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)e Cucker and Smale model is a well-known flocking model that describes the emergence of flocks based on alignment. )e first
part focuses on investigating this model, including the effect of time delay and the presence of a leader. Furthermore, the control
function is inserted into the dynamics of a leader to drive a group of agents to target. In the second part of this work, leadership-
based optimal control is investigated.Moreover, the existence of the first-order optimality conditions for a delayed optimal control
problem is discussed. Furthermore, the Runge–Kutta discretization method and the nonlinear conjugate gradient method are
employed to solve the discrete optimality system. Finally, the capacity of the proposed control approach to drive a group of agents
to reach the desired places or track the trajectory is demonstrated by numerical experiment results.

1. Introduction

Individual behaviors influence the dynamics of social systems.
Studying the behavior of interacting individuals within a
group of animals or a community of people is a new
mathematical research field. )e emergence of a collective
level is one interesting issue raised by this type of study, with
many natural systems showing collective phenomena, for
instance, a flock of birds or a group of fish having coordinated
movements, cells, chemical compounds, organisms or crys-
tals, vehicular traffic, crowd dynamics, market economies,
opinion formations, distributions of wealth, networks, and
artificial intelligence (see, e.g., [1–6]). )ese collective be-
haviors are described as pattern configurations. In particular,
collective action results from a superimposition of interac-
tions between every possible pair of all agents. In general, the
strength of such interaction forces depends on the amount of
collaborative distance between agents. For example, birds
orient with their nearest one in the group, and people more

often agree with others who already conform to their beliefs.
Nowadays, the application of these collective features is
enormous and has a wide range. It appears in several engi-
neering applications such as those using collective properties
to perform complex tasks or in swarm robotics [7]. In ad-
dition, crowd models are applied in civil engineering to plan
evacuation strategies in buildings (see, e.g., [8, 9]).

In recent years, researchers have been interested in
studying collective phenomena, starting with using a few
rules of interaction among agents to predict and explain
unexpected phenomena or describe the emergence of pat-
tern structure. Despite many works studying the emergence
of consensus (see, e.g., [4, 10, 11]), investigating the en-
forcement and stabilization of pattern formation including
the presence of noise or communication with time delays is
especially interesting. Communication delays result from
traffic congestion or finite speeds of transmission and
spread. For example, the flocking model has a processing
delay when analyzing information about the location and
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velocity of neighboring agents. )is fact has motivated an
increased interest in studying the consensus problem of a
flocking system, including the effect of time delays. Pio-
neering work on this issue was done in [12–16]. Additionally,
when the system’s behavior does not realize the desired
result, control is essential to force the system to attain given
objectives. )is problem is related to the control of a self-
organized system.Most results focus on the controllability of
systems in which the topology of a group communication
network is fully connected. In this case, all members of the
group are regulated by the same distributed control law.
)ese model settings, however, are limited when dealing
with large networks. In particular, efficient control should
apply only to a few group members, and this control strategy
is known as “sparsity” in the mathematical literature. From
the perspective of controllability, the hierarchical leadership
concept provides the aggregation states of the system and
some forms of group patterns for longtime behavior. )e
literature on control problems in these systems has recently
been documented in [17–23].

)e main contribution is divided into two parts. )e
first part discusses the Cucker and Smale (CS) flocking
model, where the position and velocity of agents include
the effect of time delay. Furthermore, primarily based on
this model, a leader is added into the system to implement
control functions. )is control action can be applied to
other agents through the mechanism of interaction force.
)e objective of the control strategy in this construction is
to drive the evolution of flocking to track the desired
trajectory. )is control through leadership approach is
constructed in the framework of optimal control problem
mainly discussed in the second part of this work. In the
second part, firstly, the formulation of optimal control
problems with time delay is provided. )e objective
function includes three tracking terms and the cost of
control function.)e first and second terms account for the
tracking error of the position of the leader and the desired
target position at the final time and follow the desired path,
respectively. )e last tracking term is a measure of the
distance between the leader and the other agents of the
flock. Further, the theoretical and numerical results of
optimization problems constrained with delayed CS sys-
tems are investigated. )e resulting optimal control is
obtained by solving an optimality system composed of the
CS model’s delayed dynamical system, associated adjoint
equations, and an optimality condition. Additionally, the
aspect of numerical solution and implementation is dis-
cussed. An efficient conjugate gradient optimization pro-
cedure evaluates optimal control [24, 25]. )e gradient of
the reduced cost functional is computed using the adjoint
framework by solving the forward and backward delayed
CS flocking equations that appear in the optimality system.
)ese equations are discretized using an accurate high-
order Runge–Kutta scheme (see more details in [26]).

