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To design and develop AI-based cybersecurity systems (e.g., intrusion detection system (IDS)), users can justifiably trust, one
needs to evaluate the impact of trust using machine learning and deep learning technologies. To guide the design and
implementation of trusted AI-based systems in IDS, this paper provides a comparison amongmachine learning and deep learning
models to investigate the trust impact based on the accuracy of the trusted AI-based systems regarding the malicious data in IDs.
'e four machine learning techniques are decision tree (DT), K nearest neighbour (KNN), random forest (RF), and naı̈ve Bayes
(NB). 'e four deep learning techniques are LSTM (one and two layers) and GRU (one and two layers). Two datasets are used to
classify the IDS attack type, including wireless sensor network detection system (WSN-DS) and KDD Cup network intrusion
dataset. A detailed comparison of the eight techniques’ performance using all features and selected features is made by measuring
the accuracy, precision, recall, and F1-score. Considering the findings related to the data, methodology, and expert accountability,
interpretability for AI-based solutions also becomes demanded to enhance trust in the IDS.

1. Introduction

Cybersecurity system is developed based on different peers
including technology, processes, and people. 'e relationships
among these peers are the core of the trust management in the
cybersecurity. For example, (1) the relationship between people
and groups, (2) the relationship between people and organi-
zations, and (3) the relationship between people and tech-
nology. 'e trusted peers are deployed in the cybersecurity
system which aims to detect the cyberattacks [1].

Artificial intelligence (AI) defines a set of techniques that
simulates the human intelligence in machines. 'e core idea
of these techniques is extracting the knowledge from a
collection of data. Consequently, there is no certain grantee

level to trust the AI-based techniques due to the three as-
pects: (1) quality of data, (2) the degree of complexity for the
methodology that was used to design the AI systems, and (3)
AI engineer’s experiences. According to the context of this
work, a set of peers of AI technologies can be interacted to
perform the trust for the cybersecurity systems. 'erefore,
we cannot do trust AI technologies to prevent the cyber-
security systems against cyberattacks. Consequently, this
work in this paper study the trust for AI-based solutions
including machine learning and deep learning in cyberse-
curity systems considering (1) data, (2) methodology, and (3)
expert accountability. To do so, we will investigate AI-based
solutions for trust context of cybersecurity in terms of the
quality of data, methodologies, and experiences.
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1.1. Trust in Intrusion Detection Systems. Cybersecurity
system is developed based on different peers, including
technology, processes, and people. 'e relationships among
these peers are the core of the trust management in the
cybersecurity. For example, (1) the relationship between
people and groups, (2) the relationship between people and
organizations, and (3) the relationship between people and
technology. 'e trusted peers are deployed in the cyberse-
curity system to detect the cyberattacks [1].

“Trust” is commonly used word in cybersecurity which
describes the connection a foundation that must be estab-
lished for cybersecurity systems including machine-to-ma-
chine (M2M) system. In M2M systems, trust can be defined
as the confidence between machines to identify and manage
their information technology assets. To achieve the trust
chain between machines, cryptography, digital signatures,
electronic certificates, and AI-based solutions are used. As
these techniques are established to perform trust for M2M
systems, trust seems like a simple function; it is often a
fundamental challenge. In particular, the challenge of trust
in cybersecurity is a broader notion about the quality of
information being exchanged among machines, the meth-
odologies used to design these techniques, and the expert
accountability that use these techniques. According to this
work, we will investigate AI-based solutions for trust context
of cybersecurity. Many efforts have been made in research
and industry to prevent the critical system from the
cyberattacks. 'e IDS have received attention due to the
continuously increasing cost to fight cybercrime [2]. 'e
cybercrime type includes (1) malicious insiders, (2) denial of
services, and (3) web-based attacks. 'erefore, most com-
panies and enterprises deploy cybersecurity systems (e.g.,
antivirus, firewall, and IDS).

'e core function of the IDS is identifying the malicious
attacks’ activities in advanced before they access the infor-
mation and harm the confidentiality of the critical systems
[3]. 'is demand of the security systems from both known
and unknown threats opens a challenge for the research
communities and industry to design secure and trustful
systems against the cyberattacks [4]. 'is also opens up the
issue about how to successfully secure from both known and
unknown threats. 'ere is no straightforward answer to this
because of the increasing number of threats every year [4].
Recently, AI-based technologies, including machine learning
and deep learning, play a vital role in learning from the
previous attacks’ collected historical data. 'ese models’
extracted knowledge is used to enhance the trust in IDS [5].

1.2. Contribution. Our main contributions are summarized
as follows:

We develop investigation methodology to study the trust
impact in intrusion detection, including the data,
methodology, and expert accountability by analyzing
machine learning and deep learningmodels’ performance
Collect intrusion detection using wireless sensor net-
work detection system (WSN-DS) and KDD Cup
network intrusion dataset

Apply different feature engineering techniques, in-
cluding correlation matrix
Compare four machine learning (DT, KNN, RF, and
NB) and deep learning (LSTM and GRU, using one and
two layers) to study the trusted AI-based systems’
accuracy regarding the malicious data to detect any
intrusion in the system

1.3. Paper Organization. 'e rest of this paper is organized
as follows. A review of relevant works is conducted in
Section 2. 'e methodology is provided in Section 3. 'e
experiments and results are described in Section 4. 'e
discussion is introduced in Section 5. Finally, the paper is
concluded in Section 6.

2. Related Work

Vinayakumar et al. [6] have used a deep neural network to
develop IDS to predict unforeseen and unpredictable
cyberattacks. Almomani et al. [7] have used artificial neural
network (ANN) to develop IDS to classify different DoS
attacks. 'e authors in [8] have used a multistage machine
learning-based intrusion detection to detect and classify four
types of jamming attacks. Abhale and Manivannan [9] have
used different types of supervised machine learning to
classify anomaly type of IDS. On the other hand, Alqahtani
et al. [10] have proposed genetic-based extreme gradient
boosting (XGBoot) to detect minority classes of attacks in
highly imbalanced data traffics of wireless sensor networks.
'e authors in [11] have introduced an ensemble learning
scheme for classifying network intrusion detection. How-
ever, Farrahi and Ahmadzadeh [12] have used various al-
gorithms such as k-means clustering, Näıve Bayes, support
vector machine, and OneR algorithms to classify regular
traffic and DoS attack. Also, the genetic algorithm (GA) was
implemented to detect the different types of intrusions [13].

Some researchers have used feature selection methods to
select essential features will reduce the computational time
of the algorithms. Due to network data’s significant features,
many IDS were developed with feature selection [14].
Chebrolu et al. [15] classified primary elements in con-
structing IDS that is very crucial for real-world intrusion
detection. Zaman and Karray [16] implemented a feature
selection technique to construct a lightweight IDS. Vimal-
kumar and Radhika [17] implemented principal component
analysis- (PCA-) based feature selection technique in the big
data framework for IDS. Balakrishnan et al. [18] developed
an IDS model with a gain ratio as a feature selection
technique. Most of the IDS-based studies focused on the
performance of the implemented model. Alkasassbeh et al.
[19] concentrate on different types of attack, such as http
flood, smurf, siddos, and udp flood. 'ey implemented
various machine learning algorithms to detect DOS intru-
sions and demonstrated the high accuracy of 98.36% using
multilevel perceptron (MLP). Peng et al. [20] proposed an
IDS system based on a decision tree to improve detection
efficiency. 'eir method showed better performance over
Näıve Bayesian and KNN methods.
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3. Research Methodology

'is section will describe our approach to investigate the
trust impact in intrusion detection using machine learning
and deep learning models. To do so, five phases are de-
veloped including (1) data collection to describe the datasets
and their characteristics, (2) splitting datasets, (3) feature
extraction methods, (4) optimization and training models,
and (5) the evaluation metrics that will be used [19] for
performance comparison (see Figure 1). Further details
about the developed phases are described as follows.

3.1.DataCollection. In this section, we provide a description
of the datasets used to find the optimal machine learning
model and deep learning model that obtains the best per-
formance for attack type classification in IDS. Two datasets
were collected from wireless sensor network detection
system (WSN-DS) and KDD Cup network intrusion dataset.

3.1.1. WSN-DS Dataset. 'e first dataset is WSN-DS which
is a specialized dataset for detecting intrusions in wireless
sensor networks. 'e WSN-DS dataset is collected by [7] to
help better detect and classify types of denial-of-service
(DoS) attacks. According to this work, we have used the
WSN-DS dataset to study the machine learning and deep
learning models performances with respect to the sensor
nodes that can be able to detect attacks’ patterns from the
normal traffic. 'en, we have compared the machine
learning and deep learning models’ performances to study
the impact of trust in machine learning and deep learning
models’ IDS.

'e WSN-DS dataset contains 23 features extracted using
LEACH routing protocol including Id, Time, Is_CH, who_CH,
RSSI, Dist_To_CH, M_D_CH, A_D_CH, ADV_S, ADV_R,
JOIN_S, JOIN_R, ADV_SCH_S, ADV_SCH_R, Rank,
DATA_S, DATA_R, Data_Sent_BS, Dist_CH_BS, Send_code,
Current_Energy, Consumed_Energy, and Attack_Type [7].

'e dataset file has only 19 features including the class
label [10]. 'ese 19 features were Id, Time, Is_CH, who_CH,
Dist_To_CH, ADV_S, ADV_R, JOIN_S, JOIN_R,
ADV_SCH_S, ADV_SCH_R, Rank, DATA_S, DATA_R,
Data_Sent_BS, Dist_CH_BS, Send_code, Consumed_Energy,
and Attack_Type. 'e number of samples within the WSN-
DS dataset is 374,662. 'ese samples are distributed among
five main groups of which four of them are types of DoS
attack which are labeled as attacks including Blackhole,
Grayhole, Flooding, and Scheduling attacks and Normal. 'e
description of the attacks is as follows (see Table 1):

Blackhole attack: type of DoS attack where the attacker
advertises itself at the beginning of the round to affect
the LEACH protocol
Grayhole attack: type of DoS attack where the attacker
advertises itself as a CH for other nodes to affect the
LEACH protocol
Flooding attack: type of DoS attack where the attacker
advertises itself by sending a large number of adver-
tising CH messages to affect the LEACH protocol

Scheduling attack: type of DoS attack where the at-
tacker acts as a CH and assigns all nodes the same time
slot to send data during the setup phase of the LEACH
protocol
Normal: it means no threat

Furthermore, Table 2 shows a set of descriptive statistics
of the WSN-DS dataset using a set of statistical functions
including count, mean, std, min, and max. We have ignored
Id because it has been used to provide a unique symbolized
number of the sensor node and no sense for compute sta-
tistics for it. 'erefore, 18 features will be used in the next
phases.

3.1.2. KDD Dataset. 'e second dataset is KDD Cup net-
work intrusion dataset (http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.htmachine learning). 'e data comes
from DARPA 98 Intrusion Detection Evaluation by Lincoln
laboratory at MIT. According to [21], these datasets were
collected using multiple computers connected to the In-
ternet to model a small US Air Force base of qualified
personnel by using several simulated intrusions. According
to this work, we have used KDD dataset to study themachine
learning and deep learning models’ performances con-
cerning the sensor nodes that can detect attack patterns from
the normal traffic. We then compared the machine learning
and deep learning models’ performances to study the impact
of trust in machine learning and deep learning models’ IDS.
'ere are 42 attributes used in this dataset. 'e number of
samples in the KDD dataset is 311,029. 'ese samples are
distributed among five main groups. Four of them are la-
beled as attacks including Denial of Service, User to Root
Remote-to-local, and PROBING and Normal. 'e descrip-
tion of the attacks is as follows (see Table 3):

Denial-of-service (DOS) attack: it is done by illegal
users causing resource constraint for the targeted
systems. Consequently, the targeted system is being
unable to provide efficient services to the legal users.
User to root (U2R) attack: the attacker belongs to the
same group which tries to access the root of the system
using a normal account within the network.
Remote to local (R2L) attack: the remote user has no
account to access a specific node within the network.
'e attacker tries to gain local access by sending packets
to explore any vulnerabilities within the network.
Probe attack (Probe): the attacker collects data about
the network configuration to discover vulnerabilities
and then accesses the network by loopholes.
Normal: it means no threat.

Furthermore, Table 4 shows a set of descriptive statistics
of the KDD dataset using a set of statistical functions in-
cluding count, mean, std, min, and max.

