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To effectively identify network rumors and block their spread, this paper uses fractal theory to analyze a network rumor spreading
situation time series, reveal its inner regularity, extract features, and establish a network rumor recognition model. ,e model is
based on an empirical mode decomposition (EMD) correlation dimension and K-nearest neighbor (KNN) approach. Firstly, a
partition function is used to determine if the time series of the rumor spreading situation is a uniform fractal process. Secondly, the
rumor spreading situation is subjected to EMD to obtain a series of intrinsic mode functions (IMFs), construct the IMF1–IMF6
components containing effective feature information as the principal components, and reconstruct the phase space of the
principal components, respectively. Finally, the correlation dimensions of the principal components IMF1–IMF6 as obtained by
the Grassberger-Procaccia algorithm are used as feature parameters and are imported into the KNNmodel for rumor recognition.
,e experimental results show that the correlation dimension of a spreading situation can better reflect the characteristic in-
formation; as combined with the KNN model for identifying rumors, the recognition rate reaches 87.5%. ,is result verifies the
effectiveness of fractal theory in network rumors recognition, expands the thinking for the research of rumors recognition, and
provides theoretical support for rumor governance.

1. Introduction

Nowadays, network rumors use the Internet (through
mainstream social software and other media platforms) to
breed and spread in various forms and channels, seriously
affecting people’s normal lives and social order and even
endangering economic development and national security.
For example, the mass disturbance in Shishou, Hubei, se-
riously jeopardized social stability and disturbed the political
order. A rumor regarding a spread of nuclear radiation from
Japan triggered “salt grabbing” among the Chinese people,
temporarily destroying the economic order. ,erefore,
quickly recognizing rumors from numerous messages and
blocking their spread over time are an important research
task for scientific and technological workers aiming to keep
networks clear.

Rumor recognition methods are mainly based on feature
and model. A recognition process based on feature

classification mainly includes learning and classification;
such processes usually extract some significant features from
the content, users, or propagation of rumors and apply such
features in the recognition. Common classification algo-
rithms include K-nearest neighbor (KNN) algorithms,
support vector machines, decision trees, and naive Bayesian
models.

Castill et al.[1] extracted 68 rumor recognition features
from news topics on Twitter based on messages, users,
topics, and propagation and selected the 15 best features for
classification using a decision tree classifier. Qazvinian et al.
[2] extracted lexical patterns, portions of speech patterns
(e.g., 1–2 words), and web-based positive and negative user
model characteristics, achieving a high degree of precision.
Yang et al. [3] used rumor data on SinaWeibo and, based on
existing research, added two new client features for pub-
lishing messages and the locations of events mentioned in
the message content; they also constructed a support vector
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machine classifier for automatically identifying rumors and
nonrumors. Sun et al. [4] added multimedia features to the
recognition features. Zhang et al. [5] believed that the
content features in the shallow layer could not be effectively
distinguished and extracted four implicit features based on
the content to build a support vector machine classifier for
recognizing rumors.

A user’s behavioral characteristics can reflect the user’s
activity and behavioral motivation, so they are often used as
a distinguishing feature for recognition. Liang et al. [6] and
Zhang et al. [5] extracted features from the perspective of
user behaviors as key clues for identifying rumors; both
studies achieved a good identification effect.

Propagation characteristics can be regarded as the at-
titude of users towards the news and also reflect the influence
of an event on the Internet. Zhao [7] focused on early rumor
detection, used regular expressions to identify skeptical and
denying tweets, and employed them as the keys to uncov-
ering rumors. Kwon et al. [8] investigated the temporal
patterns of rumor propagation, identified the characteristics
of network rumors through the diffusion of time, structure,
and language, and proposed a new periodic time series
model for proving that rumors on social media networks
may fluctuate with the passage of time. Ma et al. [9] believed
that only extracting features from the static characteristics of
the propagation was insufficient and established a dynamic
series time structure to capture the dynamic changes in
users, content, and propagation characteristics in the
message life cycle. Wu et al. [10] found differences in
propagation trees between rumors and nonrumors and
constructed a random walk graph kernel model for calcu-
lating the similarity between propagation trees to distinguish
between them. Ma et al. [11] and Liu et al. [12] also extracted
static features and captured dynamic information from
propagation trees to detect rumors.

