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In this paper, a new stochastic plant disease model with continuous control strategy is proposed and analyzed.,e dynamics of the
system are explored under white noise disturbance. We prove that if R1 > 1, then the disease is persistent; moreover, if R2 > 1, then
the solutions of the system have a stationary distribution. For the special case, we prove that if R1 < 1, then the disease will
eventually disappear. Finally, some numerical simulations were implemented to illustrate the theoretical results.

1. Introduction

Plant disease is an important constraint on global crop
production and severely damages the yield and quality of
crops. ,e main sources of infections that cause crop disease
are viruses, bacteria, fungi, nematodes, and plant disease
caused by parasitic plants. Plant viruses are a common
source of infection that cause plant disease. Plant virologists
have selected 10 plant viruses that harm plant growth [1].
Plant viruses have caused a large reduction in crop pro-
duction. For example, in the late 1940s, tobacco mosaic virus
caused an average loss of approximately 40 million pounds
of tobacco in the United States each year, accounting for 2%-
3% of tobacco production [2]. For tomato growers in
Florida, the cost of producing an acre of tomatoes is about
6000–7000 US dollars, and nearly 25% of the expenses are
used to control the tomato yellow leaf curl virus [3]. In the
past ten years, cassava in East Africa and Central Africa has
lost 47% of its production due to cassava brown streak virus
and cassava mosaic virus [4, 5].

Plant infectious diseases are mainly infectious diseases
caused by pathogens, which are generally passively spread by
external forces, which can cause the occurrence and prev-
alence of disease. ,e main modes of transmission include
air current transmission, rain transmission, insect and other
biological transmission, and human factor transmission

[6, 7]. Farmers have taken a variety of measures to control
the harm of plant viruses, such as developing new plants
with stronger resistance, cultural, physical, chemical, and
biological control measures, and so on. However, a single
control measure cannot control the disease well because it
generally only plays an important role in the early stage of
disease development. Facts have showed that the compre-
hensive utilization of several different control measures can
achieve a good effect of disease control. ,is combined
control strategy is often called integrated disease manage-
ment (IDM) [8]. Researchers have established many
mathematical models to explain the implementation process
of IDM [9–14]. Recently, considering continuous replanting
and roguing or removing diseased plants, a simple plant-
virus disease model by ordinary differential equations has
been proposed:

dS(t)

dt
� σϕ − βS(t)I(t) − ηS(t),

dI(t)

dt
� σ(1 − ϕ) + βS(t)I(t) − (η + ω)I(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where S, I are the densities of susceptible and infected plants,
respectively, σ is the total rate of the plants, 1 − ϕ(0< ϕ≤ 1)

is the proportion of infected plants in the replanted plants, β
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represents the transmission rate of diseased plants, η is the
death rate of the plant, and ω represents the roguing (or
removal) rate for the infected plants. For detailed parameter
meaning and model explanation, we refer the readers to
[11, 15]. Obviously, model (1) is different from the general
infectious disease model because it considers the charac-
teristics of plant disease transmission, that is, the disease can
be transmitted by infecting seedlings or seeds, and it can also
be transmitted by infecting mature seedlings. For system (1),
if 0< ϕ< 1, simple mathematical analysis shows that system
(1) always has a globally asymptotically stable disease
equilibrium E(S∗, I∗) and no disease-free equilibrium; this
means that plant disease will eventually persist. If ϕ � 1,
system (1) always has a disease-free equilibrium E(S0, 0),
and it is globally asymptotically stable for R< 1 and unstable
for R> 1; if R> 1, system (1) also has a globally asymptot-
ically stable disease equilibrium E1(S1, I1), where
R � σβ/η(η + ω).

As is known, biological systems are inevitably disturbed
by environmental noise [16–21].,e spread of disease is also
easily disturbed by environmental noise [22–25]; many
researchers have thoroughly studied the impact of envi-
ronmental noise on the spread of disease by establishing
epidemic models by stochastic differential equations
[26–29]. In the real world, because the occurrence, devel-
opment, and spread of plant diseases is a very complex
process, it will inevitably be disturbed by various unpre-
dictable random factors, such as environmental conditions
(temperature, moisture, and light), soil texture, pH value,
and so on. For example, under the influence of high tem-
perature, certain viruses (bacteria) may die, leading to the
extinction of diseases; due to the scarcity of water, the
growth cycle of certain viruses (bacteria) becomes longer,
and the spread of diseases slows down; poor soil will cause
the activity of some viruses (bacteria) to weaken, and disease
infection is reduced [30, 31]. In this paper, on the basis of
model (1), we assume that the environmental white noise is
proportional to the variables S and I, respectively, and
propose a simple plant disease model under stochastic
perspective as follows:

dS(t) � (σϕ − βS(t)I(t) − ηS(t))dt + δ1S(t)dB1(t),

dI(t) � (σ(1 − ϕ) + βS(t)I(t) − (η + ω)I(t))dt + δ2I(t)dB2(t),
􏼨

(2)

where Bi(t)(i � 1, 2) are independent standard Brownian
motions with Bi(0) � 0(i � 1, 2) and δi > 0(i � 1, 2) repre-
sent the intensities of the white noise on the susceptible and
infected plants, respectively. In the whole paper, we let
(Ω,F,P) be a complete probability space with a filtration
Ft􏼈 􏼉t≥ 0 satisfying the usual conditions. ,e function

Bi(t)(i � 1, 2) is defined on (Ω,F,P), and we denote
R2

+ � x ∈ R2: xi > 0, 1≤ i≤ 2􏼈 􏼉.