3.2. Splitting Dataset. In this step, the WSN-DS and KDD
datasets are split into 30% training dataset and 70% testing
dataset. 'e training set is fed into the machine learning/

Complexity 3



deep learning models to let models learn from this data,
while the unseen test set is used to evaluate machine
learning/deep learning models. Table 5 and Table 6 present
the number of instances in these two sets for WSN-DS and
KDD datasets, respectively.

3.3. Feature Extraction. 'e key benefit of using feature
selection methods is determining the relevant feature in the
dataset. 'erefore, feature selection is necessary for the
machine learning and deep learning processes since some-
times irrelevant features affect the models’ performance.
According to this work context, feature selection enhances the
classification accuracy of the attack types and reduces the
model execution time. Also, we have used correlation matrix
and p value to reduce the features that have less significance
in the classified attack and affect the models’ performances.

3.3.1. WSN-DS Dataset. For WSN-DS dataset, we have used
a correlation matrix for feature analysis to calculate each

4. Optimizing and 
training models

Accuracy
Recall
Precision
F-measure
True negative rate
False positive rate
False negative rate

5. Models evaluation 

1. Data collection

WSN-DS 
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3. Feature extraction
methods 

Regular machine learning 
classifiers algorithms

Random forest 
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K-nearest neighbors
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Long short-term memory
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Figure 1: 'e workflow of developed machine learning and deep learning models.

Table 1: Types of attack in WSN datasets.

Types of attack Quantity Proportion (%)
Normal 340067 90.77
Grayhole 14597 3.90
Blackhole 10050 2.68
Scheduling 6639 1.77
Flooding 3313 0.88
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feature’s relations with other features within the dataset as
depicted in Figure 2. It can be seen that the features within
the WSN-DS datasets do not have high correlations. We
have removed only one feature, and then, we have calculated
the p values for the rest 17 features.

As the attack type will be classified by machine learning
and deep learning models, Table 7 presents the p values of
the 17 features to choose the high correlated features for
machine learning and deep learning models. Consequently,
the features which have the correlation with attack type
above 0.005 have been selected to be fitted in machine
learning and deep learning models. In particular, 6 features
have been selected based on their high correlations such as
Time, Dist_To_CH, JOIN_R, Rank, DATA_S, and send_code
and their p values are 7.00E− 93, 1.47E− 24, 5.93E− 06,
0.009842, 1.31E− 32, and 2.44E− 125, respectively.

3.3.2. KDD Dataset. For KDD dataset, we have also used a
correlation matrix for feature analysis to calculate each
feature’s relations with other features within the dataset. We
found that the features within the WSN-DS datasets do not
have high correlations. We have removed 12 features, and
then, we have calculated the p values for the rest 30 features.

As the attack type will be classified by machine learning
and deep learningmodels, Table 8 presents the pvalues of the
30 features to choose the high correlated features for ma-
chine learning and deep learning models. Consequently, the
features which have the correlation with attack type above

0.005 have been selected to be fitted in machine learning and
deep learning models. In particular, 14 features have been
selected based on their high correlations such as duration,
service, src_ bytes, land, urgent, hot, num_compromised,
su_attempted, num_file_creations, num_shells, num_ac-
cess_files, num outbound_cmds, is_host_login, and
srv_diff_host_rate and their p values are 2.33E− 60,
0.604708, 1.34E− 68, 9.51E− 128, 0.402631, 5.01E− 230,
2.69E− 43, 2.45E− 21, 3.48E− 11, 9.85E− 43, 6.50E− 26,
0.043069, 0.039867, and 1.56E− 70, respectively.

3.4. Machine Learning and Deep Learning Models.
Regular machine learning models used in this paper are
decision tree (DT), K nearest neighbour (KNN), random
forest (RF), and naı̈ve Bayes (NB). Moreover, among deep
learning algorithms, we analyze the performance of LSTM
(one and two layers) and GRU (one and two layers).

3.5. Optimization and Training Models. In this section, two
categories of optimization and training models will be
presented, including machine learning and deep learning.

3.5.1. Regular Machine Learning Models

(1) K-Fold Cross-Validation. 'e dataset is divided into k
equal size of the sections in which the k-1 group is used to
train the classifiers, and the remaining part is used to test the
performance in each stage.'e validation process is repeated
k times. 'e output of the classifier is estimated based on the
k tests. Various k values are selected for CV. In our analysis,
we used k� 10, the 10-fold CV process, 70% of the data for
training, and 30% of the data for testing purposes.

(2) Hyperparameter Tuning. It is used to pass various pa-
rameters to the model. Grid search is the most widely used
method for hyperparameter tuning. Initially, the user defines
a set of values for each hyperparameter.'emodel then tests

Table 2: Statistical analysis of WSN-DS dataset.

Feature No Feature name Count Mean std min 25% 50% 75% Max
1 Time 374661 1064.749 899.6462 50 353 803 1503 3600
2 Is_CH 374661 0.115766 0.319945 0 0 0 0 1
3 who_CH 374661 274980.4 389911.2 101000 107096 116072 215073 3402100
4 Dist_To_CH 374661 22.59938 21.95579 0 4.73544 18.37261 33.776 214.2746
5 ADV_S 374661 0.267698 2.061148 0 0 0 0 97
6 ADV_R 374661 6.940562 7.044319 0 3 5 7 117
7 JOIN_S 374661 0.779905 0.414311 0 1 1 1 1
8 JOIN_R 374661 0.737493 4.691498 0 0 0 0 124
9 SCH_S 374661 0.288984 2.754746 0 0 0 0 99
10 SCH_R 374661 0.747452 0.434475 0 0 1 1 1
11 Rank 374661 9.687104 14.6819 0 1 3 13 99
12 DATA_S 374661 44.85792 42.57446 0 13 35 62 241
13 DATA_R 374661 73.89004 230.2463 0 0 0 0 1496
14 Data_Sent_To_BS 374661 4.569448 19.67916 0 0 0 0 241
15 dist_CH_To_BS 374661 22.56274 50.2616 0 0 0 0 201.9349
16 send_code 374661 2.497957 2.407337 0 1 2 4 15
17 Consumed energy 374661 0.305661 0.669462 0 0.05615 0.09797 0.21776 45.09394
18 Attack type 374661 2.880615 0.564958 0 3 3 3 4

Table 3: Types of attack in KDD datasets.

Types of attack Quantity Proportion (%)
Denial of service (DOS) 229853 73.90
Remote to local (R2L) 16189 5.2
User to root (U2R) 228 0.07
PROBING (probe) 4166 1.34
Normal 60593 19.48

Complexity 5



all values for each hyperparameter and selects the best value
to achieve the best performance result.

3.5.2. Deep Learning Models. For hyperparameters opti-
mization, we have used a Keras Tuner library to pick the

optimal set of hyperparameters in hidden layers (LSTM or
GRU) and dropout layers. We set different values for dif-
ferent parameters, which are the number of neurons,
reg_rate for l2 regularization technique [22], and the
dropout rate for the dropout layers [23]. For this, we have

Table 4: Statistical analysis of KDD dataset.

Feature No Feature name Count Mean Std Min 25% 50% 75% Max
1 Duration 439880 21.55854 538.9139 0 0 0 0 58329
2 protocol_type 439880 0.414052 0.543742 0 0 0 1 2
3 Service 439880 22.25702 12.97022 0 14 14 22 65
4 Flag 439880 8.095365 1.803868 0 9 9 9 10
5 src_bytes 439880 3322.342 1047247 0 179 1032 1032 6.93E+ 08
6 dst_bytes 439880 878.5772 34494.07 0 0 0 0 5155468
7 Land 439880 4.32E−05 0.006572 0 0 0 0 1
8 wrong_fragment 439880 0.006502 0.135425 0 0 0 0 3
9 Urgent 439880 1.59E−05 0.00584 0 0 0 0 3
10 hot 439880 0.036876 0.814437 0 0 0 0 30
11 num_failed_logins 439880 0.000168 0.016378 0 0 0 0 5
12 logged_in 439880 0.146685 0.353792 0 0 0 0 1
13 num_compromised 439880 0.010919 1.899432 0 0 0 0 884
14 root_shell 439880 0.000102 0.010114 0 0 0 0 1
15 su_attempted 439880 3.41E−05 0.007539 0 0 0 0 2
16 num_root 439880 0.01186 2.124426 0 0 0 0 993
17 num_file_creations 439880 0.001075 0.097066 0 0 0 0 28
18 num_shells 439880 0.000109 0.011079 0 0 0 0 2
19 num_access_files 439880 0.000921 0.035509 0 0 0 0 8
20 num_outbound_cmds 439880 0 0 0 0 0 0 0
21 is_host_login 439880 0 0 0 0 0 0 0
22 is_guest_login 439880 0.001434 0.037847 0 0 0 0 1
23 Count 439880 348.345 209.268 0 132 510 511 511
24 srv_count 439880 312.4045 242.5829 0 12 510 511 511
25 serror_rate 439880 0.196742 0.396846 0 0 0 0 1
26 srv_serror_rate 439880 0.196653 0.397185 0 0 0 0 1
27 rerror_rate 439880 0.015626 0.121898 0 0 0 0 1
28 srv_rerror_rate 439880 0.01592 0.123188 0 0 0 0 1
29 same_srv_rate 439880 0.812805 0.373561 0 1 1 1 1
30 diff_srv_rate 439880 0.018327 0.078025 0 0 0 0 1
31 srv_diff_host_rate 439880 0.028292 0.140183 0 0 0 0 1
32 dst_host_count 439880 232.8175 64.40408 0 255 255 255 255
33 dst_host_srv_count 439880 196.4258 101.7786 0 178 255 255 255
34 dst_host_same_srv_rate 439880 0.783795 0.392965 0 0.97 1 1 1
35 dst_host_diff_srv_rate 439880 0.02371 0.089418 0 0 0 0.01 1
36 dst_host_same_src_port_rate 439880 0.633463 0.473977 0 0 1 1 1
37 dst_host_srv_diff_host_rate 439880 0.006677 0.043043 0 0 0 0 1
38 dst_host_serror_rate 439880 0.196806 0.396729 0 0 0 0 1
39 dst_host_srv_serror_rate 439880 0.196491 0.397116 0 0 0 0 1
40 dst_host_rerror_rate 439880 0.016285 0.120639 0 0 0 0 1
41 dst_host_srv_rerror_rate 439880 0.015624 0.120453 0 0 0 0 1
42 Attacktype 439880 0.20354 0.442414 0 0 0 0 4

Table 5: 'e WSN-DS dataset separated 70% training set and 30%
testing set.

Attack type Training set (70%) Testing set (30%)
Normal 255049 85017
Grayhole 10947 3649
Blackhole 7537 2512
Scheduling 4978 1660
Flooding 2484 828
Sum 280995 93666

Table 6: 'e KDD dataset separated 70% training set and 30%
testing set.