In recent years, scholars have used comprehensive fea-
tures from various aspects to recognize rumors. Ruchansky
et al. [13] found that false information had three basically
consistent features: the text of the article, corresponding
users received, and original users who promoted it.
,erefore, the authors proposed a method for detecting
rumors based on combining three features from text con-
tent, both sides, and user behaviors. Zhang et al. [14] ex-
plored the relationships between authors, themes, post
content, and news authenticity through a large number of
experiments, seeking explicit and implicit features for
judging the credibility of news. Shu et al. [15] indicated that
the relationships among news publishers, news content, and
social network users help to improve the identification of
rumors. Dong Scholar [16] indicated that combining mul-
tiple recognition algorithms will lead to an improved rumor
recognition effect. Wu et al. [17] fused user credibility,
emotional consistency, regional correlation characteristics, a
stacking integrated learning method, and an optimized
rumor recognition method with different models and pro-
vided thorough cross-validation. ,us, as can be seen from
the above, feature-based classification methods have been

widely studied and applied in rumor identification, and the
features gradually tend to resemble each other. However, a
large number of features are often needed to achieve a good
recognition effect. ,is is time-consuming and labor-
intensive. Moreover, most of these features are based on
static and simple statistical features; without digging for
deeper features, as rumor styles become increasingly similar
to nonrumors, static features may lose their descriptiveness.

Model-based identification methods mainly include
infectious disease models, information dissemination
models, and neural network models. Infectious disease
models are widely used to explore the evolution, spread, and
control of rumors. Jin et al. [18] applied a modeling method
for rumor recognition based on using an improved sus-
ceptible-exposed-infected-skeptic infectious disease model
[19] to identify the spread of rumors and news, obtain
conversion parameters between user states to identify ru-
mors and news, and provide new ideas for rumor recog-
nition. Rumor spreading and nonrumor spreading have
large differences between user behaviors. Liu et al. [20]
constructed a rumor and nonrumor information spreading
model based on different user behaviors and calculated the
spread of messages. Models are more likely to identify ru-
mors; as such, several typical neural network structure
patterns have been extensively studied in the field of rumor
recognition. Ma et al. [21] used recurrent neural networks
and their variants, that is, a long short-term memory
(LSTM) and gated recurrent unit, to identify hidden ex-
pressions in topic-basedmessage forwarding comments over
time. ,ey then used the hidden expressions to determine
whether a topic was a rumor. Zubiag et al. [22] found that the
LSTM classifier (which models a time series of information)
performs well in rumor recognition. Liu et al. [23] con-
sidered the dynamic differences between rumors and non-
rumors in spreaders and communication structures and
proposed a rumor recognition model based on an LSTM
network combined with convolutional neural networks
considering the forwarding content, diffuser, and diffusion
structure. Chen et al. [24] proposed a recurrent neural
network model for identifying network rumors based on
potential content changes in a time series. Chen et al. [25]
and Srinivasan et al. [26] proposed a new convolutional
neural network method and new activation function, re-
spectively, based on using time and language features to
jointly identify network rumors. Model-based rumor
methods make up for the shortcomings of feature-based
classification algorithms to a certain extent. Wu et al.
[27–30] proposed a variety of evolutionary algorithms as the
basis for information recognition, which provided a strong
theoretical basis for rumor control strategies. However, as
they are more complex and require a large number of data
set parameters, these models have high uncertainty, which
will make the recognition effects different.

,is study investigates the characteristics of network
rumors propagation and finds that there are differences
between network rumors and nonrumors in the propagation
state. An experiment verifies that a network rumor
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propagation situation has fractal characteristics and that the
self-similarity and complexity of its time series can be
quantitatively described by the fractal dimension(s).