Our purpose is to investigate the impact of environ-
mental noise on plant disease.,e structure of the paper is as
follows. ,e well-posedness of solutions of the system is
discussed in Section 2. ,e persistence of the plant disease is
discussed in Section 3. In Section 4, we explore the existence
of the stationary distribution of the solution of the system. In
Section 5, numerical simulations are implemented to il-
lustrate the theoretical results. A brief conclusion is given in
Section 6.

2. The Existence and Uniqueness of Global
Positive Solution of System (2)

Theorem 1. &e solution of system (2) that satisfies the initial
value (S(0), I(0)) ∈ R2

+, is unique and positive; moreover, the
solution will remain in R2

+ with probability one.

Proof. Firstly, let Ze be the explosion time, and we claim that
for any initial value (S(0), I(0)) ∈ R2

+ there exists a unique
local solution (S(t), I(t)) ∈ R2

+ on t ∈ [0, Ze) a.s. In fact, it is
easy to get from the local Lipschitz property of the coeffi-
cients of system (2).

Secondly, we prove Ze �∞ a.s. ,is means that the
solution is global. Let n0 ≥ 1 be sufficiently large such that
(S(0), I(0)) all lie within the interval [(1/n0), n0]. For each
integer n≥ n0, define the stopping time

Zn � inf t ∈ 0, Ze􏼂 􏼁: S(t) ∉
1
n

, n􏼒 􏼓 or I(t) ∉
1
n

, n􏼒 􏼓􏼚 􏼛. (3)

In the whole paper, we denote inf∅ �∞ (the empty set).
Obviously, Zn is increasing as n⟶∞. Let Z∞ � lim

n⟶∞
Zn,

whence Z∞ ≤ Ze a.s. If Z∞ �∞ a.s. is true, then Ze �∞ and
(S(t), I(t)) ∈ R2

+ a.s. for all t≥ 0. ,en, in order to achieve
our purpose, we only need to show Z∞ �∞ a.s. If this
affirmation is not true, then there exist two constants T> 0
and ε ∈ (0, 1) such that

P Z∞ ≤T􏼈 􏼉> ε. (4)

,us, for an integer n1 ≥ n0, we have

P Zn ≤T􏼈 􏼉> ε, ∀n≥ n1. (5)

Define a C2-function V: R2
+⟶ R+ as follows:

V � S − a1 − a1 ln
S

a1
+ I − 1 − ln I, (6)

where a1 is a positive constant to be determined later.
From Itô’s formula, one gets

dV(S, I) � LV(S, I)dt + 1 −
a1

S
􏼒 􏼓δ1SdB1(t) + 1 −

1
I

􏼒 􏼓δ2IdB2(t),

(7)
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where LV: R2
+⟶ R+ is defined by

LV � 1 −
a1

S
􏼒 􏼓(σϕ − βSI − ηS) + 1 −

1
I

􏼒 􏼓(σ(1 − ϕ) + βSI − (η + ω)I) +
a1δ

2
1

2
+
δ22
2

� σϕ − βSI − ηS −
a1σϕ

S
+ a1βI + a1η + σ(1 − ϕ) + βSI

− (η + ω)I −
σ(1 − ϕ)

I
− βS + η + ω +

a1δ
2
1

2
+
δ22
2

≤ σϕ + a1η + σ(1 − ϕ) + η + ω + a1β − (η + ω)( 􏼁I +
a1δ

2
1

2
+
δ22
2

.

(8)

Choose a1 � (η + ω)/β. ,en, we obtain

LV≤ σϕ +
η(η + ω)

β
+ σ(1 − ϕ) + η + ω +

(η + ω)δ21
2β

+
δ22
2

K1,

(9)

where K1 is a positive constant. So, we obtain

dV(S, I)≤K1dt + 1 −
η + ω
βS

􏼠 􏼡δ1SdB1(t) + 1 −
1
I

􏼒 􏼓δ1IdB2(t).

(10)

Integrating the above formula from 0 to
Zn∧T �min Zn, T􏼈 􏼉 and then taking the expectation on both
sides, we have

EV S Zn∧T( 􏼁, I Zn∧T( 􏼁( 􏼁≤V(S(0), I(0)) + K1E Zn∧T( 􏼁.

