is called ResNeSt. There
are four versions of ResNeSt. From ResNeSt50 to
ResNeSt269, the structure becomes bigger and more
complicated and can get higher accuracy when there
are more and bigger size training samples. Based on
the size of testing samples and computational re-
source, we use ResNeSt50 in this paper.

These models have been widely used, which are useful in
many applications. To increase the accuracy of these models,
we have to increase the number of training samples, which is
hard work in many applications. Furthermore, the structure
of these models has to be deeper and the training process
needs some special techniques. Actually, there are many
things that can be used to improve the accuracy in the real
applications. The local probability is one of this kind of
things, which will be introduced in the next section.

Some fusion operators have been proposed to improve
the performance of classification by using multiple models
[27]. In that paper, the authors solved mobile apps traffic by
proposing a multiclassification approach, intelligently
combining outputs from state-of-the-art classifiers proposed
for mobile and encrypted traffic classification. In this paper,
we also try to apply our framework on one of these fusion
operators for higher accuracy.
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FiGUre 2: The structure of VGG16.

3. Our Framework

Before giving the details of our framework, we give the
following definitions. These definitions are to explain the
implementation of the methods.

3.1. Preliminaries. We set S,, as a sample and L, as the label
of an object. We set G, as the ground truth on S, where
G, € { L} [28, 29]. The label is to benefit the computation,
which is generally a number [30, 31]. For example, when
there are 10 objects to be classified, the label is from 0 to 9.

3.2. Our Framework. Figure 3 introduces our framework,
which is named L-PDL (Local Probability-based Deep
Learning). Firstly, our framework trains a deep learning
model on the training set. Then, we can get the probability of
labels (each label presents a kind of objects) on each sample
of validation set by this trained model. Secondly, we get the
posterior local probability of objects on the validation set.

Thirdly, we confirm the parameters of conditional cooper-
ation between this probability and the probability of labels.
Finally, we use this conditional cooperation between pos-
terior local probability and the output probability of models
on testing samples to get final results.

3.3. The Probability by the Trained Model. We define
P(M(S,) = L;) as the probability of label L, on the sample
S, by the trained model M. Then the most possible result is
selected by the following equation:

L, = argmax; P(M(S,) = L), (1)
which is used by deep learning models to predict the final

result as Figure 4 illustrates.
Then, we define

{LevP (M(S,) = L) > e}, (2)

as the set that includes the label L, satisfying
P(M(S,) = L) > e. This means that we only consider some
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FiGURE 3: L-PDL, the framework of our methods.

of the L; that have high probability to cooperate with the
local probability.

3.4. The Local Probability. Figure 5(a) shows the probability
of the labels that belong to the samples in training set.
Figure 5(b) shows the local probability of the labels that
belong to the samples in the validation and testing sets. As
we can see in this figure, some labels may have less samples
than the other ones.

We define P (L) as the local probability and P (L) as the
posterior local probability of label L, on the validation set.
Then, we make P (L) assist the model probability to get
correct results on the testing set.

3.5. Conditional Cooperation. In this subsection, we carried
out two conditions that should be followed for the coop-
eration between local probability and model probability as
follows:

Con,: {L,vVP(M(S,) =L,)<d},

(3)
Con,: {L,VP(M(S,) = L) > ¢}.

Con; means that we only reconsider the result L,
(having the max probability among all of the labels {L,}),
whose probability is smaller than §. Then, we consider the
labels, whose probabilities are bigger than ¢ as the potential
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set of the final result. Then, we can carry out two methods
based on our framework.

3.5.1. Joint Cooperation (L-PDL-joint). For

argmakaP(M (S,) = L) € Cony,
E(S, L) = P(M(S,) = L) x P(Ly),

(4)
Lx = argmaXLkECOnzF (Srﬁ Lk)’

and we call this L-PDL-joint from now on.