Fractal theory was founded by the Frenchmathematician
B. B. Mandelrot. In 1967, he published his paper “How Long
is the Coastline of Britain” in the American journal “Science”
[31]. Since its birth, fractal theory has developed rapidly and
has been widely used in natural science, social science,
cognitive science, and other fields. “Fractal” refers to the
statistical self-similarity of morphologies, functions, infor-
mation, and structural characteristics [32]. ,e emergence
and application of fractal theory have given a great impetus
to new subjects, and such subjects are developing rapidly.
,e application of fractal theory in the field of recognition is
one example. Fractal theory has promoted the rapid de-
velopment of recognition technology and facilitated the
emergence of new features and methods for generating
higher detection and classification recognition rates.
Moreover, the application of these methods to a large
amount of measured data promotes the development of
fractal theory.

,e application of fractal theory in the field of target
recognition is mainly reflected in one-dimensional time
series analyses. Scholars usually extract the fractal dimension
of a sequence for recognition. Feng [33] and Si [34] extracted
the box-counting dimensions from a time series as features
and combined them with classifiers for identification. Yu
[35] and Liu [36] used a correlation dimension in a time
series to detect and recognize a target and were able to reflect
the characteristics of nonlinear signals. For the complex
fractal structure of a time series, Yuan et al. [37] and Xiong
et al. [38] established multifractal theories and combined
them with classifiers to build recognition models. Gintautas
[39] combined multiple fractal dimensions into multiple
features (or combined with them other statistical parame-
ters) to improve the recognition efficiency when performing
a voice emotion classification. To achieve better recognition
performance, some scholars have improved the basic fractal
dimension algorithm before extracting features for target
recognition [40–43].

In the previous studies, there are relatively few studies on
rumor recognition based on the nonlinear characteristics of
a time series. Based on the nonlinearity of the network
rumors situation, this study starts with the situation trend of
Internet rumors, independent of the static text and prop-
agation process, focuses on extracting network rumors
feature vectors and understanding the characteristics and
differences of rumors and nonrumors in a situation, and
deeply investigates the changes in the situations of different
components based on empirical mode decomposition
(EMD). ,e correlation dimensions of the principal com-
ponents of each intrinsic mode function (IMF) are obtained
as a feature vector, and the vector is imported into a KNN
classification algorithm for rumor recognition.

2. Partition Function to Judge Single Fractal

A change in the spread of a rumor is an important and very
complex issue. Many factors affect fluctuations in rumor

spreading. If the time series of a network rumor situation has
a uniform fractal structure, it can be discussed using a single
fractal. If the time series is nonuniform, it cannot be ana-
lyzed with a single fractal dimension, and multiple analyses
are required to discuss the complexity of the fluctuation
law(s).

First, a rumor spreading situation is selected, and a
partition function (statistical moment) method is used to
judge whether the time series is single-fractal or multifractal,
so as to accurately select features for recognition. Based on
the “Zhiwei Data” platform, this study examined the global
influence of the “plastic laver” network rumor every hour as
a trend indicator for analysis. ,e event started at 00 : 00 on
February 19, 2017, and ended at 23 : 00 on March 8, 2017,
providing a total of 433 data points. ,e spreading situation
for “plastic laver” network rumor is shown in Figure 1.

A partition function method can be used to determine
whether a stochastic process is a single-fractal or multifractal
process. ,e specific steps of the determination are [44] as
follows:

Step 1: for a time series x(t)t ∈ [0, T]{ }, the interval
[0, T] is divided into several disjoint subintervals. λ is
the maximum value of the ratio between the length of
the subinterval and that of the total interval. M is the
sum of the object data over the entire range and is
determined as follows:

M � 
tε[0,T]

x(t). (1)

Step 2: if N(λ, i) is the i-th interval sum of the values,
the average density of the i-th interval can be calculated
as follows:

ε(λ, i) �
N(λ, i)

M
. (2)

Step 3: a statistical moment function is constructed as
follows:

M(λ, q) � 
t

ε(λ, i)
q
. (3)

,e statistical moment function M(λ, q) can show the
size and function of the average density ε(λ, i).