(11)

Hence,

EV S Zn∧T( 􏼁, I Zn∧T( 􏼁( 􏼁≤V(S(0), I(0)) + K1T. (12)

Let Ωn � ω ∈ Ω: Zn � Zn(ω)≤T􏼈 􏼉 for n≥ n1 and in view
of (5), we obtainP(Ωn)≥ ε. Note that for everyω ∈ Ωn, there
exists S(Zn,ω) or I(Zn,ω) equals either n or 1/n. ,erefore,
V(S(Zn,ω), I(Zn,ω)) is no less than either

n − 1 − ln n or
1
n

− 1 − ln
1
n

. (13)

,erefore, we have

V S Zn,ω( 􏼁, I Zn,ω( 􏼁( 􏼁≥ (n − 1 − ln n)∧
1
n

− 1 + ln n􏼒 􏼓.

(14)

In view of (12), we obtain

V(S(0), I(0)) + K1T≥E 1Ωn(ω)V S Zn,ω( 􏼁, I Zn,ω( 􏼁( 􏼁􏽨 􏽩≥ ε(n − 1 − ln n)∧
1
n

− 1 + ln n􏼒 􏼓, (15)

where 1Ωn
denotes the indicator function of Ωn. Letting

n⟶∞ leads to the contradiction

∞>V(S(0), I(0)) + K1T �∞. (16)

So, we must have Z∞ �∞ a.s. ,is completes the
proof. □

3. Persistence in Mean

System (2) is said to be persistent in the mean if
liminf t⟶∞(1/t) 􏽒

t

0 I(s)ds> 0 a.s. For convenience, we de-
fine 〈S(t)〉 � (1/t) 􏽒

t

0 S(s)ds, 〈I(t)〉 � (1/t) 􏽒
t

0 I(s)ds.
,e following lemma is essentially the same as that in

[32], so we omit it.

Lemma 1. Assume η> (δ21∨δ
2
2)/2. Let (S(t), I(t)) be the

solution of system (2) with any initial value
(S(0), I(0)) ∈ R2

+; then,

lim
t⟶∞

􏽒
t

0 S(r)dB1(r)

t
� 0,

lim
t⟶∞

􏽒
t

0 I(r)dB2(r)

t
� 0 a.s.

(17)

Lemma 2. Let (S(t), I(t)) be the solution of system (2) with
initial value (S(0), I(0)) ∈ R2

+. &en,

lim
t⟶∞

S(t)

t
� 0,

lim
t⟶∞

I(t)

t
� 0 a.s.

(18)

Proof. Let w(t) � S(t) + I(t). Define

V(w) � (1 + w)
ζ
, (19)
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where ζ is a positive constant to be determined later. ,en,

dV(w) � LVdt + ζ(1 + w)
ζ− 1 δ1S(t)dB1(t) + δ2I(t)dB2(t)􏼂 􏼃,

(20)

where

LV(w) � ζ(1 + w)
ζ− 1

[σ − ηS − ηI − ωI] +
ζ(ζ − 1)

2
(1 + w)

ζ− 2 δ21S
2

+ δ22I
2

􏼐 􏼑

� ζ(1 + w)
ζ− 2

(1 + w)[σ − ηS − ηI − ωI] +
ζ − 1
2

δ21S
2

+ δ22I
2

􏼐 􏼑􏼨 􏼩

≤ ζ(1 + w)
ζ− 2

(1 + w)[σ − ηw] +
ζ − 1
2

δ21S
2

+ δ22I
2

􏼐 􏼑􏼨 􏼩

≤ ζ(1 + w)
ζ− 2

(1 + w)[σ − ηw] +
ζ − 1
2

δ21∨δ
2
2􏼐 􏼑w

2
􏼨 􏼩

� ζ(1 + w)
ζ− 2

− η −
ζ − 1
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣w

2
+(σ − η)w + σ􏼨 􏼩.

(21)

Choose ζ > 0 such that

η −
ζ − 1
2
∨0􏼠 􏼡 δ21∨δ

2
2􏼐 􏼑 ≔ χ > 0, (22)

so

LV(w)≤ ζ(1 + w)
ζ− 2

− χw
2

+(σ − η)w + σ􏽨 􏽩, (23)

dV(w)≤ ζ(1 + w)
ζ− 2

− χw
2

+(σ − η)w + σ􏽨 􏽩

+ ζ(1 + w)
ζ− 1 δ1S(t)dB1(t) + δ2I(t)dB2(t)􏼂 􏼃.

(24)

For 0< k< ζχ, we have

d e
kt

V(w(t))􏽨 􏽩 � L e
kt

V(w(t))􏽨 􏽩dt + e
ktζ(1 + w(t))

ζ− 1 δ1S(t)dB1(t) + δ2I(t)dB2(t)􏼂 􏼃, (25)

so

E e
kt

V(w(t))􏽨 􏽩 � V(w(0)) + E 􏽚
t

0
L e

ks
V(w(s))􏼐 􏼑ds,

(26)

where

L e
kt

V(w)􏽨 􏽩 � ke
kt

V(w) + e
kt

LV(w)≤ ζe
kt

(1 + w)
ζ− 2 k

ζ
(1 + w)

