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+e study of water surface profiles is beneficial to various applications in water resources management. In this study, two artificial
intelligence (AI) models named the artificial neural network (ANN) and genetic programming (GP) were employed to estimate
the length of six steady GVF profiles for the first time. +e AI models were trained using a database consisting of 5154 di-
mensionless cases. A comparison was carried out to assess the performances of the AI techniques for estimating lengths of 330
GVF profiles in bothmild and steep slopes in trapezoidal channels.+e corresponding GVF lengths were also calculated by 1-step,
3-step, and 5-step direct step methods for comparison purposes. Based on six metrics used for the comparative analysis, GP and
the ANN improve five out of six metrics computed by the 1-step direct step method for both mild and steep slopes. Moreover, GP
enhanced GVF lengths estimated by the 3-step direct step method based on three out of six accuracy indices when the channel
slope is higher and lower than the critical slope. Additionally, the performances of the AI techniques were also investigated
depending on comparing the water depth of each case and the corresponding normal and critical grade lines. Furthermore, the
results show that the more the number of subreaches considered in the direct method, the better the results will be achieved with
the compensation of much more computational efforts. +e achieved improvements can be used in further studies to improve
modeling water surface profiles in channel networks and hydraulic structure designs.

1. Introduction

Gradually varied flow (GVF) is a nonuniform flow in natural
and man-made canals. +e study of GVF is crucial to water
resources management as it may not only be categorized as
one of the most common flow conditions in an open channel
but also play a key role in various hydraulic projects. Some
examples of the occurrence of GVF include flow through a
change in channel bottom slope, canal constrictions and
transitions, a variation of channel geometries, flow under the
infection of hydraulic structures, and flow from a large
reservoir to a canal. In such situations, flow variables, i.e.,
water depth and flow velocity, vary gradually in each cross-
section along a channel.

+e governing equation for computing GVF profiles in
prismatic canals is shown in equation (1). It is basically a
combination of energy (or momentum) equation and a

resistance equation.+e former presents the spatial variation
of water depth in GVF profiles, while the latter relates
friction slope (Sf) with flow and channel geometries of the
canal under consideration:

dy

dx
� S0

1 − yn/y( 
N

1 − yc/y( 
M

, (1)

where y is the water depth, x is the longitudinal distance
along the channel, dy/dx is the water surface slope, yn and
yc are the normal and critical water depths, respectively, S0 is
the channel bottom slope, and M and N are the hydraulic
components for critical and uniform flows, respectively.

One of typical problem statements in GVF profiles is
computation of the distance between two specific water
depths. In other words, water depths at two cross-sections of
the same profile are given while the distance between these
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two sections (L) is unknown. According to the literature
review, various attempts for solving this problem may be
categorized into several groups based on their methods: (1)
semianalytical methods [1, 2], (2) analytical solutions [3–7],
(3) numerical schemes [8–11], (4) artificial intelligence (AI)
models [12], and (5) optimization techniques [13–15].

+e disadvantages of semianalytical and analytical solu-
tions include (1) some of them are only applicable to specific
conditions such as Bresse’s analytical solution for wide
rectangular channel and Chezy’s equation and (2) the ana-
lytical solutions with a wide of range of applicability mostly
have complex relations. On the other hand, the numerical
schemes basically march on space between the two water
depths are given. Additionally, they have been known to be
susceptible to stability problems [16], while they may
sometimes achieve different results [17]. Although analytical
solutions are error-free, the accuracy of numerical solutions
depends on several factors including the spatial interval (Δx)

and the round-off characteristics of the method, which may
lead to discretization and truncation errors, respectively [11].
Based on the current literature, application of AI models to
GVF computation is limited. For instance, Sivapragasam et al.
[12] utilized genetic programming (GP) and the artificial
neural network (ANN) to predict water surface profile as a
steady flow with different discharges passes over a rectangular
notch. Although AI models have been successfully used for
solving numerous problems in water resources management
and hydraulic engineering [18–21], it has not been applied to
estimate the length of GVF profiles.

In this study, two AI models were employed to predict
the distance between two cross-sections with known water
depths in the same GVF profile. A large database was
provided for different flow conditions in rectangular and
trapezoidal cross-sections. +e performances of these
models in estimating length of GVF profiles were also
compared with those of the most common numerical
method available in the literature.