Attack type Training set (70%) Testing set (30%)
Dos 249609 106896
Normal 54826 23590
Probe 2672 1125
R2l 784 341
U2r 25 12
Sum 307916 131964

6 Complexity



Tm

Is_CH

who_CH

Dist_To_CH

ADV_S

ADV_R

JOIN_S

JOIN_R

SCH_S

SCH_R

RABK

DARA_S

DATA_R

Data–Sent_To_BS

dist_CH_To_BS

send_code

ConsumedEnergy

Attacktype

Tm

Is
_C

H

w
ho

_C
H

D
ist
_T

o_
CH

A
D
V
_S

A
D
V
_R

JO
IN

_S

JO
IN

_R

SC
H
_S

SC
H
_R

RA
BK

D
A
RA

_S

D
AT

A
_R

D
at
a–
Se
nt
_T

o_
BS

di
st_

CH
_T

o_
BS

se
nd

_c
od

e

C
on

su
m
ed
En

er
gy

At
ta
ck
ty
pe

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.28

0.28

0.67

0.18

0.180.67

–0.35

–0.37

–0.33

–0.33 –0.13

–0.13

–0.37

0.37

0.37

0.31

0.31

–0.38

–0.18

–0.14–0.240.24 0.087 0.041

–0.18

–0.18

–0.18

–0.18

–0.18

0.38

0.38

–0.51

–0.51

–0.11

–0.11

–0.19

–0.14

–0.13

–0.13

–0.32

–0.32

–0.32

–0.32

–0.11

–0.68

–0.68

–0.23

–0.23

–0.34

–0.34

–0.34

–0.11

–0.33

–0.33

0.032

0.032

–0.41

–0.41

0.210.13

0.13

0.17

0.17

0.45

0.45

0.61

0.61

0.21

0.490.550.39

0.55

0.39 0.48

0.54

0.54

0.25

0.25

0.48

0.49

0.45

0.45

0.38

0.38

–0.089

–0.089

–0.086

–0.039

–0.039

–0.064

–0.064

–0.031

–0.031

–0.077

–0.077

–0.22

–0.22

–0.13

–0.13

–0.021

–0.021 –0.095

–0.095

–0.028

–0.028

–0.0052

–0.0052

–0.074

–0.074

–0.15

–0.15

–0.42

–0.42

–0.21

–0.21

–0.11

–0.11

–0.16

–0.16

–0.33

–0.29

–0.14

–0.14

–0.53

–0.53

–0.34

–0.13

–0.13

–0.17

–0.17

–0.29

–0.17

–0.17

–0.33

–0.19

–0.19

–0.086

–0.16

–0.16

–0.38

–0.38

–0.59

–0.59

–0.68

–0.68

–0.6

–0.6

–0.24

–0.24

–0.24

–0.29

–0.29

–0.32

–0.32

–0.22

–0.22

0.22

0.120.20.15

0.22 0.4

0.4

0.16

0.16

0.14

0.14

0.22

0.22

0.22

0.220.43

0.43

0.057

0.057

0.44

0.44

0.55

0.55

0.14

0.14

0.35

0.35

–0.42

–0.19

–0.1

–0.1

–0.06

–0.06

–0.42

–0.56

–0.59

–0.59

–0.38

–0.38

–0.76

–0.76

0.55

0.55

–0.24

–0.38

0.24

0.24

–0.35

0.013

0.013

0.062

0.062

–0.5

–0.5 –0.3

–0.3

–0.2

–0.2

–0.17

–0.17

–0.27

–0.18

–0.18

–0.11

–0.11

–0.069

–0.069

–0.27

–0.1

–0.1

–0.04

–0.04

0.00021

0.00021

–0.44

–0.44

–0.32

–0.32

–0.043

–0.043

0.081

0.081

0.061

0.061

0.35

0.36

0.36

–0.04

–0.04

–0.047

–0.047

–0.023

–0.023

–0.0096

–0.0096

–0.0063

–0.0063

0.4 0.24

0.087

0.058

0.15

0.2

0.12

0.041 0.029

0.029

0.054

0.054

0.0051

0.0051

–0.24

0.430.4

0.2

0.2

0.043

0.043

0.058

0.56

0.058

0.058

0.46

0.46

0.002

0.075

0.0750.002

0.089

0.089

0.49

0.49

0.43

0.9

0.9

0.31

0.31

0.49

0.49

0.29

0.29

0.29

0.29

0.35

–0.24

–0.24

0.029

0.029

–0.25

–0.25

Figure 2: Correlation matrix between features for WSN dataset.

Table 7: Feature selection of WSN dataset using p values.

Feature No Feature name p value Statistically significant
1 Time 7.00E− 93 Yes
2 Is_CH 0 No
3 who_CH 0 No
4 Dist_To_CH 1.47E− 24 Yes
5 ADV_S 0 No
6 ADV_R 0 No
7 JOIN_S 0 No
8 JOIN_R 5.93E− 06 Yes
9 SCH_S 0 No
10 SCH_R 0 No
11 Rank 0.009842 Yes
12 DATA_S 1.31E− 32 Yes
13 DATA_R 0 No
14 Data_Sent_To_BS 0 No
15 dist_CH_To_BS 0 No
16 send_code 2.44E− 125 Yes
17 Consumed energy 0 No
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applied the Keras Tuner on the training dataset to select the
best parameters, as shown in Table 9.

3.6. EvaluatingModels. Seven standard metrics were utilized
to evaluate the models’ accuracy, precision, recall, and F1-
score. TP is true positive, TN is true negative, FP is false
positive, and FN is a false negative. We will consider four
metrics for our experimental results, including accuracy,
precision, recall, and F1-score.

4. Experiments and Results

'is section describes the results of applying machine
learning models (DT, KNN, RF, and NB) and four deep
learning models (LSTM and GRU, using one and two
layers), including cross-validation results and testing results.
Each model performance is discussed using two datasets,
including WSN-DS and KKD.

4.1. Experiment Setup. 'e machine learning models and
deep learning models which are applied on the collected
datasets has been developed in Python3 using Anaconda
Python 3. 'e experiments have been conducted using a
laptop with a specification of 20 GB of RAM, 7 cores, and
100 GB disk. 'e machine learning models and deep
learning models have been trained using 70% dataset,

while the rest of 30% of dataset has been used for testing.
'e machine learning models have been implemented
using Sklearn library, while the deep learning models
have been implemented using Tensorflow and Keras
packages.

4.2. WSN-DS Dataset. 'is section presents the results of
applying machine learning models (DT, KNN, RF, and NB)
and four deep learning models (LSTM and GRU, using one
and two layers), and cross-validation results and testing
results are described. Eachmachine learningmodel and deep
learning model performance is discussed using full features
and selected features to classify five classes of attack types,
including Normal, Grayhole, Blackhole, Scheduling, and
Flooding. All the positive and negative rates results of the
cross-validation and testing performances used to compute
accuracy, precision, recall, and F-score matrices are pre-
sented in Tables 10–13.

Table 8: Feature selection of KDD dataset using p values.

Feature No Feature name p value Statistically significant
1 Duration 2.33E− 60 Yes
2 Service 0.604708 Yes
3 src_bytes 1.34E− 68 Yes
4 Land 9.51E− 128 Yes
5 Urgent 0.402631 Yes
6 hot 5.01E− 230 Yes
7 num_compromised 2.69E− 43 Yes
8 su_attempted 2.45E− 21 Yes
9 num_file_creations 3.48E− 11 Yes
10 num_shells 9.85E− 43 Yes
11 num_access_files 6.50E− 26 Yes
12 num_outbound_cmds 0.043069 Yes
13 is_host_login 0.039867 Yes
14 srv_diff_host_rate 1.56E− 70 Yes
15 protocol_type 0 No
16 Flag 0 No
17 dst_bytes 0 No
18 wrong_fragment 0 No
19 num_failed_logins 0 No
20 logged_in 0 No
21 root_shell 0 No
22 is_guest_login 0 No
23 Count 0 No
24 serror_rate 0 No
25 rerror_rate 0 No
26 same_srv_rate 0 No
27 diff_srv_rate 0 No
28 dst_host_count 0 No
29 dst_host_diff_srv_rate 0 No
30 dst_host_srv_diff_host_rate 0 No

Table 9: Hyperparameters’ configurations selected by Keras Tuner.

Parameter 'e value
Dropout rate Within the range of 0.1 rate to 0.5 rate
'e number of
neurons

Within the range of 10 neuron to 200
neurons

Regularization l2 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
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4.2.1. Regular Machine Learning Using All Features

(1) Cross-Validation Results. Table 10 shows the machine
learning models’ performance using the unseen testingWSN-
DS dataset. For the normal class, RF is the highest perfor-
mance model (accuracy of 99.94%, precision of 98.45%, recall
of 99.48%, and F-score 98.96%). DT, KNN, and NB models
have achieved the second, third, and fourth ranks on the
average of accuracy over unseen data by 99.93%, 99.46%, and
98.20%, respectively. For the Grayhole class, DT is the highest
performance model (accuracy of 99.95%, precision of 97.32%,
recall of 96.89%, and F-score 97.1%). At the same time, NB is
the worst performingmodel (accuracy of 92.95%, precision of
8.51%, recall of 80.00%, and F-score 15.38%). Similar to
Blackhole class, RF is the highest performance model (ac-
curacy of 99.87%, precision of 98.3%, recall of 98.47%, and
F-score 98.39%). Regarding scheduling and flooding classes,
RF obtained the highest performance by accuracy of 99.74%
and 99.89%, respectively. However, NB is the worst per-
forming model for both classes, including accuracy of 84.10%
for scheduling and 90.15% for flooding. Yet, the NB model
using Scheduling classes has the lowest accuracy performance
among all models and classes for unseen data in terms of
accuracy, 84.65%.

(2) Testing Results. As shown in the results, for the normal
class, the RF model has achieved the highest performances

among other models (accuracy of 99.94%, precision of
98.45%, recall of 99.48%, and F-score 98.96%). However, the
NB model has recorded the worst performances among
other models (accuracy of 98.20%, precision of 97.07%,
recall of 34.69%, and F-score 51.11%). For the grayhole class,
DT and RF have achieved the highest performances among
other models (accuracy of 99.95%). However, the NB model
has recorded the worst performances among other models
(accuracy of 92.95%, precision of 8.51%, recall of
80.0015.38%, and F-score 15.38%). Like the blackhole class,
the RF model has achieved the highest performances among
other models (accuracy of 99.87%, precision of 98.3%, a
recall of 98.47%, and F-score of 98.39%). However, the NB
model has recorded the worst performances among other
models (accuracy of 94.40%, precision of 34.91%, recall of
47.76%, and F-score of 40.33%). Regarding scheduling class,
the RF model has achieved the highest performances among
other models (accuracy of 99.74%, precision of 99.84%,
recall of 99.88%, and F-score of 99.86%). However, the NB
model has recorded the worst performances among other
models (accuracy of 84.10%, precision of 99.89%, recall of
82.58%, and F-score of 90.41%). Flooding class like the other
classes, the RFmodel, has achieved the highest performances
among other models (accuracy of 99.89%, precision of
99.78%, recall of 93.93%, and F-score of 96.77%). However,
the NB model has recorded the worst performances among
other models (accuracy of 90.15%, precision of 13.37%, recall

Table 10: 'e performance of machine learning for WSN dataset using all features.

Model Evaluation metric
Cross-validation performance Testing performance

Normal Grayhole Blackhole Scheduling Flooding Normal Grayhole Blackhole Scheduling Flooding

DT

TN 99.97 99.96 99.92 97.74 99.89 99.96 99.98 99.9 98.23 99.89
FP 0.03 0.04 0.08 2.26 0.11 0.04 0.02 0.1 1.77 0.11
FN 0.94 4.73 1.8 0.21 7.1 1.18 3.11 1.44 0.23 6.07

Accuracy 99.95 99.91 99.86 99.6 99.77 99.93 99.95 99.85 99.63 99.78
Precision 98.93 95.24 98.12 99.77 94.11 98.56 97.32 97.6 99.82 93.74
Recall 99.06 95.27 98.2 99.79 92.9 98.82 96.89 98.56 99.77 93.93
F-score 98.99 95.24 98.16 99.78 93.5 98.69 97.1 98.08 99.79 93.83

KNN

TN 99.71 99.85 99.56 84.25 99.89 99.72 99.9 99.57 84.14 99.89
FP 0.29 0.15 0.44 15.75 0.11 0.28 0.1 0.43 15.86 0.11
FN 10.35 25.36 20.58 0.53 35.25 9.82 22.67 21.01 0.49 36.23

Accuracy 99.44 99.63 98.78 98.06 99.27 99.46 99.72 98.75 98.09 99.26
Precision 89.46 81.57 88.02 98.41 91.68 89.95 85.71 88.35 98.4 91.57
Recall 89.65 74.64 79.42 99.47 64.75 90.18 77.33 78.99 99.51 63.77
F-score 89.55 77.94 83.48 98.94 75.9 90.07 81.31 83.41 98.96 75.18

RF

TN 99.96 99.94 99.95 98.26 99.99 99.96 99.96 99.93 98.42 100
FP 0.04 0.06 0.05 1.74 0.01 0.04 0.04 0.07 1.58 0
FN 0.46 1.36 1.42 0.12 7.23 0.52 0.89 1.53 0.12 6.07

Accuracy 99.95 99.93 99.89 99.73 99.86 99.94 99.95 99.87 99.74 99.89
Precision 98.66 94 98.67 99.82 99.52 98.45 95.3 98.3 99.84 99.78
Recall 99.54 98.64 98.58 99.88 92.77 99.48 99.11 98.47 99.88 93.93
F-score 99.09 96.26 98.63 99.85 96.02 98.96 97.17 98.39 99.86 96.77

NB

TN 99.97 93.06 96.4 98.81 90.56 99.97 93.05 96.32 99.08 90.26
FP 0.03 6.94 3.6 1.19 9.44 0.03 6.95 3.68 0.92 9.74
FN 65.69 18.57 53.21 16.99 18.31 65.31 20.00 52.24 17.42 15.99

Accuracy 98.21 92.96 94.47 84.47 90.4 98.20 92.95 94.40 84.10 90.15
Precision 97.14 9.48 34.53 99.85 13.5 97.07 8.51 34.91 99.89 13.37
Recall 34.31 81.43 46.79 83.01 81.69 34.69 80.00 47.76 82.58 84.01
F-score 50.67 16.98 39.72 90.65 23.17 51.11 15.38 40.33 90.41 23.07
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of 84.01%, and F-score of 23.07%). Based on these results, RF
and DTmodels for the grayhole class are the best performing
models with respect to other models, while the NBmodel for
scheduling class is the worst performing model.