2
− χW

2
+(σ − η)w + σ􏼨 􏼩

� ζe
kt

(1 + w)
ζ− 2

− χ −
k

ζ
􏼠 􏼡w

2
+ σ − η +

2k

ζ
􏼠 􏼡w + σ +

k

ζ
􏼠 􏼡􏼢 􏼣≤ ζe

kt
Q,

(27)

and

Q ≔ sup
w∈R+

(1 + w)
ζ− 2

− χ −
k

ζ
􏼠 􏼡w

2
+ σ − η +

2k

ζ
􏼠 􏼡w + σ +

k

ζ
􏼢 􏼣 + 1. (28)
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,en, from (26), we get

E e
kt 1 + w(t)

ζ
􏼐 􏼑􏽨 􏽩≤ (1 + w(0))

ζ
+
ζQ

k
e

kt
. (29)

Consequently, we have

limsup
t⟶∞

E (1 + w(t))
ζ

􏽨 􏽩≤
ζQ

k
≔ Q0 a.s. (30)

By the continuity of function w(t), there exists a con-
stant M> 0 such that

E (1 + w(t))
ζ

􏽨 􏽩≤M, t≥ 0. (31)

From (24), for sufficiently small ε> 0, k � 1, 2, . . ., we
have

E sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ⎡⎣ ⎤⎦≤E (1 + w(kε))ζ􏽨 􏽩 + I1 + I2 ≤M + I1 + I2, (32)

where

I1 � E sup
kε≤t≤(k+1)ε

􏽚
t

kε
ζ(1 + w(r))

ζ− 2
− χw

2
(r) +(σ − η)w(r) + σ􏽨 􏽩dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦

≤ c1E sup
kε≤t≤(k+1)ε

􏽚
t

kε
(1 + w(r))

ζdr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦≤ c1E 􏽚

(k+1)ε

kε
(1 + w(r))

ζdr􏼢 􏼣

≤ c1εE sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ⎡⎣ ⎤⎦,

(33)

I2 � E sup
kε≤t≤(k+1)ε

􏽚
t

kε
ζ(1 + w(r))

ζ− 1 δ1S(r)dB1(r) + δ2I(r)dB2(r)( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎡⎣ ⎤⎦

≤
��
32

√
E 􏽚

(k+1)ε

kε
ζ2(1 + w(r))

2(ζ− 1) δ21S
2
(r) + δ22I

2
(r)􏼐 􏼑dr􏼢 􏼣

1/2

≤
��
32

√
Eζ δ21∨δ

2
2􏼐 􏼑

1/2
ε1/2E sup

kε≤t≤(k+1)ε
(1 + w(r))

2ζ⎡⎣ ⎤⎦
1/2

≤
��
32

√
Eζ δ21∨δ

2
2􏼐 􏼑

1/2
ε1/2E sup

kε≤t≤(k+1)ε
(1 + w(r))

ζ⎡⎣ ⎤⎦.

(34)

By Burkholder–Davis–Gundy inequality [33], we obtain

E sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ⎡⎣ ⎤⎦≤E (1 + w(kε))ζ􏽨 􏽩 + c1ε +

��
32

√
ζ δ21∨δ

2
2􏼐 􏼑

1/2
ε1/2􏼔 􏼕E sup

kε≤t≤(k+1)ε
(1 + w(t))

ζ⎡⎣ ⎤⎦. (35)

In particular, let ε> 0 such that
c1ε +

��
32

√
ζ(δ21∨δ

2
2)

1/2ε1/2 ≤ (1/2), and then

E sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ⎡⎣ ⎤⎦≤ 2E (1 + w(kε))ζ􏽨 􏽩≤ 2M.

(36)

For sufficiently small εw > 0 and using Chebyshev’s in-
equality, we have

P sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ >(kε)1+εw

⎧⎨

⎩

⎫⎬

⎭

≤
E supkε≤t≤(k+1)ε(1 + w(t))

ζ
􏽨 􏽩

(kε)1+εw

≤
2M

(kε)1+εw
, k � 1, 2, . . . .

(37)
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According to Borel–Cantelli lemma [33], we know that
for almost all ω ∈ Ω,

sup
kε≤t≤(k+1)ε

(1 + w(t))
ζ ≤ (kε)1+εw

(38)

holds for all but finitely many k. Hence, there exists a k0(ω),
for almost all ω ∈ Ω, for which (38) holds whenever k≥ k0.
,erefore, for almost all ω ∈ Ω, if k≥ k0 and kε≤ t≤ (k + 1)ε,

log (1 + w(t))
ζ

log t
≤

1 + εw( 􏼁log(kε)
log(kε)

� 1 + εw. (39)

Taking the limit superior, we have

limsup
t⟶∞

log (1 + w(t))
ζ

log t
� 1 + εw a.s. (40)

Let εw⟶ 0, and we get

limsup
t⟶∞

log (1 + w(t))
ζ

log t
≤ 1 a.s. (41)

For 1< ζ < 1 + (2η/δ21∨δ
2
2), i.e., η> ((ζ − 1)(δ21δ

2
2)/2), we

have

limsup
t⟶∞

log w(t)

log t
≤ limsup

t⟶∞

log (1 + w(t))
ζ

log t
≤
1
ζ
a.s. (42)

In other words, for arbitrarily small 0< ρ< 1 − (1/ζ),
there exist constant T � T(ω) and a set Ωρ such that
P(Ωρ)≥ 1 − ρ, and for t≥T, ω ∈ Ωρ,

log w(t)≤
1
ζ

+ ρ􏼠 􏼡log t, (43)

limsup
t⟶∞

w(t)

t
≤ limsup

t⟶∞

t
(1/ζ)+ρ

t
� 0. (44)

According to ,eorem 1, we get

lim
t⟶∞

w(t)

t
� lim

S(t) + I(t)

t
� 0 a.s., (45)

lim
S(t)

t
� 0,

lim
I(t)

t
� 0 a.s.