2. Methods and Materials

2.1. Problem Statement of GVF Profile Length. Steady GVF is
one of the most common time-independent flow conditions
occurred in open channels, while length of GVF profiles is
necessary to channel design, design of hydraulic structures,
and budget estimation of open-channel water conveyance
projects [1, 22]. In the current literature, Swamee [1] pre-
sented empirical relations between the control section and
the section with 0.99yn or 1.01yn for triangular, wide, and
narrow rectangular. However, in this study, the distance
between two arbitraries but known water depths (y1 and y2)
within the same profile in trapezoidal sections is of interest.

In addition to equation (1), Manning’s equation, which is
the most widely used resistance equation in open-channel
hydraulics [23], governs the flow filed in GVF profiles:

Q �
1
n

AR
2/3

S
1/2

, (2)

where Q is the discharge, n is Manning’s coefficient, A is the
flow area, R � A/P is the hydraulic radius, P is the wetter

perimeter, and S is the channel slope.When S � S0, the water
depth in equation (2) exclusively corresponds to yn, while it
can be any other water depth for S � Sf.

In the problem statement of computing the length of
GVF profiles, Q channel geometries including canal bottom
width (b), channel side slope (z), S0, and n are the given
information, while L is meant to be estimated.

+e distance of varied flows is a determinant parameter
in various water engineering problems, such as determining
the location of hydraulic jump [13], predicting budget of
channel design [24, 25], and estimating backwater impacts
on hydraulic structures [26]. For instance, the influence
length of GVF profiles propagating from a uniform or
critical depth has been investigated in the literature [11, 27].
In modeling water surface of GVF profiles in real-life
projects, the routine procedure in professional hydraulic
software, such as HEC-RAS, is to divide the canal under
consideration into several parts so called reaches so that each
reach as similar flow conditions and channel geometries
[28]. Due to spatial variation of channel geometries along
natural streams, a reach-average value has been frequently
designated to canal characteristics such as b, z, S0, and n

[28, 29]. As n is known to be a flow-dependent parameter
and is not a measurable parameter [26, 30], a flow-inde-
pendent bed roughness predictor may be utilized to estimate
a reach-average value for steady GVF.

Steady GVF profiles is generally categorized based on the
comparison between yn and yc: (1) when yn � yc, the
channel slope is called critical slope (S0 � Sc), (2) if yn >yc,
the channel slope is mild slope (S0 < Sc), and (3) steep
channel occurs (S0 > Sc) when yn <yc. In this classification,
when water depth is higher than both yn and yc, it is located
in M1 or S1 zone if the channel slope is mild or steep,
respectively. Furthermore, when water depth is located
between yn and yc, it may be called either M2 or S2 for mild
or steep slope, respectively. Finally, M3 or S3 profile happens
when the water depth is lower than both yn and yc in mild or
steep slope, respectively.

2.2. Varied Flow Function. In this method, it is commonly
assumed that M and N that appeared in equation (1) are the
flow invariants for simplicity. In other words, the variation
of M and N with water depth can be neglected in engi-
neering application [31]. Using the substitution of u � y/yn,
equation (1) is rewritten:

x �
yn

S0
u − 

u

0

du

1 − u
N

+
yc

yn
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u

0

u
N− Mdu

1 − u
N

⎡⎣ ⎤⎦ + c, (3)

where x is the location of a specific cross-section along the
channel, M � 3[1 + 2z(y/b)]2 − 2z(y/b)[1 + z(y/b)]/[1+

2z(y/b)][1 + z(y/b)], N � (10/3)(1 + 2z(y/b)/1 + z(y /b))

− (8/3)(
�����
1 + z2

√
(y/b)/1 + 2

�����
1 + z2

√
(y/b)) for trapezoidal

cross-sections, and c is a constant.
+e first integral term in equation (3) is called varied

flow function (F(u, N) � 
u

0 du/1 − uN), which depends on
two parameters u and N. +e second integral in equation (3)
can be turned into a varied flow function by setting υ � uN/J,
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where J � (N/N − M + 1). By further manipulating equa-
tion (3), the distance between two cross-sections 1 and 2

with known water depths is achieved by the following
equation:

L �
yn

S0
u2 − u1 + F u1, N(  − F u2, N(  +

J

N

yc

yn

 

M

F υ2, J(  − F υ1, J(  
⎧⎨

⎩

⎫⎬

⎭, (4)

where 1 and 2 subscripts correspond to the first and second
cross-sections in the channel reach.