Step 4: if the statistical moment function
M(λ, q)∝ λτ(q), if τ(q) is a partition function or if τ(q)

is a linear function of q, then the time series is a single-
fractal process; if τ(q) is a nonlinear function about q,
then the time series is multifractal.

In the time series of the “plastic laver” network rumor
situation, the total interval is [0,433], and the interdistrict
length is 1–8 years; thus, λ � 1/433, . . . , λ � 8/433, and the
values of q are 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. ,e
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relationship between the statistical moment of the order
M(λ, q) and λ can be determined as follows:

τ(q) � lim
λ⟶0

lnM(λ, q)

ln λ
. (4)

By fitting lnM(λ, q) and ln λ, the slope of the resulting
straight line is τ(q). ,e τ(q) − q relationship is shown in
Table 1.

,e scatter diagram and fitting line are shown in
Figure 2.

It can be seen from the graph that the linear relationship
between the partition function τ(q) and q is very evident.
,e correlation coefficient reaches 99.9%. ,erefore, the
network rumors situation time series is considered as a
single-fractal process.

A nonrumor topic of “Hong Kong-Macao-Zhuhai
Bridge opened to traffic” is used to verify the partition
function; the τ(q) and q scatter plot and fitting line are
shown in Figure 3.

As can be seen from Figure 3, the linear relationship
between the partition function τ(q) and q is also very ev-
ident, and the correlation coefficient is 99.9%. ,us, it is
feasible and reasonable to use a single fractal to identify the
features of network rumors and nonrumors.

3. Materials and Methods

3.1. Empirical Mode Decomposition (EMD). EMD is an
adaptive time-frequency processing method for a time se-
ries. ,is method does not require selection of a basis
function, so it has advantages in processing nonlinear time
series [45]. Using the EMD algorithm, a complex time series
can be decomposed into a finite number of IMFs. ,e
decomposed IMF components contain the local character-
istics of the different time scales of the original time series.
,erefore, EMD decomposition is more conducive to dis-
tinguishing between the characteristics of network rumors
and nonrumors. ,e specific decomposition steps are as
follows [46]:

Step 1: identify the local extremum of the original signal
X(t), connect the maximum value to the upper

envelope, connect the minimum value to the lower
envelope, and obtain the mean sequence m1 according
to the upper and lower envelope.

h1(t) � X(t) − m1(t). (5)

If h1 satisfies the definition of an IMF, h1 can be called an
IMF; otherwise, repeat the above iterative steps.

h2(t) � h1(t) − m2(t). (6)

Repeat this operation until h(k) satisfies the above IMF
component condition; hk(t) � IMF1(t); this is the first IMF
component.
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Figure 1: Spreading situation of “plastic laver” network rumor.

Table 1: ,e τ(q) − q relationship.

q τ(q)

0.0 − 0.8077
0.5 − 0.4239
1.0 0.0
1.5 0.4252
2.0 0.8395
2.5 1.241
3.0 1.632
3.5 2.013
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Figure 2: Relationship between network rumors τ(q) − q.
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Figure 3: Relationship between network nonrumors τ(q) − q.
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hk(t) � hk− 1(t) − mk(t). (7)

Step 2: IMF1 is separated from the original signal. ,e
remaining amount r1(t) is used as a new original signal,
and step 1 is executed cyclically. After the iterative
calculation of n, rn(t) is obtained as shown.When rn(t)

tends to a monotonic function, the decomposition
ends.

r2(t) � r1(t) − IMF2(t),

r3(t) � r2(t) − IMF3(t),

. . .

rn(t) � rn− 1(t) − IMFn(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Step 3: the original signal is decomposed to obtain n
IMF components and one residual quantity rn as
follows:

X(t) � 

n

j�1
IMFj + rn. (9)

In the above, rn represents the average trend of the
decomposition remainder and signal. Each IMF component
corresponds to different characteristic scales, and the
component frequency is gradually distributed from high to
low. Finally, several IMFs can reflect the fluctuation degree
of the original time series on different scales and further
reveal the inherent regularity of the series volatility.