(46)

,e proof of Lemma 2 is completed.
Denote

R1 �
σβ

η η + ω + δ22/2􏼐 􏼑􏼐 􏼑
> 1. (47)

□

Theorem 2. If R1 > 1, for the solution (S(t), I(t)) of system
(2) with any initial value (S(0), I(0)) ∈ R2

+, we have

limsup
t⟶∞

〈I(t)〉≥
η η + ω + δ22/2􏼐 􏼑􏼐 􏼑 R1 − 1( 􏼁

(η + ω)β
> 0 a.s., (48)

i.e., the disease is persistent in mean.

Proof. Integrate and add the two equations of system (2) on
both sides to get

S(t) − S(0)

t
+

I(t) − I(0)

t
� σ − η〈S(t)〉 − (η + ω)〈I(t)〉 +

δ1 􏽒
t

0 S(r)dB1(r)

t
+
δ2 􏽒

t

0 I(r)dB2(r)

t
. (49)

Further calculation yields

〈S(t)〉 �
σ
η

−
(η + ω)

η
〈I(t)〉 + ω1 + ω2

−
S(t) − S(0)

ηt
−

I(t) − I(0)

ηt
,

(50)

where

ω1 �
δ1 􏽒

t

0 S(r)dB1(r)

ηt
,

ω2 �
δ2 􏽒

t

0 I(r)dB2(r)

ηt
.

(51)

By using Itô’s formula, one gets

6 Complexity



d(lnI) �
σ(1 − ϕ)

I
+ βS − (η + ω) −

δ22
2

􏼢 􏼣dt + δ2dB2(t), (52)

lnI(t) − lnI(0)

t
�
σ(1 − ϕ)

t
􏽚

t

0

1
I(r)

dr + β〈S(t)〉 − η + ω +
δ22
2

􏼠 􏼡 +
δ2B2(t)

t

≥ β〈S(t)〉 − η + ω +
δ22
2

􏼠 􏼡 +
δ2B2(t)

t

� β
σ
η

−
(η + ω)

η
〈I(t)〉 + ω1 + ω2 −

S(t) − S(0)

ηt
−

I(t) − I(0)

ηt
􏼢 􏼣

− η + ω +
δ22
2

􏼠 􏼡 +
δ2B2(t)

t

�
σβ
η

−
(η + ω)β

η
〈I(t)〉 + βω1 + βω2 −

β(S(t) − S(0))

ηt

−
β(I(t) − I(0))

ηt
− η + ω +

δ22
2

􏼠 􏼡 +
δ2B2(t)

t
.

(53)

Solving the above inequality, we have

〈I(t)〉≥
η

(η + ω)β
lnI(0) − lnI(t)

t
+

σ
η + ω

+
η

η + ω
ω1 +

η
η + ω

ω2 −
S(t) − S(0)

(η + ω)t

−
I(t) − I(0)

(η + ω)t
−
η η + ω + δ22/2􏼐 􏼑􏼐 􏼑

(η + ω)β
+
ηδ2B2(t)

(η + ω)βt

�
η

(η + ω)β
lnI(0) − lnI(t)

t
+

η
η + ω

ω1 +
η

η + ω
ω2 −

S(t) − S(0)

(η + ω)t

−
I(t) − I(0)

(η + ω)t
+
σβ − η η + ω + δ22/2􏼐 􏼑􏼐 􏼑

(η + ω)β
+
ηδ2B2(t)

(η + ω)βt

�
η η + ω + δ22/2􏼐 􏼑􏼐 􏼑 R1 − 1( 􏼁

(η + ω)β
+

η
η + ω

ω1 +
η

η + ω
ω2 −

S(t) − S(0)

(η + ω)t

−
I(t) − I(0)

(η + ω)t
+

η
(η + ω)β

lnI(0) − lnI(t)

t
+
ηδ2B2(t)

(η + ω)βt
.

(54)

By taking the limit inferior of both sides of (54) and using
Lemmas 1 and 2, we can obtain

limsup
t⟶∞

〈I(t)〉≥
η η + ω + δ22/2􏼐 􏼑􏼐 􏼑 R1 − 1( 􏼁

(η + ω)β
. (55)

,is finishes the proof of ,eorem 2. □

4. Existence of a Stationary Distribution

In this section, we explore existence of a stationary distri-
bution for the solutions of system (2) under the condition
R1 > 1.