)e subsequent sections of our work are organized as
follows. In Section 2, the description of the flocking model is
provided.)is model is based on the Cucker and Smale model,
which takes time delays and the presence of a leader into
account. Additionally, the existence of solutions and stability

for these systems are discussed. Furthermore, numerical
simulations are demonstrated to examine the characteristic
properties of our constructed model. Section 3 presents the
formulation of optimal control of the Cucker and Smale system
with time delays. )e theoretical issues regarding the existence
of first-order necessary optimality systems of delayed optimal
control problems are discussed. Section 4 is comprised of two
parts. In the first part, the control problem with time delays is
discretized by using the Runge–Kutta scheme. )en, using the
first-discretize-then-optimize strategy, a discrete gradient for-
mula for the optimization problem is obtained.)e second part
of Section 4 contains numerical experiments demonstrating the
validity and effectiveness of the proposed control strategy. )e
conclusion is provided in the last section to complete this work.

2. Cucker and Smale Flocking Model with Time
Delays and Leadership

In this section, we investigate the flocking model, including
the effect of time delays and the presence of a leader. In this
work, we focus on the Cucker and Smale (CS) model. )is
model is one of the well-known flocking models that involve
the alignment of the agent; that is, each agent changes its
speed in response to an averaging weight of its relative speed
to the other agents, which can be seen in [5]. Moreover, we
investigate the effect of time delays, which have influenced to
converge to state transition and pattern structure. In our
case, we consider constant delay function as proposed in
[27]. In this context, delays are defined as a lag in the
processing of information. To illustrate this phenomenon,
consider a situation involving two agents in which the
second agent attempts to follow the first but receives in-
formation from the first agent after some time. As a result, it
requires time to elaborate on its response. We define τ as a
positive constant time delay. Additionally, a leader is in-
corporated into the CS system to facilitate developing a
control strategy for guiding the flock dynamical system
toward a target (described in the following section). )e CS
flocking system with one leader and N followers including
time delay is presented as follows:

_x0(t) � v0(t),

_v0(t) �
1

N + 1


N

j�1
a0j(t − τ) vj(t − τ) − v0(t)  ,

_xb(t) � vb(t),

_vb(t) �
1

N + 1


N

j�1
abj(t − τ) vj(t − τ) − vb(t)   + F

0
b,

(1)

for b � 1, . . . , N, with given initial conditions

xi(t) � x
0
i (t),

vi(t) � v
0
i (t), for i � 0, . . . , N and t ∈ [−τ, 0],

(2)
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where (xi(t), vi(t)) ∈ Rd × Rd, d≥ 1, are position and ve-
locity of the ith agent at time t. )e initial conditions x0

i (t)

and v0i (t) are given continuous functions. )e connectivity
function aij measures the interaction strength between
agents depending on the distance between ith and jth agents.
)e connectivity function is assumed to be positive, con-
tinuous, bounded, and nonincreasing function.