Traditionally, magnitudes of the varied flow function are
provided in tables covering numerous values of state vari-
ables [6]. Although this method has been introduced as a
standard approach in hydraulic engineering texts [31, 32], its
major drawback is determination of the varied flow function
[6, 33]. +e reasons for which this method is not suitable in
practice may be as follows: (1) the varied flow function is
relatively complicated to be solved by the hand, (2)
according to equation (4), four integrals (F(u1, N),
F(u2, N), F(υ2, J), and F(υ1, J)) need to be computed to
determine L, and (3) the tables provided for varied flow
function can only be exploited for a set of discrete values of
state variables. Consequently, an interpolation may be re-
quired for intermittent values, which produces inevitable
errors. On the other hand, when varied flow function is
calculated without interpolation, the obtained results may be
used as benchmark since it considers no approximate
assumption.

2.3. Simple Direct Method. In this method, the distance
between two cross-sections 1 and 2 is computed by using
finite difference:

L �
1

S0 − Sf

y2 +
Q

2

2gA
2
2

  − y1 +
Q

2

2gA
2
1

  , (5)

where g is the gravitational acceleration.
As shown equation (5), L can be computed directly when

Q and channel properties are known, while Sf in equation
(5) is substituted with the reach-average friction slopes using
the first and second cross-sections. In this study, the direct
method is utilized for calculating GVF profile length using
(1) one-spatial step, (2) three-spatial steps, and (3) five-
spatial steps. In the one-step version, equation (5) is
exploited only one time to obtain L between the two water
depths given in the problem statement, while the whole
distance between sections 1 and 2 is divided into three and
five subreaches in the three-step and five-step versions,
respectively. For the better clarification, Figure 1 depicts
schematic division of a channel reach into five subreaches in
the five-step scenario. As shown, yn and yc are the same for
all five subreaches in the five-step direct method. According
to Figure 1, four additional water depths are required to be
used between the first and second sections in the five-step
direct method. For y1 >y2, the four additional water depths
are y3 � y1 − (y1 − y2/5), y4 � y3 − (y1 − y2/5), y5 � y4−

(y1 − y2/5), and y6 � y5 − (y1 − y2/5). +erefore, when y1

and y2 are given, the additional water depths can be cal-
culated one after another from y3 to y6. In the five-step
direct method, the distance between two consecutive sec-
tions, such as L13 between sections 1 and 3, is computed
using equation (5). Finally, the algebraic summation of the
distances between the successive cross-sections is computed,
which is equal to L as shown in Figure 1.

2.4. Artificial Neural Network. Artificial neural network
(ANN) is a well-documented AI model and has been suc-
cessfully applied to various problems in water resources and
hydraulic engineering [34, 35]. Basically, it consists of three
layers, named as input, hidden, and output layers, while each
layer includes some components called neurons. +e
number and objective of neurons are defined based on the
layer to which they belong. For instance, the neurons of the
input layer take the vector of input data. +e structure of the
ANN provides connections between neurons of two suc-
cessive layers, while there is no connection between the
neurons within a layer. Using these connections, the data
flow through the network until an adequate relation between
the input and output data is achieved [30].

Predicting the length of GVF profiles using the ANN is
conducted for the first time in this study, based on authors’
knowledge. +e input data include the dimensionless u and
N, while the output data are dimensionless F(u, N). Fur-
thermore, there is a trade-off between the number of neu-
rons in the hidden layer in the ANN and the computational
efforts. To be more specific, the more the number of neurons
in the hidden layer is used, the more accurate results may be
obtained. In this study, several hidden layers with four to ten
neurons were tested, while a seven-neuron hidden layer was
selected. After the ANN completed the prediction process,
the estimated varied flow functions were substituted into
equation (4) to compute the corresponding length of GVF
profiles. As shown in equation (4), four F(u, N) are required
to determine the length between two specified water depths.