Let Y(t) be a homogenous Markov process in l-di-
mensional Euclidean space El, and Y(t) satisfies

dY(t) � b(Y)dt + 􏽘
k

r�1
hr(Y)dBr(t). (56)

,e diffusion matrix is defined as follows:

A(x) � aij(y)􏼐 􏼑,

aij(x) � 􏽘
k

r�1
h

i
r(y)h

j
r(y).

(57)

Lemma 3 (see [34]). &e Markov process Y(t) has a unique
ergodic stationary distribution π(·) if there exists a bounded
domain U ⊂ El with regular boundary Γ and

(A.1) &ere is a positive number M such that
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􏽘

n

i,j�1
aij(y)ζ iζj ≥M|ζ|

2
, y ∈ U, ζ ∈ El. (58)

(A.2)&ere exists a nonnegative C2-function V such that
LV is negative for any El∖U. &en,

Py lim
τ⟶∞

1
τ

􏽚
τ

0
g(Y(t))dt � 􏽚

En

g(y)p(dy)􏼨 􏼩 � 1,

(59)

for all y ∈ El, where g(·) is a function integrable with respect
to the measure p.

Theorem 3. For any given initial value (S(0), I(0)) ∈ R2
+, if

R2 �
σϕβ

δ21/2􏼐 􏼑 + η􏼐 􏼑 η + ω + δ22/2􏼐 􏼑􏼐 􏼑
> 1 (60)

holds, then system (2) has a unique ergodic stationary
distribution.

Proof. According to Lemma 3, we need to verify the
conditions of the lemma one by one. Firstly, we get the
diffusion matrix of system (2) with the form

􏽥A �
δ21S

2 0

0 δ22I
2

⎛⎝ ⎞⎠. (61)

,en, let M � min(S,I)∈U δ21S2, δ
2
2I

2􏽮 􏽯, and we have

􏽘

2

i,j�1
aijξiξj � δ21S

2ξ21 + δ22I
2ξ22 ≥M|ξ|

2
, (S, I) ∈ U, ξ ∈ R2

.

(62)

,us, condition (A.1) in Lemma 3 is satisfied.
In order to verify (A.2), we will construct a function

V ∈ C2(R2
+;R) and a compact set Uϵ ⊂ R2

+ such that

LV(S, I)≤ − 1 on (S, I) ∈ R2
+∖Uε. (63)

In the following, let us construct a C2-function V:
R2

+⟶ R with the form

V(S, I) � M(− a ln S − ln I) − ln S +
1

θ + 1
(S + I)

θ+1
,

(64)

where θ and c are positive constants satisfying
0< θ< (2η/δ21∨δ

2
2), a � (σϕβ/((δ21/2) + η)2). Let us choose

M> 0 large enough such that

− Mλ2 + D≤ − 2, (65)

where

λ2 ≔ η + ω +
δ22
2

􏼠 􏼡 R2 − 1( 􏼁. (66)

Obviously,

liminf
w⟶(S,I)∈R2

+\Uw

V(S, I) �∞, (67)

where Uw � ((1/w), w) × ((1/w), w). Because of the conti-
nuity of function V(S, I), there exists a unique point
(S∗ , I∗ ) inR2

+ which is the minimum point of V(S, I). ,us,
consider a positive-definite C2-function V: R2

+⟶ R+ with
the form

V(S, I, C) � V(S, I) − V S
∗

, I
∗

( 􏼁

� M(− a ln S − ln I) − ln S

+
1

θ + 1
(S + I)

θ+1
− V S

∗
, I
∗

( 􏼁

� MV1 + V2 + V3,

(68)

where V1 � − a ln S − ln I, V2 � − ln S,
V3 � (1/θ + 1)(S + I)θ+1 − V(S∗ , I∗ ). From Itô’s formula,
we have

LV1 � −
aσϕ

S
+ aβI + aη +

aδ21
2

−
σ(1 − ϕ)

I
− βS + η + ω +

δ22
2

≤ −
aσϕ

S
− βS + aβI + η + ω + aη +

aδ21
2

+
δ22
2

≤ − 2
�����

aσϕβ
􏽱

+ aβI + η + ω + a
δ21
2

+ η􏼠 􏼡 +
δ22
2

≤ −
σϕβ

δ21/2􏼐 􏼑 + η􏼐 􏼑
+ η + ω +

δ22
2

+ aβI

≤ − η + ω +
δ22
2

􏼠 􏼡 R2 − 1( 􏼁 + aβI

≔ − λ2 + aβI.

(69)

By using Itô’s formula, we obtain

LV2 � −
σϕ
S

+ βI + η +
δ21
2

. (70)

Similarly,

LV3 � (S + I)
θ
(σ − ηS − (η + ω)I) +

θ
2
(S + I)

θ− 1 δ21S
2

+ δ22I
2

􏼐 􏼑

≤ σ(S + I)
θ

− η(S + I)
θ+1

+
θ
2

δ21∨δ
2
2􏼐 􏼑(S + I)

θ+1

� σ(S + I)
θ

− η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣(S + I)

θ+1

≤B −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣(S + I)

θ+1
,

(71)

where
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B � sup
(S,I)∈R2

+

σ(S + I)
θ

−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣(S + I)

θ+1
􏼨 􏼩<∞.