0< aij(t)≤ 1,

∀t ∈ [−τ, +∞), for i � 0, . . . , N and j � 1, . . . , N.
(3)

In this work, we consider the connectivity function with
the following form:

abj(t) ≔ φ xi(t) − xj(t)
�����

�����  �
K

1 + xb(t) − xj(t)
�����

�����
2

 
σ ,

(4)

where K> 0, σ ≥ 0, and the notation ‖·‖ denotes Euclidean
norm in Rn. )e force F0

b governs the action of the leader
with time delay. )e leader force can take many forms, such
as using short-range repulsion and long-range attraction
described as Morse potential function in [18] or considering
hierarchical leadership structure in [16]. In this work, the
leader’s action takes the following form:

F
0
b � c v0(t − τ) − vb(t)( , (5)

where the parameter c> 0 corresponds to the strength of the
interaction force taken by the leader.

2.1. Stability of the Cucker and SmaleModel with TimeDelays.
)e solution of the CS flocking system is influenced by the
parameters K and σ. In particular, when σ < (1/2), the CS
model without time delays exhibits unconditional flocking
for all initial configurations, in which the velocities vi ap-
proach asymptotically to the common limit velocity v∗. On
the other hand, the flocking is conditional with σ ≥ (1/2), i.e.,
the asymptotic behavior of the system is dependent on the
value of K and the initial configuration, as detailed in ref-
erences [5, 14, 27]. To analyze the solution and stability of
system (1), we consider the dispersion and disagreement as
defined in [16, 19].

Definition 1 (dispersion and disagreement). Given a solu-
tion (xi(t), vi(t)) ∈ Rd × Rd of system (1), for i � 0, . . . , N,
we define dispersion and disagreement as

X(t) �
1

2(N + 1)
2 

N

i,j�1
xi(t) − xj(t)

�����

�����⎛⎝ ⎞⎠,

V(t) �
1

2(N + 1)
2 

N

i,j�1
vi(t) − vj(t)

�����

�����⎛⎝ ⎞⎠.

(6)

)en, we say that the solution tends to consensus if

sup
t>0

X(t)< +∞,

lim
t⟶+∞

V(t)
(7)

Next, the numerical simulation results of the CS
system with time delays, including the presence of a
leader, are demonstrated. Figure 1 depicts the numerical
results of system (1) in one dimension, while Figures 2
and 3 illustrate results in two dimensions. For all ex-
periments, we consider one leader and N � 9 followers.
)e corresponding parameters in connectivity function
are chosen as K � 2 and σ � (1/4). )e leader interaction
strength parameter is given as c � 10. Consider 1D case,
and Figure 1(a) shows the trajectories of agents with no
time delay, whereas the motion of flocking, including the
effect of time delay (τ � 5), is presented in Figures 1(b)–
1(d). It is observed that due to time delay, agents require
more time to adjust their alignments and follow the
group.

We also consider one leader and N � 9 followers in the
experiments for 2D cases. )e parameters for the 2D ex-
periments are the same as those for the 1D studies. Agents
begin with an initial configuration that places them all in
random positions with random velocities, with a leader
outside the group. After t � 2, each agent begins to adapt and
organize its movement to follow the leader. Figure 3 shows
that for the longtime behavior t⟶∞, the value V(t) tends
to be constant at zero and the dispersion X(t) is becoming
constant. It explains that the consensus is reached after some
time. )e pattern configuration is formed, and each agent’s
velocity is synchronized and moves together at the same
speed.

3. Optimal Control of Cucker and Smale
Model with Time Delays

)is section discusses the optimal control problem con-
strained with the delayed dynamical system of the CS model,
including a leader. We note that this control problem is the
leadership-based control strategy which is discussed in [18]
for the refined flocking model. In addition, the theoretical
results corresponding to optimal control problems with
delays are investigated. In particular, the existence and
characterization properties of solutions and optimality
conditions are provided. In the following, we consider the
optimal control problem governed by the delayed CS system
and the presence of a leader presented as

min
x,u

J(x, u) �
1
2

x0(T) − xdes(T)
����

����
2

+
η
2


T

0
x0(t) − xdes(t)

����
����
2dt

+
μ
2



N

b�1


T

0
x0(t) − xb(t)

����
����
4dt +

]
2


T

0
‖u(t)‖

2dt,

(8)

together with the delayed differential constraints given by
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_x0(t) � v0(t),