2.5. Genetic Programming. Genetic programming (GP) is
one of AI models that employs the genetic algorithm to
create a powerful prediction tool. In essence, GP is an
improved version of the genetic algorithm which is capable
of finding a relation between two vectors of variables re-
gardless of the physical background of those data. GP begins
with creation of a random population comprising of random
functions and coefficients [36]. It also uses the genetic al-
gorithm features such as crossover and mutation to improve
the fitness of new generations in light of minimizing an
objective function. +e objective function basically reflects
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the errors between the input and output data. +is process
continues until an expression with a desirable error is
achieved. Such correlations may further be used for esti-
mation purposes [25].

GP has a tree-like structure in which a variety of
mathematical functions and variables may be adopted to
seek for an appropriate relationship between the input and
output data. As a result of these characteristics, Discipulus
[37] software, which has been used for applying GP in the
literature [35], was exploited to many problems in the fields’
water resources and hydraulic engineering. +e input data
given to this program include u and N, while the output data
were F(u, N). +e latter values were exploited to estimate L

for each data point.

2.6.4e Database. +e data considered in this study consist
of two parts: (1) train data and (2) test data. +e former
includes 5154 rows of u, N (input data), and F(u, N) (output
data).+ey were basically gathered from the tables presented
in engineering text books [31, 38]. +ese data were used for
training the ANN and GP. On the other hand, the second
part of data consists of 165 data for mild slope and 165 data
for steep slope. To be more specific, the test data contain 70
data of M1, 54 data of M2, 41 data of M3, 48 data of S1, 51
data of S2, and 66 data of S3 profile. Furthermore, the values
of Q, b, z, S0, n, y1, and y2 of the test data were generated by
the random function embedded in Excel [39]. Finally, yn and
yc can be computed when Q and the reach-average values of
n and S0 are given.

Since the test data were developed randomly, they need
to be checked. In this regard, three requirements were
considered: (1) channel geometries andQ of each row should
be practically feasible, (2) each row of data should only have
one type of channel slope (i.e., mild or steep slope), and (3)
each row of data should belong to one specific type of flow
profile. For instance, the GVF profile is M1 or M2 or M3
when the channel slope is mild. In case a row of data did not
satisfy the mentioned requirements, it was replaced with
another randomly generated row of data to keep 330 rows of
data, which correspond to 1320 pairs of u and N.

After checking each row of the developed data, u and N

were determined for the specified water depths (y1 and y2).
+ey were used to compute the corresponding F(u, N)

without interpolation. Table 1 presents the ranges of dif-
ferent parameters in the test data. As shown, the train data
have a wider range of values than that of the test data.
According to Table 1, the test data include a wide range of
values for each parameter involved.

As previously mentioned, four F(u, N) are required to
calculate L for each row of data. +us, the calculated values
of F(u, N) were substituted into equation (4) to give the
benchmark distance between y1 and y2 for each row of the
test data. Finally, the test data were also solved by other
methods considered in this study for comparison purposes.

2.7. Performance Evaluation Criteria. Six evaluation criteria
were selected from the literature to compare the perfor-
mances of different methods in estimation of the length of
GVF profiles between two specified water depths [40, 41].
+ese indices are (1) root mean square error (RMSE), (2)
mean absolute relative error (MARE), (3) mean absolute
error (MAE), (4) relative absolute error (RAE), (5) relative
squared error (RSE), and (6) coefficient of determination
(R2). +ese criteria are presented in equations (6)–(11),
respectively:
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Figure 1: Schematic division of a channel reach into several subreaches.
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where Lestimated is the estimated length, i is a counter, and N

is the number of data.

3. Results and Discussion

+e ANN, GP, varied flow function, and 1-step direct
method compute the length of GVF profile between y1 and
y2 by considering one channel reach. However, 3-step and 5-
step direct methods divided the channel reach into 3 and 5
subreaches, respectively. +ese methods were used for es-
timation of GVF profile length between two specified water
depths. For comparison purposes, the test data consist of
different GVF profiles to investigate performances of dif-
ferent methods in prediction of L between y1 and y2 of each
row of the test data.