3.52.  Weighted  Cooperation
argmax; P(M(S,) = L;) € Con,,

F(Sn’Lk) = P(M (Sn) = Lk) +wX P(Lk)’

Lx = argmaXLkGConzF (Sn’ Lk)’

(L-PDL-Weight). For

(5)

and we call this L-PDL-weight from now on.

When using these methods, we should compute P (L;),
d, ¢, and w (only for L-PDL-weight) on the validation set. We
can get the posterior local probability P(L;) on the vali-
dation samples. § is the threshold that decides whether we
reconsider a result or not. For example, if
max P (M(S,) = L;) < 0.6, we think the trained model is not
highly sure about the correctness of the result. The pa-
rameter £ means that we only select some of the labels as the
potential set of final result. This is to avoid the labels that
have P(M(S,,) = L;) = 0 being selected to be the final result
because of the local probability. In other words, local
probability should not be the only reason to select the final
result.

3.6. Why Are Our Methods Better? In this section, we try to
explain why our methods can perform better than the
existing methods.

First reason: in the deep learning model case, the
captured features play an important role in the clas-
sification. The number of captured features depends on
the structure of layers [32, 33]. The training process of
deep learning is to select the features that can present
the samples. Then, the probability is used to present the
distribution on these features. Thus, the object is more
likely to be the label L, than L, when there is the
following relation:

E(P(M(S,) =L))>E(P(M(S,)=L,)), (6

where here E (.) is the expected value and L # L. Thus,
the selection of labels that have high probability is
reasonable when reconsidering the result.

Second reason: there may be the following relation:

P(M(S,) =L, #G,)>P(M(S,)=L,=G,), (7)

which means the trained model predicted a wrong result. In
this kind of case, we believe that
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Object plane car bird cat deer dog frog  horse  ship truck

label 0 1 2

3 4
Input {}

Deep learning model
Layers
(convolutional + pooling + fully connected)

Output
label 0 1 2 3 4 5 6 7 8 9
probability 0 0 0 0 0.50 0.02 0 0.48 0 0
argmax

Result = 4

FIGURE 4: The process of the predicting result based on the probability of the labels.

0.10
o
z
s
e
[=W}

0.00

0 1 2 3 4 5 6 7 8 9
Labels
()

0.10
Z
B2
<
=)
5]
[=W

0.00

0 1 2 3 4 5 6 7 8 9
Labels
(b)

FIGURE 5: The difference between two sets. (a) The probability of the training set. (b) A case of local probability.



E(PM(S,) =L, =G,))#0. Especially when
P(M(S,) =L, < 0, there may be P(M(S,) =L, =G,) # 0,
which shows the correct result may be the other. For ex-
ample, P(M(S,) = L) = 0.50 and P(M(S,) = L,) = 0.48 in
Figure 4. In this kind of case, if we have the local probabilities

P(L,) =0.60> P(L,) = 0.01, (8)

we can easily select the correct result L, that is “horse” in
Figure 4.

Table 1 categorizes the reviewed works and our
framework along with their main distinctive characteristics.
ResNeSt50, VGG16, and VoVNet-57 are the deep learning
models. Fusion operators [27] and our framework are fusion
methods, which are based on these deep learning models.
These models are needed to be trained on the training set.
Our framework is needed to be trained on the validation set.
Some of the fusion operators need to be trained on the
validation set while the other ones do not need to be [27].
Our framework can be applied to a single model or multiple
ones.

4. Experiment

We evaluate our methods with the existing ones on some
real datasets in different local probability cases. When we
randomized the parameters, we evaluate 1000 times. We
trained the deep learning models on some real datasets by
the reported default settings. We set the number of epochs
[34, 35] as 10 for all these models on any training set. We do
not focus on the designing of structure or tuning the
hyperparameters. Instead, we focus on how to use the local
probability to increase the accuracy.