4.2.2. Regular Machine Learning Using Selected Features.
In this section, the machine learning performance results of
applying feature selection using WSN-DS dataset are
presented.

(1) Cross-Validation Results. 'is section discusses the 10-
fold CV results of four machine learning models (DT, KNN,
RF, and NB) over the WSN-DS dataset with selected fea-
tures, as shown in Table 11. As shown in the normal class
results, RF has achieved the highest performances among
other models and other classes (accuracy of 99.93%, pre-
cision of 98.16%, recall of 99.09%, and F-score of 98.62%).
'eDTmodel has achieved the second one, KNN is the third
one, and the fourth one is NB. For the grayhole class, RF has
achieved the highest performances among other models
(accuracy of 99.92%, precision of 92.81%, recall of 99.04%,
and F-score of 95.82%). In contrast, NB has done the worst
performances (accuracy of 91.47%, precision of 7.39%, recall
of 74.91%, and F-score of 13.44%). Like blackhole class, RF
has achieved the highest performances among other models
(accuracy of 99.86%, precision of 98.24%, recall of 98.11%,

and F-score of 98.17%). In contrast, NB has done the worst
performances (accuracy of 93.45%, precision of 23.26%,
recall of 29.6%, and F-score of 26.04%). Regarding sched-
uling class, RF has achieved the highest performances among
other models (accuracy of 99.69%, precision of 99.82%,
recall of 99.83%, and F-score of 99.83%). In contrast, NB has
done the worst performances (accuracy of 84.61%, precision
of 95.14%, recall of 87.52%, and F-score of 91.17%). Flooding
class like the other classes, RF has achieved the highest
performances among other models (accuracy of 99.84%,
precision of 97.84%, recall of 92.96%, and F-score of
95.33%). In contrast, NB has done the worst performances
(accuracy of 99.23%, precision of 95.83%, recall of 59.07%,
and F-score of 73.08%). Based on these results, the RF model
using normal class is the best performing model concerning
other models, while NB using Scheduling class is the worst
performing model.

(2) Testing Results. Table 10 shows the performance of the
machine learning models using the unseen testing WSN-DS
dataset. For the normal class, RF is the highest performance
model (accuracy of 99.94%, precision of 98.45%, recall of
99.48%, and F-score of 98.96%). DT, KNN, and NB models
have achieved the second, third, and fourth ranks on the
average of accuracy over unseen data by 99.93%, 99.46%, and
98.20%, respectively. For the grayhole class, DT is the highest
performance model (accuracy of 99.95%, precision of

Table 11: 'e performance of machine learning for WSN dataset using selected features.

Model Evaluation metric
Cross-validation performance Testing performance

Normal Grayhole Blackhole Scheduling Flooding Normal Grayhole Blackhole Scheduling Flooding

DT

TN 99.95 99.95 99.9 97.72 99.91 99.96 99.96 99.91 97.41 99.91
FP 0.05 0.05 0.1 2.28 0.09 0.04 0.04 0.09 2.59 0.09
FN 1.32 5.18 2.32 0.22 6.87 1.19 6.64 2.55 0.21 7.17

Accuracy 99.92 99.9 99.82 99.59 99.79 99.92 99.90 99.81 99.57 99.78
Precision 98.29 94.16 97.65 99.77 94.76 98.37 94.96 97.75 99.74 94.77
Recall 98.68 94.82 97.68 99.78 93.13 98.81 93.36 97.45 99.79 92.83
F-score 98.48 94.48 97.66 99.77 93.93 98.59 94.15 97.60 99.76 93.79

KNN

TN 99.59 99.81 99.38 80.16 99.98 99.63 99.81 99.37 80.60 99.98
FP 0.41 0.19 0.62 19.84 0.02 0.37 0.19 0.63 19.40 0.02
FN 16.13 32.11 27.18 0.6 40.55 16.24 28.74 27.27 0.59 38.31

Accuracy 99.17 99.53 98.34 97.62 99.26 99.21 99.55 98.33 97.67 99.30
Precision 84.84 76.46 82.55 98.01 97.7 86.26 76.52 82.32 98.05 98.27
Recall 83.87 67.89 72.82 99.4 59.45 83.76 71.26 72.73 99.41 61.69
F-score 84.34 71.88 77.36 98.7 73.91 84.99 73.80 77.23 98.72 75.80

RF

TN 99.95 99.93 99.93 98.28 99.96 99.95 99.94 99.95 98.28 99.96
FP 0.05 0.07 0.07 1.72 0.04 0.05 0.06 0.05 1.72 0.04
FN 0.91 0.96 1.89 0.17 7.04 0.60 0.72 2.03 0.15 6.99

Accuracy 99.93 99.92 99.86 99.69 99.84 99.93 99.94 99.87 99.71 99.84
Precision 98.16 92.81 98.24 99.82 97.84 98.11 93.94 98.68 99.82 97.66
Recall 99.09 99.04 98.11 99.83 92.96 99.40 99.28 97.97 99.85 93.01
F-score 98.62 95.82 98.17 99.83 95.33 98.75 96.54 98.32 99.84 95.28

NB

TN 99.48 91.62 96.04 56.01 99.95 99.50 91.49 95.95 57.42 99.96
FP 0.52 8.38 3.96 43.99 0.05 0.50 8.51 4.05 42.58 0.04
FN 63.86 25.09 70.4 12.48 40.93 61.82 26.45 70.87 12.58 40.60

Accuracy 97.78 91.47 93.45 84.61 99.23 97.85 91.33 93.34 84.65 99.24
Precision 65.47 7.39 23.26 95.14 95.83 67.68 7.16 22.55 95.28 96.20
Recall 36.14 74.91 29.6 87.52 59.07 38.18 73.55 29.13 87.42 59.40
F-score 46.54 13.44 26.04 91.17 73.08 48.82 13.05 25.42 91.18 73.45
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97.32%, recall of 96.89%, and F-score of 97.1%). At the same
time, NB is the worst performingmodel (accuracy of 92.95%,
precision of 8.51%, recall of 80.00%, and F-score of 15.38%).
Similar to blackhole class, RF is the highest performance
model (accuracy of 99.87%, precision of 98.3%, recall of
98.47%, and F-score of 98.39%). Regarding scheduling and
flooding classes, RF obtained the highest performance by
accuracy of 99.74% and 99.89%, respectively. However, NB
is the worst performing model for both classes, including
accuracy of 84.10% for scheduling and 90.15% for flooding.
Yet, the NB model using scheduling classes has the lowest
accuracy performance among all models and classes for
unseen data in terms of accuracy, 84.65%.

4.2.3. Deep Learning Using All Features

(1) Cross-Validation Results. 'is section discusses the 10-
fold CV results of four deep learning models (LSTM and
GRU, using one and two layers) over the WSN-DS dataset
with all features, as shown in Table 12. As shown in the
results, for the normal class, LSTM using one layer model
has achieved the highest performances among other models
and other classes (accuracy of 99.99%, precision of 100%,
recall of 100%, and F-score of 100%). LSTM using two layers’
model has achieved the second one, and GRU with one layer
and two layers’ models have almost similar performances
which achieved the third one. For the grayhole class, LSTM
using one layer model has achieved the highest

performances among other models (accuracy of 99.98%,
precision of 99.92%, recall of 99.95%, and F-score of
99.93%). In contrast, GRU with two layers has done the
second one, and LSTM using one layer and GRU with two
layers has done similar performances ranked as a third one.
Like blackhole class, LSTM using one layer model has
achieved the highest performances among other models and
other classes (accuracy of 100%, precision of 100%, recall of
99.74%, and F-score of 99.87%). In contrast, GRU with one
layer has done the worst performances (accuracy of 97.5%,
precision of 75.67%, recall of 53.16%, and F-score of
62.23%). Regarding scheduling class, LSTM using one layer
has achieved the highest performances among other models
(accuracy of 99.98%, precision of 96.76%, recall of 96.81%,
and F-score of 96.75%). Flooding class like the other classes,
LSTM using one layer has achieved the highest perfor-
mances among other models (accuracy of 100% and pre-
cision of 95%), while other models include LSTM using two
layers, and GRU using one layer and two layers has achieved
approximated performances in terms of accuracy such as
99.67%, 99.68%, and 99.7%, respectively. Based on these
results, LSTM using one layer model for blackhole and
flooding classes is the best performing model with respect to
other models, while GRU using one and two layers for
normal class is the worst performing model.

(2) Testing Results. Table 12 shows the performance of the
deep learning models using the unseen testing WSN-DS
dataset. As shown in the results, for the normal class, LSTM

Table 12: 'e performance of deep learning for WSN dataset using LSTM and GRU with all features.

Model Evaluation
metric

Cross-validation performance Testing performance
Normal Grayhole Blackhole Scheduling Flooding Normal Grayhole Blackhole Scheduling Flooding

LSTM with one
layer

TN 99.99 99.98 100 99.99 100 98.71 99.90 99.35 92.90 99.92
FP 0.01 0.02 0 0.01 0 1.29 0.10 0.65 7.10 0.08
FN 0 0.05 0.26 3.19 23.33 7.05 6.64 43.77 0.63 10.66

Accuracy 99.99 99.98 100 99.98 100 98.55 99.84 97.67 98.77 99.73
Precision 100 99.92 100 96.76 95 66.47 88.95 77.93 99.28 95.25
Recall 100 99.95 99.74 96.81 76.67 92.95 93.36 56.23 99.37 89.34
F-score 100 99.93 99.87 96.75 83.67 77.51 91.10 65.33 99.32 92.20

LSTM with two
layer

TN 98.65 99.86 99.41 91.73 99.89 98.66 99.86 99.50 93.73 99.89
FP 1.35 0.14 0.59 8.27 0.11 1.34 0.14 0.50 6.27 0.11
FN 8.52 7.36 47.46 0.59 12.21 8.32 3.50 43.66 0.50 11.20

Accuracy 98.46 99.79 97.58 98.7 99.67 98.47 99.83 97.82 98.96 99.69
Precision 65.15 85.19 78.39 99.16 93.3 65.31 86.19 82.01 99.36 93.53
Recall 91.48 92.64 52.54 99.41 87.79 91.68 96.50 56.34 99.50 88.80
F-score 76.07 88.74 62.87 99.29 90.44 76.28 91.05 66.80 99.43 91.10

GRU with one
layer

TN 98.67 99.87 99.3 91.82 99.88 98.78 99.89 99.24 93.29 99.93
FP 1.33 0.13 0.7 8.18 0.12 1.22 0.11 0.76 6.71 0.07
FN 9.61 9.42 46.84 0.65 11.89 12.86 6.76 40.94 0.57 10.66

Accuracy 98.45 99.79 97.5 98.66 99.68 98.47 99.83 97.68 98.86 99.75
Precision 65.32 86.5 75.67 99.17 93.17 66.27 88.43 75.93 99.32 96.11
Recall 90.39 90.58 53.16 99.35 88.11 87.14 93.24 59.06 99.43 89.34
F-score 75.7 88.47 62.23 99.26 90.56 75.29 90.77 66.44 99.37 92.60

GRU with two
layer

TN 98.63 99.85 99.46 94.05 99.9 98.79 99.87 99.31 96.45 99.91
FP 1.37 0.15 0.54 5.95 0.1 1.21 0.13 0.69 3.55 0.09
FN 8.08 3.75 43.34 0.56 11.31 15.21 2.78 34.06 0.48 10.36

Accuracy 98.45 99.82 97.79 98.95 99.7 98.41 99.85 98.01 99.23 99.73
Precision 65.02 85.52 80.9 99.4 94.16 65.88 86.93 79.48 99.64 94.96
Recall 91.92 96.25 56.66 99.44 88.69 84.79 97.22 65.94 99.52 89.64
F-score 76.11 90.54 66.43 99.42 91.34 74.15 91.79 72.08 99.58 92.22
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using one layer model has achieved the highest perfor-
mances among other models and other classes (accuracy of
98.55%, precision of 66.47%, recall of 92.95%, and F-score of
77.51%). LSTM using two layers and GRU has one layer
models have achieved the second one, and GRU with two
layers has achieved the third one. For the grayhole class,
GRU using two layers’ model has achieved the highest
performances among other models (accuracy of 99.85%,
precision of 86.93%, recall of 97.22%, and F-score of
91.79%). LSTM using one layer has performed the second
one, LSTM using two layers and GRU with one layer have
done the third one, and LSTM using one layer and GRUwith
two layers are ranked as a third one. Similar to blackhole
class, GRU using two layers model has achieved the highest
performances among other models and other classes (ac-
curacy of 98.01%, precision of 79.48%, recall of 65.94%, and
F-score 72.08%), while LSTM with one layer has done the
worst performances (accuracy of 97.67%, precision of
77.93%, recall of 56.23%, and F-score 65.33%). Regarding
scheduling class, GRU using two layers has achieved the
highest performances among other models (accuracy of
99.23%, precision of 99.64%, recall of 99.52%, and F-score of
99.58%). For flooding class, GRU using one layer has
achieved the highest performances among other models
(accuracy of 99.75%, precision of 96.11%, recall of 89.34%,
and F-score of 92.60%). Based on these results, GRU using
two layers’ model for grayhole is the best performing model
with respect to other models, while GRU using one layer for
blackhole class is the worst performing model.