_v0(t) �
1

N + 1


N

j�1
a0j(t − τ) vj(t − τ) − v0(t)   + u(t),

_xb(t) � vb(t),

_vb(t) �
1

N + 1


N

j�1
abj(t − τ) vj(t − τ) − vb(t)  

+ c v0(t − τ) − vb(t)( ,

(9)

for b � 1, . . . , N, along with their corresponding initial
conditions. )e state of the system is represented by the
notation

x(t) � x0(t), . . . , xN(t), v0(t), . . . , vN(t)(  ∈ R2(N+1)d
.

(10)
)e control function is denoted by u ∈ L2((0, T);Rd).

)e parameters η, μ, and ] in the cost functional are positive
constants. )e first term in objective functional aims to
minimize the terminal position of the leader and the given
target.)e second term is related to track the desired path by
the leader agent. Also, the distance between the leader agent
and others is measured in the third term. )e cost of control
is minimized in the last term.
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Figure 1: Simulation of the CSmodel with one leader and nine followers. (a) shows the trajectories of agents where the motion has no delay.
(b)–(d) present the trajectories of agents where the movement of flocks have an effect of time delay (τ � 5) in time t � [0, 20], t � [0, 100],
and t � [0, 200], respectively. Note that the dashed line represents the trajectory of the leader, while the blue line denotes the trajectory of the
follower. (a) Without time delay for t ∈ [0, 20]. (b) With delay (τ � 5) for t ∈ [0, 20]. (c) With delay (τ � 5) for t ∈ [0, 100]. (d) With delay
(τ � 5) for t ∈ [0, 200].
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To investigate the solution of our optimal control
problems (8), we consider the optimal control problem that
state and control variables have an effect of time delays, that
is, state variable x(t) and control variable u(t) include time
delays τx ≥ 0 and τu ≥ 0, respectively. )e theoretical results
of the delayed optimal control problems are investigated in
[28, 29]. )e general framework of an optimal control
problem with delay in state and control is presented as
follows:

min J(x, u) � ϕ(x(T)),

subject to

_x(t) � f t, x(t), x t −τx( u(t), u t − τu( ( ,

x(t) � x0(t), t ∈ −τx, 0 ,

u(t) � u0(t), t ∈ −τu, 0 .

(11)

We assume that x(t) ∈W1,∞([0, T],Rnx) and
u(t) ∈ L∞([0, T],Rnc). )e function ϕ: Rnx⟶ R repre-
sents the objective function and is assumed to be contin-
uously differentiable. f: [0, T] × Rnx × Rnx × Rnc × Rnc

⟶ Rnx represents the dynamics of the model and is as-
sumed to be continuously differentiable. )e initial condi-
tions x0: [−τx, 0]⟶ Rnx and u0: [−τu, 0]⟶ Rnc are
continuous. We note that a solution of the dynamical system
in (11) is uniquely determined for a given control u and the
initial conditions denoted by x � x(u); moreover, u↦ x(u)

is a differentiable map. For all admissible u, we aim to find a
control u∗ such that

J x u∗( , u∗( ≤ J(x(u), u). (12)

Furthermore, to obtain the necessary optimality con-
ditions for delayed optimal control (11), we introduce two
additional variables y ∈ Rnx and w ∈ Rnc for delayed state
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Figure 2: )e simulation of the leadership of CS model with time delay τ � 2 for one leader and nine followers in two dimensions.
Parameters in the connectivity function are chosen as K � 2, σ � (1/4) and leader interaction force is given as c � 10. (a)–(c) present the
positions of the agents and their velocities at time t � 0, t � 20, t � 50, respectively. )e circles represent the positions of each agent and the
shaded circle denotes the leader. (d) shows trajectories of agents in t ∈ [0, 50]. (a) Initial configuration. (b) t � 20. (c) t � 50. (d) Trajectories
of agents.
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and control variables, respectively, where the functions y and
w are defined as follows:

y(t) � x t − τx( ,

w(t) � u t − τu( .
(13)

)e first-order optimality system can be obtained by
considering the Hamiltonian function that is given by

H(t, x, y, u,w, p) ≔ p⊤f(t, x, y, u,w), (14)

where p ∈ Rnx.