3.2. Correlation Dimension. ,e correlation dimension de-
scribes the nonlinear behavior and complexity of the system.
,e larger the correlation dimension, the more complex the
system. At present, the main method for calculating the
correlation dimension is the Grassberger-Procaccia (G-P)
algorithm [47]. ,e calculation steps are described below.

,e hypothesis x1, x2, x3, . . . , xk  is the time series
obtained for monitoring, where K � 1, 2, 3, . . . , N. A pair of
phase points are determined after reconstructing the phase
space as follows:

Xi � xi, xi+τ , . . . , xi+(m− 1)τ , (10)

Xj � xj, xj+τ , . . . , xj+(m− 1)τ . (11)

,en, the distance between Xi and Xj in the Euclidean
space is rij, which is determined as follows:

rij � |Xi − Xj| (12)

Given the critical distance r, the proportion of point
pairs whose distance is less than rij in all of the point pairs
C(r) is as follows:

C(r) �
1

N
2 

i≠ j

θ r − |Xi − Xj| . (13)

In the formula, N is the total number of phase points,
and θ(x) is the Heaviside function, which is defined as
follows:

θ(x) �
1, x≥ 0,

0, x< 0,
 (14)

where C(r) is a correlation integral, and it characterizes the
probability that the distance rij between two points in the
phase space is less than r; it is used to appropriately adjust
the range of values of r.,e correlation integral isC(r)∝ rD,
and D is the correlation dimension. At this time, the
reconstructed attractor has fractal characteristics. ,e cor-
relation dimension D is determined as follows:

D �
lnC(r)

ln r
. (15)

,erefore, to determine the correlation dimension of a
system, one can draw the double logarithmic curve of
lnC(r) relative to ln r and fit the relatively long section of the
near-linear part of the curve using a least-squares method.
,e slope can then be used to calculate the value of the
correlation dimension of the system. If the slope of the
double logarithmic curve converges to a saturation value as
the embedding dimension m increases, then the saturation
value is the correlation dimension D.

3.3. K-Nearest Neighbor (KNN) Algorithm. ,e KNN algo-
rithm is stable and effective. ,e most significant advantages
of this algorithm are its simple calculations, high accuracy,
and high tolerance for outliers and noise. Its principle is
relatively simple: given a test object to be classified, find the
K objects that are most similar to the object to be classified,
and determine the category of the object to be classified
according to the category of the K objects.

In the KNN algorithm, the value of K has a significant
influence on the experimental results. A small value of K
makes it impossible to observe the characteristics of the
object to be classified; moreover, it is easy to introduce
objects that are irrelevant to the object to be classified, and,
eventually, the classification accuracy will be reduced.

4. Experimental Testing and Result Analysis

4.1. Data Description. To test the performance of the rec-
ognition algorithm based on the platform of “Zhiwei Data”,
60 network rumors (such as the “Spring Festival Express
Shutdown Timetable”) and 60 nonrumors (such as the
“Beijing Chaoyang Hospital Injury Event”) were collected as
the time series constituting the data set for recognizing
network rumors; the per hour “global influence” was used as
the index.,e global influence of the “Zhiwei Data” platform
is based on the social media and network media data of the
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entire network and can describe authoritative indicators of
the spread of a single event on the Internet. ,e data set was
divided into a training set and a test set at a ratio of 4 :1; that
is, the training sample data set comprised 96 samples: 48
rumor situation time series and 48 nonrumor situation time
series, and the testing data set comprised 24 test samples: 12
rumor situation time series and 12 nonrumor situation time
series. ,is study used MATLAB software for analysis.