4.2.4. Deep Learning Using Selected Features

(1) Cross-Validation Results. As shown in the result in Ta-
ble 13, four deep learning models were over the WSN-DS
dataset with selected features, and for the normal class, GRU
using one layer model has achieved the highest perfor-
mances based on its accuracy among other models and other
classes (accuracy of 98.52%, precision of 72.69%, recall of
78.29%, and F-score of 72.62%). LSTM using one layer, GRU
with two layers, and LSTM using two layers have been
ranked as the second, third, and fourth models, respectively,
based on their accuracy. For the grayhole class, GRU using
one layer model has achieved the highest performances
among other models (accuracy of 99.88%, precision of
90.36%, recall of 96.74%, and F-score of 93.43%). In contrast,
LSTM with one layer, GRU with one layer, and GRU with
two layers have recorded the second, third, and fourth
models based on their accuracy. Like the blackhole class,
GRU using one layer model has achieved the highest per-
formances among other models and other classes (accuracy
of 98.4%, precision of 83.72%, recall of 76.12%, and F-score
of 78.58%). In contrast, GRU with two-layer has done the
worst performances (accuracy of 97.21%, precision of
72.01%, recall of 46.96%, and F-score of 56.78%).

Regarding scheduling class, GRU using one layer has
achieved the highest performances among other models
(accuracy of 99.61%, precision of 99.78%, recall of 99.79%,
and F-score of 99.78%). Flooding class like the other classes,
GRU using one layer has achieved the highest performances

Table 13: 'e performance of deep learning for WSN dataset using LSTM and GRU with selected features.

Model Evaluation
metric

Cross-validation performance Testing performance
Normal Grayhole Blackhole Scheduling Flooding Normal Grayhole Blackhole Scheduling Flooding

LSTM with one
layer

TN 98.59 99.91 99.48 96 99.93 98.50 99.92 99.73 96.61 99.99
FP 1.41 0.09 0.52 4 0.07 1.50 0.08 0.27 3.39 0.01
FN 6.82 8.5 39.19 0.47 9.9 1.63 5.19 40.12 0.33 9.22

Accuracy 98.45 99.84 97.98 99.21 99.76 98.50 99.88 98.18 99.39 99.83
Precision 64.84 90.6 83.37 99.59 96.08 64.42 91.49 89.92 99.66 99.47
Recall 93.18 91.5 60.81 99.53 90.1 98.37 94.81 59.88 99.67 90.78
F-score 76.2 91.02 69.98 99.56 92.98 77.85 93.12 71.89 99.66 94.93

LSTM with two
layer

TN 98.41 99.9 99.17 94.62 99.92 98.48 99.91 99.25 94.51 99.88
FP 1.59 0.1 0.83 5.38 0.08 1.52 0.09 0.75 5.49 0.12
FN 3.3 13.3 42.91 0.83 21.43 5.10 4.11 42.50 0.80 19.88

Accuracy 98.37 99.79 97.53 98.75 99.54 98.38 99.87 97.62 98.76 99.53
Precision 62.68 89.59 73.95 99.45 94.85 63.25 90.43 75.66 99.44 92.62
Recall 96.7 86.7 57.09 99.17 78.57 94.90 95.89 57.50 99.20 80.12
F-score 76.04 87.68 64.37 99.31 85.85 75.91 93.08 65.34 99.32 85.92

GRU with one
layer

TN 99.08 99.91 99.3 97.85 99.99 98.62 99.93 99.78 97.91 99.99
FP 0.92 0.09 0.7 2.15 0.01 1.38 0.07 0.22 2.09 0.01
FN 21.71 3.26 23.88 0.21 7.73 3.42 6.28 34.23 0.22 7.89

Accuracy 98.52 99.88 98.4 99.61 99.85 98.57 99.87 98.46 99.60 99.85
Precision 72.69 90.36 83.72 99.78 99.27 65.87 91.94 92.49 99.79 99.61
Recall 78.29 96.74 76.12 99.79 92.27 96.58 93.72 65.77 99.78 92.11
F-score 72.62 93.43 78.58 99.78 95.64 78.32 92.82 76.87 99.78 95.7

GRU with two
layer

TN 98.53 99.93 99.25 89.1 99.81 98.65 99.91 99.49 94.11 99.82
FP 1.47 0.07 0.75 10.9 0.19 1.35 0.09 0.51 5.89 0.18
FN 5.85 39.26 53.04 0.54 19.99 7.44 9.78 42.09 0.49 13.73

Accuracy 98.41 99.59 97.21 98.5 99.46 98.49 99.83 97.87 99.01 99.58
Precision 63.87 88.58 72.01 98.9 88.16 65.44 90.33 82.06 99.40 89.44
Recall 94.15 60.74 46.96 99.46 80.01 92.56 90.22 57.91 99.51 86.27
F-score 76.09 79.73 56.78 99.18 83.85 76.67 90.27 67.90 99.46 87.83
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among other models (accuracy of 99.85%, precision of
99.27%, recall of 92.27%, and F-score of 95.64%). Based on
these results, GRU using one layer model for grayhole is the
best performing model with respect to other models, while
GRU using two layers for the blackhole class is the worst
performing model.

(2) Testing Results. Table 13 shows the performance of the
machine learning models using the unseen testing WSN-
DS dataset. As shown in the results, for the normal class,
GRU using one layer model has achieved the highest
performances among other models and other classes (ac-
curacy of 98.57%, precision of 65.87%, recall of 96.58%, and
F-score of 78.32%). However, LSTM using two layers’
model has recorded the worst performances among other
models and other classes (accuracy of 98.38%, precision of
63.25%, recall of 94.90%, and F-score of 75.91%). For the
grayhole class, LSTM using one layer model has achieved
the highest performances among other models (accuracy of
99.88%, precision of 91.49%, recall of 94.81%, and F-score
of 93.12%). GRU using two layers’ model has recorded the
worst performances among other models and other classes
(accuracy of 99.83%, precision of 90.33%, recall of 90.22%,
and F-score of 90.27%). Like the blackhole class, GRU using
one layer model has achieved the highest performances
among other models and other classes (accuracy of 98.46%,
precision of 92.49%, recall of 65.77%, and F-score of
76.87%). In contrast, LSTM with two layers has the worst
performances (accuracy of 97.62%, precision of 75.66%,
recall of 57.50%, and F-score of 65.34%). Regarding the
scheduling class, GRU using one layer model has achieved
the highest performances among other models and other
classes (accuracy of 99.60%, precision of 99.79%, recall of
99.78%, and F-score 99.78%). In contrast, LSTM with two
layers has done the worst performances (accuracy of
98.76%, precision of 99.44%, recall of 99.20%, and F-score
99.32%). Flooding class like the other classes, GRU using
one layer model has achieved the highest performances
among different models and other classes (accuracy of
99.85%, precision of 99.61%, recall of 92.11%, and F-score
of 95.7%). In contrast, LSTM with two layers has the worst
performances (accuracy of 99.53%, precision of 92.62%,
recall of 80.12%, and F-score of 85.92%). Based on these
results, LSTM using one layer model for grayhole is the best
performing model with respect to other models, while
LSTM using one layer for the blackhole class is the worst
performing model.

4.3. KDD Dataset. In this section, the results of applying
four machine learning models (DT, KNN, RF, and NB) and
four deep learning models (LSTM and GRU, using one and
two layers), including cross-validation results and testing
results, are described. Each machine learning model and
deep learning model performance is discussed using full
features and selected features to classify five classes of attack
types including DOS, R2L, U2R, Probe, and Normal. All the
positive and negative rates results of the cross-validation and
testing performances which are used to compute accuracy,

precision, recall, and F-score matrices are presented in
Tables 14–17.

4.3.1. Regular Machine Learning Using All Features

(1) Cross-Validation Results. 'is section discusses the 10-
fold CV results of four machine learning models (DT, KNN,
RF, and NB) over the KDD dataset with all features, as
shown in Table 14. As shown in the results, for the Dos class,
RF has achieved the highest performances among other
models and other classes (accuracy of 100%, precision of
100%, recall of 100%, and F-score of 100%). 'e DTmodel
has achieved the second one and KNN is the third one. NB
has reached the lowest performances (accuracy of 92.44%,
precision of 93.93%, recall of 96.93%, and F-score 95.26%).
For the normal class, RF has achieved the highest perfor-
mances among other models (accuracy of 99.98%, precision
of 92.9%, recall of 99.98%, and F-score of 95.94%). In
contrast, NB has the worst performances (accuracy of
92.72%, precision of 99%, recall of 59.7%, and F-score
74.48%). Like the probe class, RF has achieved the highest
performances among other models (accuracy of 100%,
precision of 99.97%, recall of 99.59%, and F-score of
99.78%). In contrast, NB has the worst performances (ac-
curacy of 96.74%, precision of 0.3%, recall of 6.96%, and
F-score of 5.7%). Regarding R2l class, RF has achieved the
highest performances among other models (accuracy of
99.99%, precision of 99.36%, recall of 96.77%, and F-score of
98.04%). In contrast, NB has the worst performances (ac-
curacy of 98.77%, precision of 0.25%, recall of 1.35%, and
F-score of 4.22%). U2r class classes, RF has achieved the
highest performance (accuracy of 100%, precision of 93.75%,
and F-score of 77.8%), while DT has achieved the highest
recall of 96.99%. KNN and NB have the worst performances.
Based on these results, the RF model using the DoS class is
the best performing model with respect to other models.

(2) Testing Results. Table 14 shows the performance of the
machine learning models using the unseen testing KDD
dataset. For the RF model, DOS class has achieved the
highest accuracy among other models and classes (accuracy
of 100%, precision of 100%, recall of 100%, and F-score of
100%). However, NB has the DOS class’s worst perfor-
mances (accuracy of 94.17%, precision of 93.82%, recall of
99.37%, and F-score of 96.52%). For the normal class, RF is
the highest performance model (accuracy of 99.98%, pre-
cision of 99.89%, recall of 99.99%, and F-score of 98.94%).
DT, KNN, and NB models have achieved the second, third,
and fourth ranks based on accuracy over unseen data by
99.97%, 99.85%, and 92.65%, respectively. Similar to the
probe class, DT is the highest performance model (accuracy
of 99.99%, precision of 100%, recall of 99.28%, and F-score
of 96.64%). RF, KNN, and NB models have achieved the
second, third, and fourth ranks on the average of accuracy
over unseen data by 99.99%, 99.85%, and 98.65%, respec-
tively. Regarding R2l and U2r classes, RF obtained the
highest performance, while NB is the worst performing
model for both classes. However, the NB model using
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normal classes has the lowest accuracy performance among
all models and classes for unseen data in terms of accuracy,
92.65%.