+e performances of the methods described for calcu-
lating GVF profile lengths were compared for the test data
with mild slopes shown in Table 2. As shown, the 5-step
direct method achieved the closet results to the benchmark
solutions in comparison with 1-step and 3-step direct
methods. +us, the accuracy of the direct step method
enhances with the increase of the number of spatial intervals
considered. Additionally, Table 2 depicts that the ANN
obtained better RMSE, RAE, MAE, RSE, and R2 than the 1-
step direct method, while the latter achieved a better MARE
than the former. Based on Table 2, GP performed better than
1-step and 3-step direct methods in terms of RMSE and RSE,
while it yields to the same R2 as the 3-step direct method.
According to Table 2, the 5-step direct method out-
performed others for estimating the length of GVF profiles

having mild slopes, while GP performs similar to the 3-step
direct method.

+e improvement obtained by the AI techniques may be
interpreted in the light of the connectivity topic. In a holistic
point of view, a better understanding of connectivity may be
beneficial to develop better schemes for modeling water
resources. To be more specific, estimating the distance be-
tween two known water depths in a GVF profile may im-
prove modeling of water movement through a man-made
canal or a natural stream. +is may help river engineering,
which includes dam construction/removal, river restoration,
and channel regulations. Since, river engineering is con-
nected with channel processes and geomorphic channel
response in small- to meso-scale fluvial systems [42].
+erefore, the improvement provided by the AI techniques
in this specific application does not confine in design of open
channels, particularly when catchment connectivity is
assessed [43].

Table 3 compares different methods for calculating L for
trapezoidal sections with steep slopes. As shown, the best
RMSE, RSE, and R2 were achieved by GP. Moreover, RMSE
obtained by the ANN was lower than that of all direct step
methods, while R2 calculated by the ANN was equal to the
best R2 computed by the latter. According to Table 3, the 5-
step direct method achieved better metrics than the 3-step
direct method, while the latter reached better results than the
1-step direct method. +us, Tables 2 and 3 imply that the
fewer the spatial interval (Δx) is considered in a typical
numerical scheme, the more accurate the results achieve and
the more the computational efforts are required. Further-
more, the comparisons carried out in Tables 2 and 3 indicate
that GP is an accurate method for computing the length of
GVF profiles, particularly when channel has a mild slope.

Although Tables 2 and 3 compared the performances of
different methods in estimation of L, they do not provide
clearly how each considered method performs in each of
GVF profiles. In this regard, six indices were separately
calculated by each method for each GVF profiles. +e ob-
tained results are depicted in Figure 2, which provide a better
detailed perspective required for comparison purposes.
Figure 2 shows that RMSE values achieved for mild slopes,
particularly M2 profile, are larger than that of steep slopes.
+is clearly addresses why RMSE values of mild slope shown
in Tables 2 and 3 are relatively larger than that of steep
slopes. According to Figures 2(a) and 2(b), RMSE values of
M2 profile are relatively higher than RMSE of other mild and

Table 1: Range of different parameters in the database.

Parameter Mean Maximum Minimum Standard deviation
Train data
u 1.48 20.00 0.00 2.19
N 5.25 9.80 2.20 2.37
F (u, N) 0.49 3.52 0.00 0.50

Test data
u 2.10 19.75 0.00 3.24
N 3.04 5.88 2.41 0.42
F (u, N) 0.42 2.98 0.00 0.42
Q 104.57 494.00 1.00 70.68
b 30.40 95.00 3.00 14.41
z 1.23 3.50 0.00 0.95
S 0.01 0.10 0.00 0.01
n 0.02 0.05 0.01 0.01
yn 1.61 10.13 0.05 1.31
y1 1.95 20.00 0.02 2.42
y2 2.11 17.00 0.01 2.35
yc 1.13 6.41 0.06 0.76

Table 2: Comparison of different methods for calculating distance
of GVFs with mild slopes.
Method RMSE MARE R2 RAE MAE RSE
Direct method (1-
step) 2068.69 0.25 0.89 0.18 735.29 0.12