4.1. The Evaluation on CIFAR-10. The evaluation on CIFAR-
10 [15-17] has 50000 training samples and 10000 testing
samples that belong to 10 labels. Each sample is an RGB
image that has three channels: red, green, and blue. We use
50000 training samples to train the models. Then, we have
10000 samples left. We assign different local probabilities to
these samples as Table 2 shows.

We use three kinds of local probability to evaluate the
methods. In this table, Zero20 means 20% of the labels have
zero samples. We define Zero40 (40% of the labels have zero
samples) and Zero80 (80% of the labels have zero samples)
by the same way. The labels to be zero samples are randomly
selected. Figure 6 shows examples of these local probabilities.
Then, the number of samples for the validation and testing
sets is less than 10000 in these local probability cases. For
example, there about 8000 samples left for these sets in the
Zero20 case.

Our framework trained VoVNet-57 [24], VGG16 [25],
and ResNeSt50 [26] on the training samples to generate
trained models. Then, we use 1000 samples as the validation
set and the remaining as the testing set. As we can see in
Table 2, our methods can increase the accuracy by about
2.56% (in the Zero20 case), 5.83% (in the Zero40 case), and
13.06% (in the Zero80 case) compared to the best of the
existing methods.
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4.2. The Evaluation on CIFAR-100. This dataset is just like
the CIFAR-10, except it has 100 classes containing 600
images each [18-20]. There are 500 training images and 100
testing images per label. We use 50000 training samples to
train the models. Then, we have 10000 samples left. We
assign different local probabilities to these samples.

We define Zero20, Zero40, and Zero80 by the same way
as Section 4.1 has introduced. Then, we use 1000 samples as
the validation set. As we can see in Table 3, our methods can
increase the accuracy by about 2.57% (in the Zero20 case),
6.36% (in the Zero40 case), and 18.51% (in the Zero80 case)
compared to the best of the existing methods.

4.3. The Evaluation on Mini-ImageNet. The Mini-ImageNet
[21-23] dataset is for few-shot learning evaluation. Its
complexity is high due to the use of ImageNet images but
requires fewer resources and infrastructure than running on
the full ImageNet dataset. In total, there are 100 labels with
600 samples of 84 x 84 colour images per label. We use 48000
training samples to train the models. Then, we have 12000
samples left. We assign different local probabilities to these
samples.

We define Zero20, Zero40, and Zero80 by the same way
as Section 4.1 has introduced. Then, we use 1000 samples as
the validation set. As we can see in Table 4, our methods can
increase the accuracy by about 2.26% (in the Zero20 case),
4.83% (in the Zero40 case), and 13.94% (in the Zero80 case)
compared to the best of the existing methods.

4.4. Random Case on Two Datasets. In this subsection, we
randomly assign the local probability to the CIFAR-100 and
Mini-ImageNet. In more details, we randomly select the
labels and assign random local probability to evaluate the
methods.

Rand (.) is the function that outputs random value of
probability. If the randomized value is smaller than 0, we use
0 instead of this value. Then, we can generate local proba-
bility by this function. For example, if the number of original
samples for an object label is 1000 and Rand (0,1) = 0.9, we
have 900 samples for this label in the local probability case.
Figure 7 shows the examples of Rand (0, 1), Rand (-1, 1), and
Rand (-2, 1).

As we can see in Table 5, our methods can increase the
average accuracy by about 1.13% (in the Rand (0, 1) case),
8.76% (in the Rand (-1, 1) case), and 12.20% (in the Rand
(=2, 1) case) compared to the best of the existing methods.

4.5. Multiple Models on Two Datasets. In this subsection, we
apply our framework to the fusion operators, which uses the
probabilities of multiple models [27]. We select the soft
combiners, which require some parameters to be estimated,
usually by means of a validation set. We selected the method
class-conscious trainable combiner-based KL weights
(named CC-KL trainable in Table 6) as a representative,
which achieved better performance than the other methods
in that paper. Then, we applied our framework to the result
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TaBLE 1: Categorizing the reviewed works and ours along with their main distinctive characteristics.