4.3.2. Regular Machine Learning Using Selected Features

(1) Cross-Validation Results. 'is section discusses the 10-
fold CV results of four machine learning models (DT, KNN,
RF, and NB) over the KDD dataset with all features, as
shown in Table 15. As shown in the results, for the DOS class,
RF and DT have achieved the highest performances among
other models and other classes (accuracy of 99.72%, pre-
cision of 99.71%, recall of 99.94%, and F-score of 99.83%).
'e KNN model has achieved the second one. NB has
achieved the lowest performances (accuracy of 65.13%,
precision of 80.44%, recall of 75.3%, and F-score of 77.78%).
For the normal class, RF and DT have achieved the highest
performances among other models (accuracy of 99.93%,
precision of 99.76%, recall of 99.86%, and F-score of 99.8%),
while NB has the worst performances (accuracy of 82.46%,
precision of 66.47%, recall of 2.65%, and F-score of 5.08%).
'e probe class, RF has achieved the highest performances
among other models (accuracy of 99.99%, precision of
99.74%, and F-score of 98.3%), while DT has achieved the
highest recall of 97.6%. NB has the worst performances
(accuracy of 96.87%, precision of 0.29%, recall of 7.03%, and

F-score of 5.61%). Regarding R2l class, RF has achieved the
highest performances among other models (accuracy of
100%, precision of 87.04%, recall of 60%, and F-score of
71.85%), while NB has the worst performances (accuracy of
99.24%, precision of 0.48%, recall of 1.36%, and F-score
3.56%). U2R classes, RF and DT, have achieved similar the
highest performance. NB has the worst performances (ac-
curacy of 79.47%, precision of 0.09%, recall of 79.17, and
F-score of 0.19). Based on these results, RF and DTmodels
for each class have the best performingmodel with respect to
other models, while NB has the worst performances.

(2) Testing Results. Table 15 shows the performance of the
machine learning models using the unseen testing KDD
dataset. For the RF and DTmodel, DOS class has achieved
the highest accuracy among other models and classes (ac-
curacy of 99.74%, precision of 99.74%, recall of 99.94%, and
F-score of 99.84%). However, NB has the DOS class’s worst
performances (accuracy of 64.87%, precision of 80.27%,
recall of 75.10%, and F-score of 77.60%). For the normal
class, DT and RF are the highest performance model (ac-
curacy of 99.93%, precision of 99.77%, recall of 99.82%, and
F-score of 99.80%). KNN and NB models have achieved the
second and third ranks based on accuracy over unseen data by
99.83% and 82.48%, respectively. Similar to the probe class,
RF is the highest performance model (accuracy of 99.78%,
precision of 96.15%, recall of 77.69%, and F-score of 85.94%).

Table 14: 'e performance of machine learning for KDD dataset using all features.

Models Evaluation metric
Cross-validation performance Testing performance

DOS Normal Probe R2L U2R DOS Normal Probe R2L U2R

DT

TNR 99.97 99.98 99.99 100 100 99.95 99.98 100 99.99 100
FPR 0.03 0.02 0.01 0 0 0.05 0.02 0 0.01 0
FNR 0 0.08 0.68 3.01 25.83 0 0.07 0.72 5.63 50

Accuracy 99.99 99.97 99.99 99.99 99.99 99.99 99.97 99.99 99.98 99.99
Precision 99.99 99.93 99.27 98.1 74.17 99.99 99.89 100 97.1 66.67
Recall 100 99.92 99.32 96.99 74.17 100 99.93 99.28 94.37 50
F-score 100 99.92 99.29 97.53 70.6 99.99 99.91 99.64 95.71 57.14

KNN

TNR 99.61 99.94 99.98 99.99 100 99.55 99.89 99.96 99.99 100.00
FPR 0.39 0.06 0.02 0.01 0 0.45 0.11 0.04 0.01 0.00
FNR 0.01 0.18 9.76 5.65 100 0.04 0.29 12.27 8.45 100.00

Accuracy 99.91 99.92 99.9 99.98 99.99 99.89 99.85 99.85 99.97 99.99
Precision 99.91 99.71 97.82 96.31 0 99.90 99.47 95.67 95.59 0
Recall 99.99 99.82 90.24 94.35 0 99.96 99.71 87.73 91.55 0.00
F-score 99.95 99.76 93.87 95.28 0 99.93 99.59 91.53 93.53 0

RF

TNR 99.99 99.98 100 100 100 100.0 99.98 100.00 100.00 100.00
FPR 0.01 0.02 0 0 0 0.0 0.02 0.00 0.00 0.00
FNR 0 0.02 0.41 3.23 40 0.0 0.01 0.80 3.52 41.67

Accuracy 100 99.98 100 99.99 100 100.0 99.98 99.99 99.99 100.00
Precision 100 99.9 99.97 99.36 93.75 100.0 99.89 99.82 99.70 87.50
Recall 100 99.98 99.59 96.77 60 100.0 99.99 99.20 96.48 58.33
F-score 100 99.94 99.78 98.04 77.8 100.0 99.94 99.51 98.06 70.00

NB

TNR 73.23 99.87 97.52 99.02 97.88 71.71 99.86 99.54 99.10 97.89
FPR 26.77 0.13 2.48 0.98 2.12 28.29 0.14 0.46 0.90 2.11
FNR 3.07 40.3 93.04 98.65 45 0.63 41.05 100.00 100.00 75.00

Accuracy 92.44 92.72 96.74 98.77 97.88 94.17 92.65 98.65 98.87 97.88
Precision 93.93 99 0.3 0.25 0.24 93.82 98.92 0.00 0.00 0.15
Recall 96.93 59.7 6.96 1.35 55 99.37 58.95 0.00 0.00 25.00
F-score 95.26 74.48 5.7 4.22 0.6 96.52 73.87 0 0 0.31
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DT, KNN, and NB models have achieved the second, third,
and fourth ranks on the average of accuracy over unseen data
by 99.78%, 99.76%, and 98.87%, respectively. Regarding R2L
and U2R classes, RF obtained the highest performance, while
NB is the worst performing model for both classes.

4.3.3. Deep Learning Using All Features

(1) Cross-Validation Results. As shown in the result in Ta-
ble 16, four deep learning models were over the KDD dataset
with selected features; for the DOS class, LSTM using two
layers’ model has achieved the highest performances based
on its accuracy among other models and other classes
(accuracy of 99.83%, precision of 99.97%, recall of 99.82%,
and F-score of 99.9%). LSTM using one layer, GRU with one
layer and two layers, and LSTM using one layer has been
ranked as the second, third, and fourth models, respectively,
based on their accuracy. For the normal class, LSTM using
two layers’ model has achieved the highest performances
among other models (accuracy of 99.73%, precision of
98.85%, recall of 99.65%, and F-score of 99.25%). In contrast,
LSTM with one layer has achieved the lowest performance
(accuracy of 99.79%, precision of 86.16%, recall of 90.36%,
and F-score of 88.2%). GRU with one layer and GRU with
two layers have recorded the second, third, and accuracy.
Like the probe class, LSTM using two layers’ model has

achieved the highest performances among other models and
other classes (accuracy of 99.97%, precision of 99.58%, recall
of 97.34%, and F-score of 98.44%). In contrast, LSTM with
one layer has the worst performances (accuracy of 97.47%,
precision of 74.48%, recall of 53.84%, and F-score of
62.28%). Regarding R2l class, GRU using one layer has
achieved the highest performances among other models
(accuracy of 99.92%, precision of 84.57%, recall of 85.72%,
and F-score of 85.05%). U2R class like the other classes, GRU
using one layer has achieved the highest performances
among other models accuracy of 99.68%, precision of
93.07%, recall of 88.33%, and F-score of 90.62%). Based on
these results, LSTM using two layers’ model for DOS is the
best performing model with respect to other models.

(2) Testing Results. As shown in the result in Table 16, four
deep learning models were over the KDD dataset with se-
lected features; for the DOS class, LSTM using two layers’
model has achieved the highest performances based on its
accuracy among other models and other classes (accuracy of
99.83%, precision of 99.97%, recall of 99.82%, and F-score of
99.9%). LSTM using one layer, GRU with one layer and two
layers, and LSTM using one layer has been ranked as the
second, third, and fourthmodels, respectively, based on their
accuracy. For the normal class, LSTM using two layers’
model has achieved the highest performances among other
models (accuracy of 99.73%, precision of 98.85%, recall of

Table 15: 'e performance of machine learning for KDD dataset using selected features.

Models Evaluation metric
Cross-validation performance Testing performance

Dos Normal Probe R2L U2R DOS Normal Probe R2L U2R

DT

TNR 98.75 99.95 99.98 100 100 98.91 99.95 99.97 99.99 100.00
FPR 1.25 0.05 0.02 0 0 1.09 0.05 0.03 0.01 0.00
FNR 0.06 0.17 25.37 2.4 50.83 0.06 0.18 22.76 2.05 75.00

Accuracy 99.72 99.93 99.76 99.99 99.99 99.74 99.93 99.78 99.99 99.99
Precision 99.71 99.76 96.75 98.43 75.93 99.74 99.77 95.60 97.95 42.86
Recall 99.94 99.86 74.63 97.6 49.17 99.94 99.82 77.24 97.95 25.00
F-score 99.83 99.8 84.25 98 57.78 99.84 99.80 85.45 97.95 31.58

KNN

TNR 98.55 99.87 99.97 99.99 100 98.72 99.86 99.98 99.99 100.00
FPR 1.45 0.13 0.03 0.01 0 1.28 0.14 0.02 0.01 0.00
FNR 0.07 0.38 27.65 16.11 100 0.07 0.33 25.07 19.94 100.00

Accuracy 99.67 99.83 99.73 99.95 99.99 99.70 99.83 99.76 99.94 99.99
Precision 99.66 99.41 95.89 96.8 0.0 99.70 99.37 96.45 94.79 0.0
Recall 99.93 99.62 72.35 83.89 0 99.93 99.67 74.93 80.06 0.00
F-score 99.8 99.51 82.46 89.81 0.0 99.81 99.52 84.34 86.80 0.0

RF

TNR 98.76 99.94 99.98 100 100 98.91 99.95 99.97 100.00 100.00
FPR 1.24 0.06 0.02 0 0 1.09 0.05 0.03 0.00 0.00
FNR 0.06 0.14 25.29 3.08 40 0.06 0.13 22.31 3.81 58.33

Accuracy 99.72 99.93 99.76 99.99 100 99.74 99.94 99.78 99.99 99.99
Precision 99.71 99.76 96.66 99.74 87.04 99.74 99.77 96.15 99.39 71.43
Recall 99.94 99.86 74.71 96.92 60 99.94 99.87 77.69 96.19 41.67
F-score 99.83 99.8 84.26 98.3 71.85 99.84 99.82 85.94 97.76 52.63

NB

TNR 21.6 99.75 97.65 99.49 79.47 21.27 99.72 99.72 99.52 77.36
FPR 78.4 0.25 2.35 0.51 20.53 78.73 0.28 0.28 0.48 22.64
FNR 24.7 97.35 92.97 98.64 20.83 24.90 96.72 100.00 100.00 8.33

Accuracy 65.13 82.46 96.87 99.24 79.47 64.87 82.48 98.87 99.27 77.36
Precision 80.44 66.47 0.29 0.48 0.09 80.27 71.77 0.00 0.00 0.04
Recall 75.3 2.65 7.03 1.36 79.17 75.10 3.28 0.00 0.00 91.67
F-score 77.78 5.08 5.61 3.56 0.19 77.60 6.27 0 0 0.07
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99.65%, and F-score of 99.25%). In contrast, LSTM with one
layer has achieved the lowest performance accuracy of
99.79%, precision of 86.16%, recall of 90.36% and F-score of
88.2%). GRU with one layer and GRU with two layers have
recorded the second and third and accuracy. Like the probe
class, LSTM using two layers’ model has achieved the highest
performances among other models and other classes (ac-
curacy of 99.97%, precision of 99.58%, recall of 97.34%, and
F-score of 98.44%). Table 16 shows the performance of the
deep learning models using the unseen testing KDD dataset.
As shown in the results, for the DOS class, LSTM using one
layer model has achieved the highest performances among
other models and other classes (accuracy of 99.99%, pre-
cision of 100%, recall of 99.99%, and F-score of 100%).
LSTM using two layers’ model and GRUmodels have similar
performance. For the normal class, LSTM using one layer
model has achieved the highest performances among other
models (accuracy of 99.95%, precision of 99.80%, recall of
99.94%, and F-score of 99.87%). LSTM with two layers and
GRU using one layer and two layers model have recorded the
similar performances. Like the probe class, LSTM using one
layer model has achieved the highest performances among
other models and other classes (accuracy of 99.99%, pre-
cision of 99.55%, recall of 98.76%, and F-score of 99.15%).
Regarding the scheduling class, GRU using one layer model
has achieved the highest performances among other models
and other classes (accuracy of 99.60%, precision of 99.79%,

recall of 99.78% and F-score99.78%). In contrast, LSTMwith
two layers has done the worst performances (accuracy of
98.76%, precision of 99.44%, recall of 99.20%, and F-score of
99.32%). Flooding class like the other classes, GRU using one
layer model has achieved the highest performances among
different models and other classes (accuracy of 99.85%,
precision of 99.61%, recall of 92.11%, and F-score of 95.7%).
In contrast, LSTM with two layers has the worst perfor-
mances (accuracy of 99.53%, precision of 92.62%, recall of
80.12%, and F-score of 85.92%). Based on these results,
LSTM using one layer model for grayhole is the best per-
forming model for other models, while LSTM using one
layer for the blackhole class is the worst performing model.