Theorem 1. Let (x∗,u∗) be locally optimal solution to op-
timal control problem (11). Assume that there exists an open
set Ω ⊂ Rnx × Rnc such that the neighborhood Bε(x∗, u∗)
with a small radius ϵ> 0 of (x∗,u∗) is a subset of Ω for every
t ∈ [0, T]. We assume that ∇xf and ∇uf are Lipschitz
continuous in Ω. Moreover ∇xJ is Lipschitz continuous in the
neighborhood Bε(x∗(T)).  en, there exists an adjoint
function p∗ ∈W1,∞([0, T],Rnx) that satisfies the first-order
optimality conditions at (x∗, p∗,u∗), for a.e. t ∈ [0, T] such
that

_x(t) � f(t, x(t), y, u(t),w(t)),

x(t) � x0(t), for t ∈ −τx, 0 ,

_p(t) � −∇xH(t) − χ 0,T−τx[ ](t)∇yH t + τx( ,

p(T) � ∇xϕ(x(T)),

∇uH(t) + χ 0,T−τx[ ](t)∇wH t + τx(  � 0,

(15)

where ∇xH(t), ∇yH(t), ∇uH(t), and ∇wH(t) refer to the
evaluation of the partial derivativesH with respect to x, y,u,
and w, respectively.  e function χ is defined as

χ[a,b](t) �
1, if t ∈ [a, b],

0, otherwise.
 (16)

To investigate the solution of our problem (10), we
formulate our optimal control in form (11) by introducing
the following equation:

_
x
∧
(t) �

η
2

x0(t) − xdes(t)
����

����
2

+
μ
2



N

b�1
x0(t) − xb(t)

����
����
4

+
]
2
‖u(t)‖

2
,

x
∧
(0) � 0.

(17)

)en, the problem of optimal control (10) can be
transformed into the following problem:

min J(x, u)

subject to

_x0(t) � v0(t),

_v0(t) �
1

N + 1

N

j�1
a0j(t − τ) vj(t − τ) − v0(t)   + u(t),

_xb(t) � vb(t),

_vb(t) �
1

N + 1


N

j�1
abj(t − τ) vj(t − τ) − vb(t)  

+ c v0(t − τ) − vb(t)( ,

(18)

for b � 1, . . . , N and

_
x
∧
(t) �

η
2

x0(t) − xdes(t)
����

����
2

+
μ
2



N

b�1
x0(t) − xb(t)

����
����
4

+
]
2
‖u(t)‖

2
,

(19)

together with corresponding initial conditions, and the
compact form can be rewritten as follows:
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Figure 3: )e dispersion and disagreement of the leadership of CS model with time delay τ � 2 for t ∈ [0, 50]. (a) X(t). (b) V(t).
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min J(x, u) �
1
2

x0(T) − xdes(T)
����

����
2
2 + x
∧
(T)

subject to x
.

(t) � F(t, x, u).

(20)

Now, the state variable is

x(t) � x0(t), x1(t), . . . , xN(t), v0(t), v1(t), . . . , vN(t), x
∧
(t) 

T

,

(21)

and F(x, u) represents the dynamics of the transformed
delayed CS systems.

Further, we discuss the first-order optimality conditions
for optimal control problem (20). For this purpose, the
delayed system is transformed to nondelayed system by
using variables

si(t) � xi(t − τ),

zi(t) � vi(t − τ), for i � 0, 1, . . . , N,
(22)

and we denote y(t) � (s0(t), s1(t), . . . , sN(t), z0(t), z1
(t), . . . , zN(t))⊤.