Direct method (3-
step) 799.92 0.07 0.99 0.06 242.64 0.02

Direct method (5-
step) 429.3 0.04 1 0.03 132.61 0.01

ANN (this study) 1139.68 4.36 0.97 0.15 627.09 0.04
GP (this study) 710.16 1.21 0.99 0.08 321.89 0.01
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steep profiles. Also, RMSE values decrease with the increase
of number of intervals in the step direct method for all GVF
profiles, while this reduction is significant for M1, M2, S1,
and S3 profiles. Based on Figures 2(a) and 2(b), the lowest
RMSE was achieved by GP for S1 and S3 profiles and by the
5-step direct method for M1, M2, and M3 profiles. On the
other hand, RMSE values computed by all methods for S2
profiles are close to one another. MARE values depicted in
Figures 2(c) and 2(d) indicate that the ANN and GP
achieved close values to different versions of direct step
methods, whereas they obtained higherMARE values forM3
and S2 profiles. Moreover, MARE decreases with the in-
crease of number of subreach considered in the direct
method. According to Figures 2(c) and 2(d), the ANN and
GP yield to better MARE than the 1-step direct method for
M1 and S3 profiles, while they perform better than the 5-step
direct method for S1 profile based on MARE criterion. +e
comparison of R2 values shown in Figures 2(e) and 2(f)
implies that the accuracy of estimation of L increases
considering more intervals in direct step methods. More-
over, the 1-step direct method did not achieve acceptable R2

for M2 and S1 profiles. Based on Figures 2(e) and 2(f ), the
ANN and GP resulted in promising R2 values for M1, M2,
S1, and S3 profiles, while their R2 forM3 profile is lower than
that of direct step methods. Finally, MARE values computed
by all methods for S2 profile are comparable and relatively
low.

Figure 3 depicts percentages of estimated L in error
ranges for different GVF profiles. +is figure provides a
suitable opportunity for detailed accurate comparison so
that a swift glance reveals which method performs well for
each specific GVF profile. According to Figure 3, the per-
centages may increase with the increase of error ranges;
while themore the percentage in one specific error range, the
more precise the results are. For M1 profile, Figure 3(a)
shows that all methods reach closer results to the benchmark
solutions in comparison with the 1-step direct method.
Based on Figure 3(b), estimated L by the 1-step method and
the ANN for M2 profile contains significant errors, while GP
results are relatively better. In addition, 3-step and 5-step
direct methods reach more accurate solutions than the rest
for M2 profile. Figures 3(c) and 3(e) depict the poor per-
formance of the ANN and GP in predicting L of M3 and S2
profiles, while it also manifests inadequate performance of
the 1-step direct method in comparison with 3-step and 5-
step direct methods for M3 profile. On the contrary,
Figure 3(d) clearly demonstrates the improvement achieved
by both the ANN and GP in computation of L in S1 profile
compared to all direct step methods. Figure 2(e) demon-
strates the impact on considering more subreaches in direct

stepmethods since it shows that the 5-step direct method has
better results than the 3-step direct method and 3-step better
than the 1-step direct method, as well. Moreover, the error
ranges shown in Figure 2(e) imply that ANN estimations are
much closer to the benchmark solutions in each error range
considered. Furthermore, Figure 2(e) indicates that GP is
capable of accurate prediction of L in S3 profile, even better
than direct step methods. In summary, GP was found to
compute lengths of M1, S1, and S3 profiles with high ac-
curacy, while the ANN performs well in prediction of L in
M1 and S1 profiles.

Confidence limits of the lengths of GVF profiles using all
considered methods are shown in Figure 4. It clearly shows
that considering more intervals in the direct step method
makes the estimated confidence limit closer to that of the
benchmark solution for each and every GVF profile.
According to Figure 4, all methods exploited for estimation
of L yielded to close confidence limits as that of the
benchmark solutions for M1 and S1 profiles. However, the
confidence limits achieved for M2 and S3 profiles are dif-
ferent, while GP and the 5-step direct method reach to the
closest confidence limits to that of the benchmark solutions.
Figure 4(c) manifests the poor performance of the ANN in
estimating L of M3 profile, while GP replicates the confi-
dence limit of the benchmark solution with high accuracy
for this GVF profile. Moreover, the comparison of the
confidence limits shown in Figure 4(e) reveals that all
methods failed to achieve the whole range of the confidence
limit of the benchmark solution, while all confidence limits
are within the minimum and maximum points of the
benchmark confidence limit. In summary, Figures 2–4 in-
dicate that GP computed the lengths of M1, S1, and S3
profiles with high accuracy compared, while the ANN was
successful in estimation of M1 and S1 profile lengths.