4.3.4. Deep Learning Using Selected Features

(1) Cross-Validation Results. As shown in the result, in
Table 17, four deep learning models were over the KDD
dataset with selected features; for the DOS class, GRU using
two layers, model has achieved the highest performances
based on its accuracy among other models and other classes
(accuracy of 96.14%, precision of 96.13%, recall of 99.23%,
and F-score of 97.65%). LSTM using one layer model has
achieved the lowest performances based on its accuracy
among other models and other classes (accuracy of 92.98%,
precision of 92.91%, recall of 99.05%, and F-score of 95.84%).

Table 16: 'e performance of deep learning for KDD dataset using LSTM and GRU with all features.

Model Evaluation metric
Cross-validation performance Testing performance

DOS Normal Probe R2L U2R DOS Normal Probe R2L U2R

LSTM with one layer

TNR 98.7 99.87 99.24 91.83 99.88 99.98 99.96 100.00 99.99 100.00
FPR 1.3 0.13 0.76 8.17 0.12 0.02 0.04 0.00 0.01 0.00
FNR 10.42 9.64 46.16 0.68 11.67 0.01 0.06 1.24 7.62 66.67

Accuracy 98.46 99.79 97.47 98.63 99.68 99.99 99.95 99.99 99.97 99.99
Precision 65.61 86.16 74.48 99.17 93.07 100.00 99.80 99.55 97.22 66.67
Recall 89.58 90.36 53.84 99.32 88.33 99.99 99.94 98.76 92.38 33.33
F-score 75.6 88.2 62.28 99.24 90.62 100.00 99.87 99.15 94.74 44.44

LSTM with two layer

TNR 99.89 99.75 100 99.95 100 99.92 99.93 99.99 99.96 100.00
FPR 0.11 0.25 0 0.05 0 0.08 0.07 0.01 0.04 0.00
FNR 0.18 0.35 2.66 15.57 100 0.01 0.29 2.22 10.85 100.00

Accuracy 99.83 99.73 99.97 99.91 99.99 99.98 99.89 99.98 99.93 99.99
Precision 99.97 98.85 99.58 82.2 0 99.98 99.70 99.37 84.92 0
Recall 99.82 99.65 97.34 84.43 0 99.99 99.71 97.78 89.15 0.00
F-score 99.9 99.25 98.44 83.27 0 99.99 99.70 98.57 86.98 0

GRU with one layer

TNR 99.88 99.56 100 99.96 100 99.92 99.90 100.00 99.97 100.00
FPR 0.12 0.44 0 0.04 0 0.08 0.10 0.00 0.03 0.00
FNR 0.37 0.32 3.07 14.28 100 0.04 0.25 2.93 11.73 100.00

Accuracy 99.67 99.58 99.97 99.92 99.99 99.95 99.87 99.97 99.93 99.99
Precision 99.97 98 99.46 84.57 0 99.98 99.53 99.54 86.74 0
Recall 99.63 99.68 96.93 85.72 0 99.96 99.75 97.07 88.27 0.00
F-score 99.8 98.83 98.17 85.05 0 99.97 99.64 98.29 87.50 0

GRU with two layer

TNR 99.89 99.53 99.99 99.96 100 99.96 99.87 100.00 99.97 100.00
FPR 0.11 0.47 0.01 0.04 0 0.04 0.13 0.00 0.03 0.00
FNR 0.38 0.28 2.62 23.67 100 0.05 0.19 2.67 14.96 100.00

Accuracy 99.67 99.56 99.97 99.9 99.99 99.95 99.86 99.97 99.93 99.99
Precision 99.98 97.87 99.2 86.37 0 99.99 99.43 99.64 87.35 0
Recall 99.62 99.72 97.38 76.33 0 99.95 99.81 97.33 85.04 0.00
F-score 99.8 98.78 98.28 76.73 0 99.97 99.62 98.47 86.18 0
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For the normal class, GRU using two layers’ model has
achieved the highest performances among other models
(accuracy of 96.56%, precision of 94.62%, recall of 85.6%, and
F-score 89.88%). In contrast, LSTM with one layer has
reached the lowest performance accuracy of 93.51%, precision
of 92.35%, recall of 69.37%, and F-score of 77.59%). Similar to
the probe class, GRU using two layers’ model has achieved the
highest performances among other models and other classes
(accuracy of 99.24%, precision of 99.58%, recall of 13.17%,
and F-score of 35.28%). In comparison, LSTM with one and
two layers and GRU with one layer have registered similar
performance. Regarding R2l class, GRU using two layers has
achieved the highest performances among other models
(accuracy of 99.8%, precision of 80.4%, recall of 26.66%, and
F-score of 39.92%). U2R class is like the other classes; all deep
learning models have recorded the same performance (ac-
curacy of 99.99%, precision of 0%, recall of 0%, and F-score
0%). Based on these results, all models for U2R are the worst
performance concerning other models.

(2) Testing Results. Table 17 shows the performance of the
deep learning models using the unseen testing KDD dataset.
As shown in the results, for the DOS class, GRU using two
layers’ model has achieved the highest performances among
other models and other classes (accuracy of 96.45%, precision
of 96.20%, recall of 99.54%, and F-score of 97.84%). In
contrast, LSTM with one layer has registered the lowest

performance (accuracy of 94.98%, precision of 95.06%, recall
of 98.94%, and F-score of 96.96%). For the normal class, GRU
using two layers’ model has achieved the highest perfor-
mances among other models (accuracy of 96.93%, precision
of 96.59%, recall of 85.89%, and F-score of 90.92%). LSTM
with one layer has recorded the worst performances (accuracy
of 95.27%, precision of 92.09%, recall of 80.43%, and F-score
of 85.87%). Like the probe class, GRU using two layers’ model
has achieved the highest performances among other models
and other classes (accuracy of 99.24%, precision of 91.67%,
recall of 23.91%, and F-score of 38.05%). Regarding R2L class,
GRU using two layers’ model has achieved the highest per-
formances among other models and other classes (accuracy of
99.79%, precision of 83.33%, recall of 23.46%, and F-score of
36.61%). In comparison, LSTM with two layers has the worst
performances (accuracy of 98.76%, precision of 99.44%, recall
of 99.20%, and F-score of 99.32%). For U2R class, all models
have achieved the worst performance. Based on these results,
GRU using two layers’ model have registered the best
performance.

5. Discussion

We examine the four machine learning models (DT, KNN,
RF, and NB) and four deep learning models (LSTM and
GRU, using one and two layers), including cross-validation
results and testing using WSN-DS and KKD datasets.

Table 17: 'e performance of deep learning for KDD dataset using LSTM and GRU with selected features.

Model Evaluation metric Cross-validation performance Testing performance
DOS Normal Probe R2L U2R DOS Normal Probe R2L U2R

LSTM with one layer

TNR 66.96 98.75 100 99.99 100 78.06 98.50 100.00 99.99 100.00
FPR 33.04 1.25 0 0.01 0 21.94 1.50 0.00 0.01 0.00
FNR 0.95 30.63 100 79.18 100 1.06 19.57 100.00 77.13 100.00

Accuracy 92.98 93.51 99.13 99.79 99.99 94.98 95.27 99.15 99.79 99.99
Precision 92.91 92.35 0 84.04 0.0 95.06 92.09 0.0 82.11 0.0
Recall 99.05 69.37 0 20.82 0 98.94 80.43 0.00 22.87 0.00
F-score 95.84 77.59 0.0 39.48 0.0 96.96 85.87 0.0 35.78 0.0

LSTM with two layer

TNR 81.53 98.37 99.99 100 100 85.83 98.37 100.00 99.99 100.00
FPR 18.47 1.63 0.01 0 0 14.17 1.63 0.00 0.01 0.00
FNR 1.24 15.93 87.69 94.94 100 1.40 11.50 76.09 76.83 100.00

Accuracy 95.49 95.82 99.22 99.76 99.99 96.17 96.60 99.35 99.79 99.99
Precision 95.82 91.78 84.58 91.37 0.0 96.74 92.19 98.18 86.81 0.0
Recall 98.76 84.07 12.31 5.06 0 98.60 88.50 23.91 23.17 0.00
F-score 97.26 87.71 33.94 39.52 0.0 97.66 90.31 38.46 36.57 0.0

GRU with one layer

TNR 78.73 99.22 100 100 100 79.00 99.19 100.00 100.00 100.00
FPR 21.27 0.78 0 0 0 21.00 0.81 0.00 0.00 0.00
FN 0.36 18.26 100 100 100 0.36 18.15 100.00 100.00 100.00

Accuracy 95.68 96.11 99.13 99.75 99.99 95.72 96.09 99.15 99.74 99.99
Precision 95.25 95.77 0.0 0.0 0.0 95.29 95.66 0.0 0.0 0.0
Recall 99.64 81.74 0 0 0 99.64 81.85 0.00 0.00 0.00
F-score 97.4 88.2 0.0 0.0 0.0 97.42 88.22 0.0 0.0 0.0

GRU with two layer

TNR 82.9 98.94 99.99 99.98 100 83.25 99.34 99.98 99.99 100.00
FPR 17.1 1.06 0.01 0.02 0 16.75 0.66 0.02 0.01 0.00
FNR 0.77 14.4 86.83 73.34 100 0.46 14.11 76.09 76.54 100.00

Accuracy 96.14 96.56 99.24 99.8 99.99 96.45 96.93 99.34 99.79 99.99
Precision 96.13 94.62 91.67 80.4 0.0 96.20 96.59 93.08 83.33 0.0
Recall 99.23 85.6 13.17 26.66 0 99.54 85.89 23.91 23.46 0.00
F-score 97.65 89.88 35.28 39.92 0.0 97.84 90.92 38.05 36.61 0.0
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Table 18 describes the summary of the used datasets in-
cluding the number of all samples, the number of trained
samples, the number of testing samples, the number of all
features, the number of selected features, and the number of
classified classes.

5.1. Regular Machine Learning. 'e results of machine
learning cross-validation performance based on the accuracy
for WSN dataset using all features and selected features are
depicted in Figure 3. Considering all feature results for cross-
validation performance, the normal class using RF has the
best performance (accuracy of 99.95%), while the NB model
using the scheduling class has achieved the worst perfor-
mance among all models and classes (accuracy of 84.47%)
(see Figure 3(a)). Similar to the selected feature results, the
normal class using RF has the best performance (accuracy of
99.93%), while the scheduling class, using the NM model,
has achieved the worst performance among all models and
classes (accuracy of 84.61%) (see Figure 3(b)). 'e results of
machine learning testing performance based on the accuracy
for WSN dataset using all features and selected features are
depicted in Figure 4. Considering all features’ results for
unseen dataset, the grayhole class using RF has the best
performance (accuracy of 99.95%), while the scheduling
class using the NB model has achieved the worst perfor-
mance among all models and classes (accuracy of 84.1%) (see
Figure 4(a)). Similar to the selected features’ results, the
grayhole class using RF has the best performance (accuracy
of 99.94%), while the scheduling class using the NB model
has achieved the worst performance among all models and
classes (accuracy of 84.65%) (see Figure 4(b)).

'e results of machine learning cross-validation per-
formance based on the accuracy for KDD dataset using all
features and selected features are depicted in Figure 5.
Considering all features results for cross-validation per-
formance, DOS and U2R classes using RF have the best
performance (accuracy of 100%), while the NB model using
the DOS class has achieved the worst performance among all
models and classes (accuracy of 92.44%) (see Figure 5(a)).
Similar to the selected features’ results, U2R class using RF
has the best performance (accuracy of 100%), while the DOS
class using the NB model has achieved the worst perfor-
mance among all models and classes (accuracy of 65.13%)
(see Figure 3(b)). 'e results of machine learning testing
performance based on the accuracy for the WSN dataset
using all features and selected features are depicted in
Figure 6. Considering all features’ results for the unseen
dataset, DOS, normal, and U2R classes using RF have the
best performance (accuracy of 100%), while the normal class
using the NB model has achieved the worst performance
among all models and classes (accuracy of 92.65%) (see
Figure 6(a)). Similar to the selected features’ results, R2L and
U2R classes, using RF, DT, and KNN, have the best per-
formance (accuracy of 99.99%), while the DOS class, using
the NB model, has achieved the worst performance among
all models and classes (accuracy of 64.87%) (see Figure 6(b)).