)e Hamiltonian function for system (20) is presented as

H(t, x, y, u, p) � p⊤F(t, x, y, u), (23)

where p(t) � (px0
(t), pxb

(t), pv0
(t), pvb

(t), p
x
∧(t))⊤ ∈ Rnx,

nx � 2(N + 1)d + 1.

Assumption 1. )ere exist Lagrange multipliers
p ∈W1,∞([0, T],Rnx) corresponding to the optimization
constraint equation of problem (20). Moreover, the adjoint p
satisfies the following equation:

_p(t) � − ∇xF(t)( 
⊤p(t) − χ[0,T−τ](t) ∇yF(t + τ) 

⊤
p(t + τ),

p(T) � ∇xϕ(x(T)).

(24)

)erefore, a solution of (20) can be characterized by the
first-order optimality system as presented in the following:

_x(t) � F(t, x, u),

x(t) � x0(t) for t ∈ [−τ, 0],

_p(t) � − ∇xF(t)( 
⊤p(t) − χ[0,T−τ](t) ∇yF(t + τ) 

⊤
p(t + τ),

p(T) � ∇xϕ(x(T)).

(25)

In addition, the corresponding gradient can be expressed
as

∇uJ(u) � − ∇uF(t)( 
⊤p(t). (26)

In particular, the explicit formulations of adjoint
equations (20) can be expressed as follows:

_px0
(t) � −η〈p

x
∧(t), x0(t) − xdes(t)( 〉 − 2μ〈p

x
∧(t), 

N

b�1
x0(t) − xb(t)( 

3〉

+ χ t0 ,T−τ[ ](t)
1

N + 1
 〈pv0

(t + τ), 
N

j�1
a0j
′ (t) vj(t) − v0(t + τ) 〉,

_pv0
(t) � −px0

(t) +
1

N + 1


N

j�1
a0j(t − τ)⎡⎢⎢⎣ ⎤⎥⎥⎦pv0

(t) − cχ t0 ,T−τ[ ](t) 
N

b�1
pvb

(t + τ),

_pxb
(t) � 2μ〈p

x
∧(t), x0(t) − xb(t)( 

3〉

− χ t0 ,T−τ[ ](t)
1

N + 1
〈pv0

(t + τ), a0b
′ (t) vb(t) − v0(t + τ)( 〉

+ χ t0 ,T−τ[ ](t)
1

N + 1
〈pv0

(t + τ), 
N

j�1
abj
′ (t) vj(t) − vb(t + τ) 〉,

_pvb
(t) � −pxb

(t) +
1

N + 1


N

j≠b
abj(t − τ)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦pvb

(t) − cpvb
(t) − χ t0 ,T−τ[ ](t)

1
N + 1

 a0b(t)pvb
(t + τ),

_p
x
∧(t) � 0,

(27)
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with transversality condition

pxb
(T) � x0(T) − xdes(T),

pxb
(T) � pvb

(T) � pv0
(T) � 0,

p
x
∧(T) � 1.

(28)

)e numerical solution of problems (20) representing as
the considered optimality systems (25) will be shown and
discussed in the next section.

4. Numerical and Implementation Aspects of
Delayed Control Problems

4.1. First-Discretize- en-Optimize Strategy and Discrete
Optimality Conditions. )e discretization of the reduced
gradient is a critical step in the numerical method for solving
optimal control problems. To obtain an accurate dis-
cretization for the reduced gradient, we consider the first-
discretize-then-optimize strategy. To carry out this strategy,
one can follow the procedures outlined below. )e cost
functional and corresponding differential constraints rep-
resenting the optimal control problem are discretized in the
first step using the Runge–Kutta method, discussed in detail
in [26]. Second, the discrete Lagrangian function corre-
sponding to the discrete optimal control problem must be
constructed. )e final step is to obtain the first-order op-
timality system for the discretized problem.