(72)

,erefore,

LV≤ − Mλ2 + aMβI + βI −
σϕ
S

+ η +
δ21
2

+ B −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣(S + I)

θ+1

≤ − Mλ2 + β(1 + aM)I −
σϕ
S

−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

.

(73)

Consider a compact subset U:

U � ε≤ S≤
1
ε
, ε≤ I≤

1
ε

􏼚 􏼛, (74)

where ε is a constant small enough that

−
σϕ
ε

+ C≤ − 1, (75)

− Mλ2 + β(1 + aM)ε + D≤ − 1, (76)

−
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣

1
εθ+1 + E≤ − 1, (77)

−
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣

1
εθ+1 + F≤ − 1, (78)

where C, D, E, and F are positive constants with the form in
equations (82), (84), (86), and (88), respectively. ,en,

R
2
+\U � U1 ∪U2 ∪U3 ∪U4, (79)

with

U1 � (S, I) ∈ R2
+| 0< S< ε􏽮 􏽯,

U2 � (S, I) ∈ R2
+| 0< I< ε􏽮 􏽯,

U3 � (S, I) ∈ R2
+| S>

1
ε

􏼚 􏼛,

U4 � (S, I) ∈ R2
+| I>

1
ε

􏼚 􏼛.

(80)

Next, we discuss the negative of LV for any
(S, I) ∈ R2

+\U in different regions.

Case I. If (S, I) ∈ U1, we get

LV≤ −
σϕ
S

+ β(1 + aM)I −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

≤ −
σϕ
ε

+ C,

(81)

where

C � sup
(S,I)∈R2

+

β(1 + aM)I −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

􏼨 􏼩<∞. (82)

According to (75), we can have LV≤ − 1 for all
(S, I) ∈ U1.

Case II. If (S, I) ∈ U2, we can obtain that

LV≤ − Mλ2 + β(1 + aM)I −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

≤ − Mλ2 + β(1 + aM)ε + D,

(83)
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where

D � sup
(S,I)∈R2

+

−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

􏼨 􏼩<∞. (84)

According to (76), we can have LV≤ − 1 for all
(S, I) ∈ U2.

Case III. If (S, I) ∈ U3, we have

LV≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
+ β(1 + aM)I −

1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1

−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
+ E

≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣

1
εθ+1 + E,

(85)

where

E � sup
(S,I)∈R2

+

β(1 + aM)I −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

􏼨 􏼩<∞. (86)

According to (77), we can get that LV≤ − 1 for all
(S, I) ∈ U3.

Case IV. If (S, I) ∈ U4, it follows that

LV≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ β(1 + aM)I −

1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1

−
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ F

≤ −
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣

1
εθ+1 + F,

(87)

where

F � sup
(S,I)∈R2

+

β(1 + aM)I −
1
2

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣S

θ+1
−
1
4

η −
θ
2

δ21∨δ
2
2􏼐 􏼑􏼢 􏼣I

θ+1
+ B + η +

δ21
2

􏼨 􏼩<∞. (88)
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According to (78), we can get that LV≤ − 1 for all
(S, I) ∈ U4.

,us, from the discussion of the above four cases, for a
sufficiently small ε, we can get

LV≤ − 1 forall (S, I) ∈ R2
+\U, (89)

which means condition (A.2) in Lemma 3 is satisfied. Hence,
all the conditions in Lemma 3 are satisfied; then, according
to Lemma 3, system (2) has a unique ergodic stationary
distribution π(·). ,is completes the proof of ,eorem
3. □

5. Numerical Simulation

In this section, we employ numerical simulation to verify the
main results.

For the deterministic system, we first consider the case
ϕ � 1, and the parameters for system (1) are chosen as shown
in Table 1. If we let σ � 0.0005, direct calculations show that
system (1) has a disease-free equilibrium E0(0.25, 0) which is
globally asymptotically stable (see Figure 1), where
R � 0.8929< 1.

If we increase planting rate σ to 0.0015, direct calcula-
tions show that system (1) has a disease equilibrium
E1(S1, I1) � (0.28, 0.1343) which is globally asymptotically
stable (see Figure 2), where R � 2.6786> 1.

For the case ϕ< 1, the parameters are chosen as
ϕ � 0.8, β � 0.025, η � 0.002, andω � 0.005, and simple
calculations show that system (1) has a disease equilibrium
E(S∗, I∗) � (0.2032, 0.1562) which is globally asymptoti-
cally stable (see the blue curve in Figures 3(a), 3(c), and 3(e)).

For the stochastic system, we get the following discrete
system:

Sk+1 � Sk + σϕ − βSkIk − ηSk􏼂 􏼃Δt + δ1SkΔB1,k,

Ik+1 � Ik + σ(1 − ϕ) + βSkIk − (η + ω)Ik􏼂 􏼃Δt + δ2IkΔB2,k,

⎧⎨

⎩ (90)

where ΔBi,k ≜B(tk+1) − B(tk)(i � 1, 2) obeys the Gaussian
distribution N(0,Δt).