Works
Characteristics .
VoVNet-57 [24] VGG16 [25] ResNeSt50 [26] Fusion operators [27] Our framework
Deep learning model Yes Yes Yes No No
Fusion method No No No Yes Yes
The number of models that are needed Single Single Single Multiple Single/multiple
Training Needed Needed Needed Not needed/needed Needed
TaBLE 2: Result on CIFAR-10.
Methods Zero20 (%) Zero40 (%) Zero80 (%)
VoVNet-57 [24] 82.13 81.41 82.185
VGG16 [25] 72.95 70.39 71.39
ResNeSt50 [26] 69.17 69.94 68.84
L-PDL-joint (our) 84.69 87.24 95.24
L-PDL-weight (our) 84.68 87.21 95.17
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FIGURE 6: The examples of (a) Zero20, (b) Zero40, and (c) Zero80 on CIFAR-10.
TaBLE 3: Result on CIFAR-100. TaBLE 4: Result on Mini-ImageNet.
Methods Zero20 (%)  Zero40 (%)  Zero80 (%) Methods Zero20 (%)  Zero40 (%)  Zero80 (%)
VoVNet-57 [24] 64.23 63.85 63.6 VoVNet-57 [24] 72.94 72.53 71.53
VGG16 [25] 46.10 45.97 4423 VGGI16 [25] 44.34 44.97 44.43
ResNeSt50 [26] 41.93 41.71 40.83 ResNeSt50 [26] 40.93 40.72 40.93
L-PDL-joint (our) 66.66 70.20 82.11 L-PDL-joint (our) 75.14 77.27 85.47

L-PDL-weight (our) 66.80 70.21 81.61 L-PDL-weight (our) 75.20 77.36 85.27
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FIGURE 7: The examples. (a) Rand (0, 1). (b) Rand (-1, 1). (c) Rand (-2, 1).

TaBLE 5: The result of random probability on CIFAR-100 and Mini-ImageNet.

Methods on local probability

VoVNet-57 [24]

Ours: L-PDL-joint/L-PDL-weight (%)

CIFAR-100, Rand (0, 1) 63.98
CIFAR-100, Rand (-1, 1) 63.78
CIFAR-100, Rand (-2, 1) 63.42
Mini-ImageNet, Rand (0, 1) 72.65
Mini-ImageNet, Rand (-1, 1) 72.58
Mini-ImageNet, Rand (-2, 1) 72.47

65.37
73.73
76.01
73.52
80.15
84.28

TaBLE 6: The result of random probability on CIFAR-100 and Mini-ImageNet with fusion operators.

Local probability

ResNeSt50 [26] VGGL16 (%) [25]

Methods

VoVNet-57 (%) CC-KL trainable (%) CC-KL trainable with our

[24] [27] framework (%)
CIFAR-100, Rand (0, 1) 41.93 46.19 63.98 65.52 66.27
CIFAR-100, Rand (-1, 1) 41.83 46.21 63.78 65.57 74.93
CIFAR-100, Rand (-2, 1) 42.03 46.35 63.42 66.16 77.02
Mini-ImageNet, Rand (0, 1) 40.34 44.54 72.65 73.39 74.55
Mini-ImageNet, Rand (-1, 1) 40.64 44.84 72.58 73.47 81.23
Mini-ImageNet, Rand (-2, 1) 41.04 45.01 72.47 74.45 85.48

of this method, which is named CC-KL trainable with our
framework in Table 6.

As we can see in Table 6, CC-KL trainable can increase
the accuracy by using the probability of models. On the other
hand, the performance is limited by the accuracy of these
models. As this table shows, our framework can further
increase the accuracies with the cooperation of CC-KL
trainable (introduced in [27]), which are about 0.96% (in the
Rand (0, 1) case), 8.56% (in the Rand (-1, 1) case), and

10.95% (in the Rand (-2, 1) case) higher than the existing
methods on average.