According to the comparative analysis conducted in this
study, the obtained results show that AI models can improve
the prediction of the distance between two water depths
specified when they both belong to M1, S1, and S3 profiles.
+erefore, one of themain advantages of the AI techniques is
that they can improve the accuracy of estimating lengths of
gradually varied flow profiles, particularly when the com-
mon numerical modeling produces errors, e.g., when the
water depth approaches either the normal or critical depth.
Additionally, the AI methods, when they are trained, can
give estimations with a less computational effort than the
benchmark solution and numerical schemes. +e two latter
methods required integration calculations and marching on
space to compute a length of a gradually varied flow profile.
+ese benefits may attract attention toward using the AI
techniques in this specific application. In conclusion, the AI

Table 3: Comparison of different methods for calculating distance of GVFs with steep slopes.
Method RMSE MARE R2 RAE MAE RSE
Direct method (1-step) 191.75 0.26 0.96 0.18 735.29 0.12
Direct method (3-step) 142.51 0.1 0.97 0.06 242.64 0.02
Direct method (5-step) 135.56 0.07 0.98 0.03 132.61 0.01
ANN (this study) 110.17 0.73 0.98 0.15 627.09 0.04
GP (this study) 54.05 0.27 1 0.08 321.89 0.01
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Figure 2: Performances of different methods for calculating distance of different GVF profiles: (a) RMSE for mild slopes, (b) RMSE for steep
slopes, (c) MARE for mild slopes, (d) MARE for steep slopes, (e)R2 for mild slopes, and (f)R2 for steep slopes.

Complexity 7



55

70

85

100

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

Pe
rc

en
ta

ge
s

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(a)

0

20

40

60

80

100

Pe
rc

en
ta

ge
s

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(b)

0

20

40

60

80

100

Pe
rc

en
ta

ge
s

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(c)

80

85

90

95

100

Pe
rc

en
ta

ge
s

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(d)

0

20

40

60

80

100

Pe
rc

en
ta

ge
s

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(e)

0

20

40

60

80

100

Pe
rc

en
ta

ge
s

Direct
method
(1-step)

Direct
method
(3-step)

Direct
method
(5-step)

ANN (this
study)

GP (this
study)

±5% Errors
±10% Errors
±15% Errors

±20% Errors
±25% Errors

(f )

Figure 3: Percentages of estimated distance in error ranges for different GVF profiles: (a) M1, (b) M2, (c) M3, (d) S1, (e) S2, and (f) S3.
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Figure 4: Confidence limits of estimated distances for different GVF profiles: (a) M1, (b) M2, (c) M3, (d) S1, (e) S2, and (f) S3.
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models perform much better in many cases in comparison
with other methods considered in this study.

4. Conclusions

Although varied flow function provides accurate estimation
of the lengths between any pair of known water depths in
steady GVF profiles, it requires four complicated integral
forms to be calculated which makes it inadequate in practice
in comparison to numerical methods such as the direct step
method. In this regard, two AI models called the ANN and
GP were trained with 5154 data that contained varied flow
function. +e performances of the ANN and GP in pre-
dicting the length between two specified water depths were
compared with the direct method having one, three, and five
steps, while the results of varied flow function were set as
benchmark solutions. +e test data consist of 165 data for
mild slope and 165 data for steep slope. According to the
results, the accuracy of the direct method increases con-
sidering more number of intervals considered by the
compensation of increasing computational efforts. Also, the
comparison clearly demonstrates that GP outperformed
others for M1, S1, and S3 profiles. Furthermore, high ac-
curate results were obtained by the ANN for M1 and S1
profiles. However, the results reveal better performance of 3-
step and 5-step direct methods for M2, M3, and S2 profiles,
while the 1-step direct method failed to estimate precise
lengths for M2, M3, and S3 profiles. Finally, GP and the
ANN are suggested for estimation of GVF lengths when
water depth is larger than normal and critical depths in mild
and steep slopes, respectively. +e shortcomings and im-
provements of the AI models in estimating GVF lengths can
be beneficial to water surface modeling in future studies.
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