Let δ1 � 0.04, δ2 � 0.03, and direct calculation shows
R1 � 2.5168> 1, R2 � 1.4382> 1. According to ,eorems 2

Table 1: Model parameters, their interpretation, and default value.

Parameter Description Default value Ref.
η Harvest rate 0.002 Holt and Chancellor [35]
σ Planting rate 0.0015 Gibson and Aritua [36]
ϕ Fraction planted from in vitro propagated, virus free, material 1.0–0.0 Feng et al. [37]
ω Roguing rate parameter 0.005 Fondong et al. [38]
β Transmission rate parameter 0.025 Gibson et al. [39]
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Figure 1: Simulation of solutions for system (1) with initial value (S(0), I(0)) � (1, 0.6), whereR � 0.8929< 1. (a),e series graph of S and I
for system (1). (b) ,e phase diagrams of S and I.
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Figure 2: Simulation of solutions for system (1) with initial value (S(0), I(0)) � (1, 0.6), whereR � 2.6786> 1. (a),e series graph of S and I
for system (1). (b) ,e phase diagrams of S and I.
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Figure 3: Continued.
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and 3, the disease will persist eventually, and moreover
system (2) has a unique stationary distribution. ,e red
curves in Figures 3(a) and 3(c) and the blue curves in
Figures 3(e) show that the solutions of the stochastic system
will fluctuate around the solution of the deterministic sys-
tem. Figures 3(b) and 3(d) show that system (2) has a unique
stationary distribution.

From ,eorems 2 and 3, we get the key values

R1 �
σβ

η η + ω + δ22/2􏼐 􏼑􏼐 􏼑
,

R2 �
σϕβ

δ21/2􏼐 􏼑 + η􏼐 􏼑 η + ω + δ22/2􏼐 􏼑􏼐 􏼑

(91)

easily, and we can find that R1 is monotonically decreasing
with respect to the intensity of white noise δ2 (see
Figure 4(a)), and R2 is monotonically decreasing with re-
spect to the intensity of white noises δ1 and δ2 (see
Figure 4(b)).

6. Discussion and Conclusion

In this paper, a simple stochastic model has been developed
to model the spread of plant diseases. By using the theory
and methods of stochastic differential equations, the dy-
namics of the system, such as the stochastic persistence of
the disease and the existence of a stationary distribution, are
discussed, and relevant sufficient conditions are obtained.

stochastic model
deterministic model

0 0.2 0.4 0.6 0.8 1 1.2
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Figure 3: Comparisons of solutions of system (1) and system (2), where δ1 � 0.04, δ2 � 0.03. (a) ,e sample paths of S. (b) ,e density
functions of S in system (2). (c) ,e sample paths of I. (d) ,e density functions of I in system (2). (e) ,e phase diagrams of S and I.
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Figure 4: ,e relationship of the key values and intensity of white noise for stochastic system (2), where
σ � 0.0015, β � 0.025,ϕ � 0.8, η � 0.002, andω � 0.005. (a) ,e relationship of R1 and δ2 for stochastic system (2). (b) ,e relationship of
R2 and δ1, δ2 for stochastic system (2).
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Our results show that the system is deeply affected by
stochastic interference.

However, in the real world, the spread of plant diseases is
very complicated. Plant diseases can be spread through air,
rain, soil, insects and other organisms, grafting, sowing and

transplanting, fertilizing, and irrigation [40, 41]. Consid-
ering two common transmission modes of plant disease
transmission: insect and plant cuttings, Van den Bosch et al.
[12] established the following model on the basis of model
(1) as follows:

dS(t)

dt
� σϕ + σ(1 − ϕ)

r(1 − p)I(t) + S(t)

(1 − p)I(t) + S(t)
− ηS(t) − βS(t)I(t),

dI(t)

dt
� σ(1 − ϕ)

(1 − r)(1 − p)I(t)

(1 − p)I(t) + S(t)
− ηI(t) − ωI(t) + βS(t)I(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(92)

In the model, σ represents the replanting rate, which is
divided into two parts in the replanted plants, ϕ is the
proportion of disease-free plants propagated in vitro, and
1 − ϕ is the proportion of plants cultivated from cuttings of
infected plants. r represents the probability that some in-
fected plants may become disease-free plants due to reversal.
Vision or other diagnostic methods are used to choose
whether the plant is retained. If it is identified as an infected
plant, it will be discarded with a probability of p. 1 − r

indicates the probability that the infected plant has not been
reversed and is still an infected plant. 1 − p indicates the
probability that the infected plant is not detected by the
diagnostic method and is retained. σ(1 − ϕ)(((1 − r)(1 −

p)I(t))/((1 − p)I(t) + S(t))) indicates the number of in-
fected plants cultivated from cuttings of infected plants
among all replanted plants. σ(1 − ϕ)((r(1 − p)I(t)+

S(t))/((1 − p)I(t) + S(t))) represents the number of dis-
ease-free plants cultivated from cuttings of infected plants
among all replanted plants. It is an interesting question to
consider the model (92) from a stochastic perspective to
explore the extinction or persistence of plant diseases, which
helps us understand the impact of randomness on the spread
of plant diseases. We will leave this question for future
research.
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