4.2. Feature Extraction

4.2.1. EMD Decomposition. According to the EMD de-
composition algorithm in Chapter 3, the time series of the
spreading situation of 120 pieces of information was
decomposed. ,e time series of the “plastic laver” network
rumor situation and “Hong Kong-Macao-Zhuhai Bridge
opened to traffic” nonrumor situation time series EMDs are
shown in Figures 4 and 5 , respectively. In the figure,
IMF1–IMF7 are the effect diagrams of the EMD decom-
position of the rumor propagation situation in turn. Each
order of the IMF components contains different charac-
teristic information.

As can be seen from the exploded diagrams, there is a
difference between the frequency components of network
rumors and nonrumors after EMD; the decomposed layers
are not identical, but the effective components of the two are
mainly distributed in several low-order IMF components.

To facilitate follow-up work, the effective IMF compo-
nents must be extracted as feature vectors. ,e cross-
correlation function represents the degree of correlation
between two time series and is used as a criterion for the
correlations between IMF components. ,e propagation
situation after EMD comprises using the cross-correlation
method to screen the decomposed IMF components, cal-
culate the correlation coefficient between the IMF compo-
nents and original time series, and select the IMF component
with more effective information as the principle compo-
nents. ,e value range of the cross-correlation coefficient is
[-1, 1]; the greater the absolute value, the higher the cor-
relation. ,e correlation coefficients between some network
rumors and nonrumors IMF components and the original
time series are shown in Table 2.

As shown, the correlation between the first six orders of
IMF components and the original time series is evident; the
correlation between IMF7 and the original time series is not
large, and thus its analysis is of little significance. ,erefore,
the IMF1–IMF6 components are used as the principle
components for subsequent research.

4.2.2. Calculation of Correlation Dimension. Before re-
solving the correlation dimension in the reconstructed phase
space, the embedding dimension m and embedding delay τ
must be determined. ,is study uses the “C-C” algorithm
and MATLAB to calculate the two parameters. ,e results
from randomly selecting rumors and nonrumors are shown
in Figures 6 and 7 , respectively.

As shown, the algorithm with the optimal embedding
delay time can be determined when the left-side Δs(t) curve

takes the first minimum value. As can be seen from the above
figure, the embedding delay for rumors is τ � 3, and that for
nonrumors is τ � 2. ,e time window width can be de-
termined as when the right-side Scor(t) curve takes the
minimum value; that is, the time window for rumors is
τw � 9, and the time window for nonrumors is τw � 8.
According to the formula τw � τ(m − 1), the embedding
dimension for rumors is m � 4, and the embedding di-
mension for nonrumors is m � 5.

According to the obtained time delay τ and embedding
dimension m, the G-P algorithm introduced in Chapter 3 is
used to verify the time delay and embedding dimension; that
is, as the embedding dimensionm continues to increase, the
correlation dimension no longer changes, and, with some
convergence, the minimum embedding dimensionm can be
determined.

,erefore, relationship diagrams are constructed for
rumors and nonrumors lnC(r) − ln r, and the corre-
sponding correlation dimension is obtained by fitting the
slope of the straight line. ,e results are shown in Figures 8
and 9 .

As shown, as the embedding dimensionm increases, the
correlation dimension tends to converge gradually and does
not change. For the time series of rumors and nonrumors in
the above cases, the correlation dimensions are 1.0366 and
1.2265, respectively. ,e fractal characteristics of the time
series of the rumor and nonrumor spread can be seen based
on the correlation dimension, which is a decimal number.

In the discussion on EMD decomposition, the correla-
tion dimension of the IMF1–IMF6 components was taken as
the feature for recognition. According to the above algo-
rithm, the average values of the principal components for 60
rumors and 60 nonrumors are obtained, as shown in Table 3.

,e line chart is shown in Figure 10.
It can be seen from Table 3 and Figure 10 that there is a

relatively evident difference between the correlation di-
mension for rumors and that for nonrumor. From the linear
trend lines, it can be observed that the correlation dimension
of the rumors decreases with an increase in the IMF order,
indicating that the internal changes of rumors have evident
regularity; the correlation dimension for nonrumors is
relatively stable and has no great fluctuations. Moreover, the
correlation dimension of the rumors is evidently larger than
that of the nonrumors, reflecting that there are more ef-
fective and complex components in the spread of rumors
than those in nonrumors; this is consistent with our con-
jecture based on reality.