5.2. Deep Learning. 'e results of deep learning cross-val-
idation performance based on the accuracy for WSN dataset
using all features and selected features are depicted in Fig-
ure 7. Considering all features results for cross-validation
performance, the flooding class, using LSTM with one layer,
has the best performance (accuracy of 100%), while the
blackhole class, using GRU with the one layer model, has
achieved the worst performance among all models and classes
(accuracy of 97.5%) (see Figure 7(a)). Similar to the selected
features’ results, the grayhole class, using LSTM with one
layer, has the best performance (accuracy of 99.84%), while
the blackhole class, using GRUwith the two layers’ model, has
achieved the worst performance among all models and classes
(accuracy of 97.21%) (see Figure 7(b)). 'e results of deep
learning testing performance based on the accuracy for WSN
dataset using all features and selected features are depicted in
Figure 8. Considering all features’ results for unseen dataset,
the grayhole class, using GRU with the two layers’ model, has
the best performance (accuracy of 99.85%), while the
blackhole class, using GRU with the two layers’ model, has
achieved the worst performance among all models and classes
(accuracy of 98.01%) (see Figure 8(a)). Similar to the selected
features results, the grayhole class, using LSTM with the one
layer model, has the best performance (accuracy of 99.88%),
while the blackhole class, using LSTM with the two layers’
model, has achieved the worst performance among all models
and classes (accuracy of 97.62%) (see Figure 8(b)).

'e results of deep learning cross-validation perfor-
mance based on the accuracy for KDD dataset using all
features and selected features are depicted in Figure 9.
Considering all features results for cross-validation per-
formance, U2R class using LSTM with two layers and GRU
using one and two layers have the best performance (ac-
curacy of 99.99%), while the DOS class using LSTM with
one layer model has achieved the worst performance
among all models and classes (accuracy of 98.46%) (see
Figure 9(a)). Similar to the selected features results, U2R
class using LSTM with one and two layers and GRU using
one and two layers have the best performance (accuracy of
99.99%), while the normal class using LSTM with the one
layer model has achieved the worst performance among all
models and classes (accuracy of 93.51%) (see Figure 9(b)).
'e results of deep learning testing performance based on
the accuracy for KDD dataset using all features and selected
features is depicted in Figure 10. Considering all features’
results for unseen dataset, U2R and Dos classes using LSTM
with one and two layers and GRU using one and two layers
have the best performance (accuracy of 99.99%), while the
normal class using GRU with the two layers’ model has
achieved the worst performance among all models and classes
(accuracy of 99.86%) (see Figure 10(a)). Similar to the selected
features’ results, the U2R class using LSTM with one and two
layers and GRU using one and two layers have the best
performance (accuracy of 99.99%), while the DOS class using
GRU with the one layer model has achieved the worst per-
formance among all models and classes (accuracy of 95.72%)
(see Figure 10(b)).
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Figure 4: 'e results of machine learning testing performance for WSN dataset: (a) accuracy using all features and (b) accuracy using
selected features.

Table 18: 'e summary of the used datasets.

Dataset WSN-DS KDD
Number of all samples 374662 311029
Number of trained samples 280995 307916
Number of testing samples 93666 131964
Number of all features 19 42
Number of selected features 6 14
Number of classified classes 5 5
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Figure 3:'e results of machine learning cross-validation performance for theWSN dataset: (a) accuracy using all features and (b) accuracy
using selected features.
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5.3. Summary. Many research studies in AI-based IDS area
have used machine learning and deep learning models. Each
of these models possesses its strengths and weaknesses,
making them suitable for a particular attack type. Regarding
this work, not only do we use machine learning and deep
learning models, but an in-depth investigation of perfor-
mance analysis has been carried out based on the chosen
datasets. 'e performance analysis and comparison of these
models on IDS datasets show no superiority of one model
among the chosen datasets using all features and selected

features. Furthermore, these findings lead to better knowledge
and understand the interpretability for choosing the right
model to enhance IDS trust. In particular, the authors in [24]
have addressed the explainable artificial intelligence (XAI)
concept to improve the trust management by exploring the
decision treemodel in the area of IDS. Compared to our work,
we have provided a performance-based comparison using
machine learning and deep learning models to investigate the
trust impact based on the accuracy of the trusted AI-based
systems regarding IDs’ malicious data.
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Figure 6: 'e results of machine learning testing performance for KDD dataset: (a) accuracy using all features and (b) accuracy using
selected features.
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Figure 5: 'e results of machine learning cross-validation performance for KDD dataset: (a) accuracy using all features and (b) accuracy
using selected features.
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Figure 8: 'e results of deep learning testing performance for WSN dataset: (a) accuracy using all features and (b) accuracy using selected
features.
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Figure 9: 'e results of deep learning cross-validation performance for the KDD dataset: (a) accuracy using all features and (b) accuracy
using selected features.
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Figure 7: 'e results of deep learning cross-validation performance for WSN dataset: (a) accuracy using all features and (b) accuracy using
selected features.
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6. Conclusion and Future Work

In this paper, a comparison study is introduced to investigate
intrusion detection’s trust impact, including the data, meth-
odology, and expert accountability by analyzing machine
learning and deep learning models’ performance. 'e devel-
oped phases of the comparison study have two-folds. 'e first
comparison is made using four regular machine learning
models, including DT, KNN, RF, and NB. 'e second com-
parison is made using four traditional deep learning models,
including LSTM (one and two layers) and GRU (one and two
layers). Two datasets are used to classify the attack type in IDS,
including WSN-DS and KDD. 'e experimental results are
significantly demonstrated, considering the data, methodology,
and expert accountability causes misleading predictions,
making the system vulnerable to attacks, and leading to zero-
trust security for critical systems.'erefore, for future work, we
plan to use XAI concept to enhance trust management by
exploring machine learning models and deep learning in IDS.

Data Availability

'e KDD dataset used to support the study is available at
http://kdd.ics.uci.edu/databases/kddcup99/.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is research was supported by Taif University researchers,
supporting Project no. TURSP-2020/254, Taif University,
Taif, Saudi Arabia and Science Foundation Ireland SFI.

References

[1] D. Pienta, S. Tams, and J. 'atcher, “Can trust be trusted in
cybersecurity?” in Proceedings of the 53rd Hawaii

International Conference on System Sciences, Maui, HI, USA,
January 2020.

[2] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey
on sdn based network intrusion detection system using
machine learning approaches,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 493–501, 2019.

[3] P. Svenmarck, L. Luotsinen, M. Nilsson, and J. Schubert,
“Possibilities and challenges for artificial intelligence in
military applications,” in Proceedings of the NATO Big Data
and Artificial Intelligence for Military Decision Making Spe-
cialists’ Meeting, Bordeaux, France, May 2018.

[4] M. Stampar and K. Fertalj, “Artificial intelligence in network
intrusion detection,” in Proceedings of the 2015 38th Inter-
national Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
pp. 1318–1323, IEEE, Opatija, Croatia, May 2015.

[5] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic
anomaly detection using software defined networking,” in
International Workshop on Recent Advances in Intrusion
Detection, pp. 161–180, Springer, Berlin, Germany, 2011.

[6] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[7] I. Almomani, B. Al-Kasasbeh, and M. Al-Akhras, “Wsn-ds: a
dataset for intrusion detection systems in wireless sensor
networks,” Journal of Sensors, vol. 2016, Article ID 4731953,
16 pages, 2016.

[8] M. Hachimi, G. Kaddoum, G. Gagnon, and P. Illy, “Multi-
stage jamming attacks detection using deep learning com-
bined with kernelized support vector machine in 5g cloud
radio access networks,” in Proceedings of the 2020 Interna-
tional Symposium on Networks, Computers and Communi-
cations (ISNCC), pp. 1–5, IEEE, Montreal, Canada, June 2020.

[9] A. B. Abhale and S. Manivannan, “Supervised machine
learning classification algorithmic approach for finding
anomaly type of intrusion detection in wireless sensor net-
work,” Optical Memory and Neural Networks, vol. 29, no. 3,
pp. 244–256, 2020.

[10] M. Alqahtani, A. Gumaei, H. Mathkour, and M. Maher Ben
Ismail, “A genetic-based extreme gradient boosting model for

DL models

LSTM with one layer
GRU with one layer

LSTM two layers
GRU with two layer

80

85

90

95

100

105

110
Ac

cu
ra

cy
 %

DoS Normal Probe R2L U2R

(a)

DL models

LSTM with one layer
GRU with one layer

LSTM two layers
GRU with two layer

80

85

90

95

100

105

110

Ac
cu

ra
cy

 %

DoS Normal Probe R2L U2R

(b)

Figure 10: 'e results of deep learning testing performance for the KDD dataset: (a) accuracy using all features and (b) accuracy using
selected features.

22 Complexity

http://kdd.ics.uci.edu/databases/kddcup99/


detecting intrusions in wireless sensor networks,” Sensors,
vol. 19, no. 20, p. 4383, 2019.

[11] M. E. Haque and T.M. Alkharobi, “Adaptive hybrid model for
network intrusion detection and comparison among machine
learning algorithms,” International Journal of Machine
Learning and Computing, vol. 5, no. 1, p. 17, 2015.

[12] S. V. Farrahi and M. Ahmadzadeh, “Kcmc: a hybrid learning
approach for network intrusion detection using k-means
clustering and multiple classifiers,” International Journal of
Computer Applications, vol. 124, no. 9, 2015.

[13] S. Paliwal and R. Gupta, “Denial-of-service, probing & remote
to user (r2l) attack detection using genetic algorithm,” In-
ternational Journal of Computer Applications, vol. 60, no. 19,
pp. 57–62, 2012.

[14] I. S. 'aseen and C. A. Kumar, “Intrusion detection model
using fusion of chi-square feature selection and multi class
svm,” Journal of King Saud University-Computer and Infor-
mation Sciences, vol. 29, no. 4, pp. 462–472, 2017.

[15] S. Chebrolu, A. Abraham, and J. P. 'omas, “Feature de-
duction and ensemble design of intrusion detection systems,”
Computers & Security, vol. 24, no. 4, pp. 295–307, 2005.

[16] S. Zaman and F. Karray, “Lightweight ids based on features
selection and ids classification scheme,” in Proceedings of the
2009 International Conference on Computational Science and
Engineering, pp. 365–370, IEEE, Vancouver, BC, Canada,
August 2009.

[17] K. Vimalkumar and N. Radhika, “A big data framework for
intrusion detection in smart grids using Apache spark,” in
Proceedings of the 2017 International Conference on Advances
in Computing, Communications and Informatics (ICACCI),
pp. 198–204, IEEE, Udupi, India, September 2017.

[18] S. Balakrishnan, K. V. Venkatalakshmi, and A. K. Kannan,
“Intrusion detection system using feature selection and
classification technique,” International Journal of Computer
Science and Application, vol. 3, no. 4, pp. 145–151, 2014.

[19] M. Alkasassbeh, G. Al-Naymat, A. Hassanat, and
M. Almseidin, “Detecting distributed denial of service attacks
using data mining techniques,” International Journal of Ad-
vanced Computer Science and Applications, vol. 7, no. 1,
pp. 436–445, 2016.

[20] K. Peng, V. Leung, L. Zheng, S. Wang, C. Huang, and T. Lin,
“Intrusion detection system based on decision tree over big
data in fog environment,” Wireless Communications and
Mobile Computing, vol. 2018, Article ID 4680867, 10 pages,
2018.

[21] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman,
“Survey of intrusion detection systems: techniques, datasets
and challenges,” Cybersecurity, vol. 2, no. 1, p. 20, 2019.

[22] C. Cortes, M. Mohri, and A. Rostamizadeh, L2 Regularization
for Learning Kernels, 2012, http://arxiv.org/abs/1205.2653.

[23] P. Baldi and P. J. Sadowski, “Understanding dropout,” Ad-
vances in Neural Information Processing Systems, vol. 26,
pp. 2814–2822, 2013.

[24] B. Mahbooba, M. Timilsina, R. Sahal, and M. Serrano, “Ex-
plainable artificial intelligence (xai) to enhance trust man-
agement in intrusion detection systems using decision tree
model,” Complexity, vol. 2021, Article ID 6634811, 11 pages,
2021.

Complexity 23

http://arxiv.org/abs/1205.2653