For the discretization of optimal control problem (20),
the Runge–Kutta scheme is employed on a uniform mesh in
the time intervals (0, T) such that the step-sized h is defined
as

h �
T

n
, (29)

with the total number of discrete time intervals, n. It is
important to match the uniform step size h> 0 with positive
delay τ; that is, we choose any integer fraction of h to refine

the discretization grid. For this task, for any step size h> 0,
there exist positive integers n, mτ ∈ N satisfying

τ � mτh,

T � nh.
(30)

By this setting, we denote the value of x(t) at the discrete
time tk by

xk � x tk( ,

tk � kh, for k � 0, . . . , n − 1.
(31)

)erefore, the discretization of the s-stage Runge–Kutta
scheme setting for optimal control problem (20) becomes

min
x,u

J xk, uk(  �
1
2

x0(T) − xdes(T)
����

����
2
2 + x
∧
(T),

subject to

xk+1 � xk + h 
s

i�1
biF tk, xk, xk−mτ

,ψki, uki ,

x−k � x0(−kh), k � 0, . . . , mτ ,

ψki � xk + h 
s

j�1
aijF tk, xk, xk−mτ

,ψkj, ukj ,

(32)

for k � 0, . . . , n − 1 and 1≤ i, j≤ s. Note that the control
uk ∈ Rnc×s denotes the s stages of the RK discrete control
function at the stage k, which can be written in the following
form:

uk � uk1, uk2, . . . , uks( . (33)

We remark that the order of a Runge–Kutta dis-
cretization for optimal control problem depends on coef-
ficients aij and bi (see more details in [26]).

)e discrete optimality system that corresponds to (32) is
expressed as the following equations:

xk+1 � xk + h 

s

i�1
biF tk, xk, xk−mτ

,ψki, uki ,

x−k � x0(−kh),

ψki � xk + h 
s

j�1
aijF tk, xk, xk−mτ

,ψkj, ukj ,

Pk � Pk+1 + 
s

i�1
biζki,

Pn � −∇xϕ xn( ,

ζki � ∇xF tk, xk, xk− mτ
,ψkj, ukj  

⊤
ψk+1 + 

s

j�1

bjaij

bi

ζkj
⎛⎝ ⎞⎠

+ χ 0,T−mτ[ ](k) ∇yF tk+mτ
, xk+mτ

, xk,ψkj+mτ
, ukj+mτ

  
⊤
ψk+1+mτ

 

+ χ 0,T−mτ[ ](k) ∇yF tk+mτ
, xk+mτ

, xk,ψkj+mτ
, ukj+mτ

  
⊤



s

j�1

bjaij

bi

ζkj+mτ
⎛⎝ ⎞⎠.

(34)
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Further, the gradient is in the following form:

∇uki
J(u) � − ∇uF ψki,uki( ( 

⊤
Pk+1 + 

s

j�1

bjaij

bi

ζkj
⎛⎝ ⎞⎠, (35)

for 1≤ i, j≤ s, and 0≤ k≤ n − 1.
To solve optimization problem (32), the nonlinear

conjugate gradient (NCG) strategy with the Hager and
Zhang scheme [24, 25] is implemented. First, we use the
following algorithm to compute the gradient specified in
First, we use the following algorithm to compute the gra-
dient specified in (35).

Following that, we apply the gradient derived from
Algorithm 1 to the NCG scheme defined in Algorithm 2.

4.2. Numerical Results. )is section presents the numerical
results of our flocking models. )ese results demonstrate the
control performance of our leader-based control strategy.
)e test is divided into two parts as follows:

(i) Test I: reach the desired target point.
(ii) Test II: follow the desired path.

In our experiments, we investigate problem (20) in two
dimensions by considering a system composed of nine agents
and one leader. As a result, the state variables’ total nx � 20,
while the control variables’ total nc � 1. In numerical test I, we
focus on controlling the leader agent to reach the goal position
at the final time. )e purpose of numerical test II is to force
the flocks to follow the desired trajectories. We provide two

examples of the desired trajectory in these tests: the linear and
circular paths. We use the same initial conditions in all three
examples, where agents’ positions are distributed, and their
initial velocities are random. Additionally, the initial position
of the leader is set to x0 � (0, 0).