5. Analysis

We have evaluated our methods with the existing ones on
real datasets with different local probabilities. The results
show the effectiveness of our framework in these cases.
When using deep learning models in real applications, the
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Object plane car  bird deer  dog frog  horse  ship truck
label 0 1 2 4 5 6 7 8 9
probability 0 0 0 0.50  0.02 0 0.48 0 0
Local

. 0.02 0.02 03 0.01 0.05 0 0.60 0 0
probability

Result =7

FIGURE 8: The result by the model is 4 (deer, wrong), but our framework can get the one that is 7 (horse, correct).

TaBLE 7: The introduction of the employed acronyms.

Num Acronyms Introduction

1 L-PDL Our framework, local probability-based deep learning

2 CIFAR-10 Dataset that is introduced in [15-17]

3 Mini-ImageNet Dataset that is introduced in [21-23]

4 VoVNet-57 A deep learning model that is introduced in [24]

5 VGG16 A deep learning model that is introduced in [25]

6 ResNeSt50 A deep learning model that is introduced in [26]

7 S, Presents a sample

8 L, Presents a label

9 G, Presents the ground truth on S,

10 Zero20 Means 20% of the labels have zero samples

11 Zero40 Means 40% of the labels have zero samples

12 Zero80 Means 80% of the labels have zero samples

13 L-PDL-joint Joint cooperation based on our framework, introduced in equation (4)

14 L-PDL-weight Weighted cooperation based on our framework, introduced in equation (5)

15 Rand (.) Is the function that outputs random value of probability

16 CC-KL trainable The existing class-conscious trainable combiner-based KL weights method that is introduced in
the work [27]

17 CC-KL trainable with our Our framework on class-conscious trainable combiner-based KL weights method that is

framework

introduced in the work [27]

accuracy can be improved by analysing local probability. The
local probability can be obtained by the computation on the
validation set. In some cases, the local probability can be
obtained by the other way, for example, the experience of
other users about the probability of the objects in an en-
vironment. Based on this kind information, we can draw a
conclusion that the object in Figure 4 may not be a “deer” but
a “horse” as Figure 8 shows.

Another advantage of using L-PDL is that we do not
need to retrain or transfer the models to each local envi-
ronment for the robustness. This is like a person that follows
“when you are in Rome, do as the Romans do.” This kind of
ability can make a person well live anywhere as soon as
possible, which can be called the robustness. In this paper,
we also implemented this kind of robustness by using our
framework.
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As our framework is based on the existing deep learning
models, the computational complexity is increased com-
pared with these models. The models should output the
probability and there should be a validation set with the
ground truth for tuning the parameters, which increases the
complexity of managing samples. Furthermore, our
framework causes additional cost that is caused by the
computation of the cooperation between the local proba-
bility and the output of models.

5.1. The Introduction of the Employed Acronyms. We use
Table 7 to give the introduction of the employed acronyms in
this paper for the reader’s convenience.

6. Conclusions

In this paper, we have introduced a novel framework that
combines the local probability with the probability of ob-
jects. Our framework uses the output of the model to present
the probability of objects. Then, this probability condi-
tionally cooperates with the local probability to achieve
higher accuracy. Our framework can improve the robustness
of the deep learning classification models in an environment.
Furthermore, we also applied our framework to the existing
fusion operators, which can further increase the accuracy.
The evaluation results proved the effectiveness of our
framework to the deep learning models and fusion operators
on these models. Thus, our framework can be a choice to
increase the accuracy in the real applications.

In the future work, we will do research about the deep
cooperation between the model probability and the local
probability, for example, how we can use the output before
the probability of labels. This may include more information
about the features of objects, which can correctly present
“what the model has seen in the samples.” Furthermore, the
deep cooperation between our framework and the fusion
operators may further increase the accuracy, which is an-
other direction of our future work.
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