4.3. Rumor Recognition Based onKNN. ,rough calculation,
the correlation dimension of the principal components of
each propagation situation is obtained. According to the
recognition model, the correlation dimension for the rumor
and nonrumor situations is used as the feature vector for
training the KNN classification model. A total of 60 rumor
(1) and nonrumor (0) situation pieces of data were collected;
48 groups were randomly selected as training samples, and
the remaining 12 groups were used as test samples. In this
way, 96 sets of training samples and 24 sets of test samples
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Figure 4: Empirical mode decomposition (EMD) exploded view of “plastic laver” network rumor.
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Figure 5: EMD exploded view of “Hong Kong-Macao-Zhuhai Bridge opened to traffic” nonrumor.

Table 2: Correlation coefficients between intrinsic mode function (IMF) components and original time series.

Category IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Rumor
0.0524 0.3837 0.1041 0.1426 0.1465 0.2034 − 0.0177

− 0.0632 0.4740 0.2999 0.3642 0.4553 0.3227 − 0.0169
0.4322 0.3762 0.4585 0.5587 0.1736 0.1168 − 0.0478

Nonrumor
0.2531 0.4964 0.4703 0.3806 0.1335 0.6107 − 0.1901
0.1020 0.4531 0.3708 0.3952 0.3336 0.2901 0.0967

− 0.1111 0.0388 0.3525 0.1834 0.1870 0.2607 0.0759
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were obtained. ,e correlation dimension of the principle
components of each situation’s time series was employed as
the input signal, that is, the respective correlation dimen-
sions of IMF1–IMF6. ,e output signals were rumors and
nonrumors; an output of “1” denoted rumors, whereas “0”
represented nonrumors.

,e process is shown in Figure 11.

4.4. Analysis and Comparison of Experimental Results.
,e classification effect evaluation index is calculated
according to the confusion matrix shown in Table 4.

Accuracy � TP + TN/TP + FP + TN + FN.
Precision � TP/TP + FP.

Recall � TP/TP + FN.
F1 is the harmonic mean of precision and recall, and it is

determined as follows:
F1 � 2 × Precision × Recall/Precision + Recall.

,e larger the value of F1, the better the overall effect of
the rumor recognition classifier.

,rough experiments, the confusion matrix for the re-
sults is determined, as shown in Table 5.

,e accuracy of the rumor recognition based on KNN
was 87.5%, the precision was 84.6%, the recall rate was
91.67%, and F1 was 87.1%.

,e experimental results in this study are compared with
those from existing research on rumor recognition, as shown
in Table 6.
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Figure 6: Rumor C-C algorithm results.
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Figure 7: Nonrumor C-C algorithm results.
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It can be seen from Table 6 that the recognition effect
based on the EMD correlation dimension proposed in this
study is ideal. In the selection of rumor identification and
classification methods, many scholars use support vector
machines and decision trees to identify and classify network
rumors. Based on the features selected in this study, the same
numbers of training samples and test samples were selected,
and the recognition results are shown in Table 7.
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Figure 8: Distribution of rumor correlation integral.
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Figure 9: Distribution of nonrumor correlation integral.

Table 3: Average correlation dimensions of the principal
components.

Category IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Rumor 2.4049 2.0713 1.8860 1.8587 1.5439 1.3260
Nonrumor 1.3023 1.4567 1.5817 1.7313 1.5009 1.2850

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
0

0.5

1

1.5

2

2.5

3

Nonrumor
Rumor

Figure 10: Line graph of correlation dimension of intrinsic mode
function (IMF) components.

Calculate the distance between the 
test object and the training object

Sort distances from smallest to 
largest

Select the smallest distance K points

Determine the frequency of the first 
K point categories

The most common classification 
categories as predicted

Figure 11: K-nearest neighbor (KNN) classification process.