In numerical test I, the goal position is given as xdes �

(5, 5) and the end time is set to T � 10. )e interaction force
parameters are K � 2, σ � 0.25 and the strength of leader
interaction force is c � 10. )e objective of this test is to
force the system to reach the desired target at the final time;
as a consequence, the corresponding parameters in objective
functional are μ � 0.1, ] � 1, and η � 0. As illustrated in
Figure 4, the leader is capable of reaching the desired lo-
cation and leading the flock there.

In numerical test II, the corresponding parameters and
initial data are chosen similarly to those in the numerical test
I, except that η � 10 is used to keep the leader agent tracking
the desired trajectories. We illustrate two scenarios using
two distinct tracking trajectories. )e results of the first
example are depicted in Figure 5. )e plot of snapshots for
ten agents traveling along the specified linear path is shown
in Figure 5. Figures 5(a)–5(e) illustrate the solutions to
optimal control problems at various time points. As illus-
trated in Figure 5(f ), the leader attempts to move in the
direction of a given trajectory while the group of agents
follows the leader. In the last example, the desired path is
given as a circle. As shown in Figure 6, the leader agent
tracks the path, and the other agents follow the leader. It can
be observed from three examples that agents keep some
distance from the leader because time delay creates some

Input u;
(1) )e initial conditions are provided and then solve the forward the discrete CS model;
(2) Compute the terminal condition and solve the discrete adjoint equation in (34);
(3) Evaluate the gradient ∇uJ(u) using (35);

ALGORITHM 1: Evaluation of the gradient at u.

Input: u0 index k � 0, maximum kmax, tolerance tol> 0.
While (k< kmax and ‖∇J(uk)‖> tol) do
(1) Obtain xk from step 1 in Algorithm 1 with uk;
(2) Get Pk from step 1 in Algorithm 1 with (xk, uk);
(3) Evaluate the gradient ∇uJ(uk) from step 1 in Algorithm 1;
(4) Compute αk by using backtracking line search scheme with Armijo’s condition [30];
(5) Compute βk by using Hager and Zhang search direction formula [24];
(6) Update uk+1 � uk + αkβk;
(7) k � k + 1
End while

ALGORITHM 2: NCG with Hager and Zhang scheme.
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Figure 4:)emovement of agents reaching final target position governed by leadership of CSmodel with time delay τ � 2 for t ∈ [0, 10]. (a)
Initial configuration. (b) t � 1. (c) t � 2. (d) t � 5. (e) t � 10. (f ) t ∈ [0, 10].
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Figure 5: )e movement of agents following desired linear path. Time delay is given by τ � 2 for t ∈ [0, 10]. (a) Initial configuration. (b)
t � 1. (c) t � 2. (d) t � 5. (e) t � 10. (f ) t ∈ [0, 10].
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Figure 6: )e movement of agents tracking the desired circular trajectory governed by leadership of delayed CS mode. Time delay is given
by τ � 2 for t ∈ [0, 10]. (a) Initial configuration. (b) t � 1. (c) t � 2. (d) t � 5. (e) t � 10. (f ) t ∈ [0, 10].
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absence of leader position. It would take some time for the
group to respond to this emotion and attempt to follow the
leader; however, the group eventually achieves it.

5. Conclusion

)eCucker and Smale flockingmodel, including the effect of
time delays and the presence of a leader, was studied. A
control-based leadership technique was investigated for this
model. An optimal control problem was formulated, and the
corresponding discretization of an optimal problem was
solved using an accurate RK method such that accurate
gradients of the reduced objectives can be guaranteed. )e
nonlinear conjugate gradient scheme was implemented to
compute the gradients. )e results of the numerical ex-
periment show that the proposed control approach is
practical. From a modeling point of view, this flocking
system could be enhanced by including the effects of at-
traction and repulsion and alignment with the vision cone
and delay. In addition, the delay in control function would
be considered a part of the optimal control problem.
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