Table 4: Confusion matrix.

Prediction
1 0

Actual 1 TP FN
0 FP TN

,e confusion matrix is used to calculate the evaluation indexes used in the
classification results.
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According to Table 7, the recognition rate of this method
is slightly higher when the data samples are identical.
,erefore, it can be shown that a feature extraction method
based on a nonlinear theory combined with the KNN
classifier can effectively identify rumors, thereby furthering
research on rumor control and governance.

5. Conclusions

In this study, a rumor recognition model is established based
on an EMD correlation dimension and KNN approach. It
uses the time series of a rumor situation based on a “global
influence” index and fractal theory, aiming at the nonlinear
characteristics of a rumor spreading process. ,e recogni-
tion model does not rely on the static text and complex
propagation process of rumors but only extracts fractal
features from the propagation situation for rumors
recognition.

To judge whether the time series of a rumor situation is a
uniform fractal process, an example is verified according to a
partition function method. After fitting, the linear

relationship between τ(q) and q is evident; thus, it is more
reasonable to use a single fractal to extract the features of
rumor and nonrumor spreading situations.

To further reveal the internal regularity of the time series
fluctuations and study the detailed characteristics of the
original signal more accurately, EMD is conducted for the
rumor propagation situation before identification, so as to
obtain each IMF component containing effective feature
information. A cross-correlation method is used to extract
the principle components, laying a good foundation for the
later research of the correlation dimension.

Next, the phase space of the rumor situation is recon-
structed, and the C-C algorithm is used to obtain the time
delay and embedding dimension.,en, the G-P algorithm is
used to calculate the correlation dimensions of the principal
components IMF1–IMF6 as the characteristic parameters.
,e correlation dimension of an IMF component can more
comprehensively highlight the internal information corre-
sponding to rumors and nonrumors, and the discrimination
becomes evident. ,e KNN model is introduced to identify
the rumors.

,e principal components are taken as the input to the
KNN model, and rumors and nonrumors are taken as the
outputs of the model. ,e results show that the correlation
dimension and its detailed information regarding the situ-
ation, including the change rules, can better reflect the
characteristic information. Combined with the KNN model,
it can effectively identify and classify a rumor situation, and
the recognition rate can reach 87.5%. ,e experiment shows

Table 5: Confusion matrix of rumor results.

Prediction
1 0

Actual 1 11 1
0 2 10

Table 6: Comparison of experimental results.

Research work Feature Classification method
Evaluation index

Accuracy (%) F1
Castill et al. [1] Content, user, propagation Decision tree 86 84.9%
Qazvinian et al. [2] Content, user Support vector machine (SVM) 89.7%
Yang et al. [3] Content, user, propagation Decision tree 78.7
Sun et al. [4] Content, user SVM 70.4%
Zhang et al. [5] Content, user SVM 74.4%

Liang et al. [6]
User SVM 76.9%
User Decision tree 85.9%
User Naive Bayesian model 77.8%

Kwon et al. [8]
Propagation SVM 87.3 86.7%
Propagation Decision tree 82.1 82.2%
Propagation Naive Bayesian model 89.7 87.8%

Yuan et al. [33] Propagation SVM 85 84%
Wu et al. [17] Content, user, propagation Ensemble learning 80
Liu et al. [20] User Information dissemination model 81.3%
Ma et al. [21] Content Recurrent neural network (RNN) 88.1 89.8%
Liu et al. [23] User, propagation Long short-term memory (LSTM) 94.8 94.6%
Srinivasan et al. [26] Content Convolutional neural network (CNN) 88 92%
,is study ,e fractal characteristics of propagation K-nearest neighbor (KNN) 87.5 87.1%

Table 7: KNN, decision tree, and SVM experimental results
comparison.

Methods Recognition rate (%)
KNN 87.5
Decision tree 83.3
SVM 66.7
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that this method is effective in classification and has certain
advantages in rumor recognition, thereby providing a new
method for rumor recognition.
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