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-e integrated scheduling algorithm of process sequence time-selective strategy (ISAOPSTSS) is an advanced algorithm in the
field of integrated scheduling. -e proposed algorithm points out the shortcomings of the process sequence time-selective
strategy. Generally, there are too many “trial scheduling” times. -e authors propose that there is no need to make “trial
scheduling” at every “quasi-scheduling time point.” In fact, the process scheduling scheme can be obtained by trial scheduling on
some “quasi-scheduling time points.” -e scheduling result is the same as that of the sequence timing strategy. -e proposed
algorithm reduces the runtime of scheduling algorithm and improves the performance of the algorithm without reducing the
optimization effect.

1. Introduction

Scheduling is a key factor affecting the production efficiency
of manufacturing industry. Effective scheduling optimiza-
tion algorithm can maximize the production efficiency on
the premise of satisfying the constraints of enterprise orders,
equipment, and other hardware and software resources. At
present, scholars have done a lot of research on the work-
shop scheduling problem, andmost scheduling problems are
mainly divided into job shop [1–10] and flow shop [11–19].
-ese algorithms are mainly for scheduling optimization
when the workpiece is first processed and then assembled
into the product. At present, consumers have more and
more demand for individual products, and manufacturing
factories will face more andmore orders for multivariety and
small batch products.-is kind of situation if the production
is still in processing after assembling according to the tra-
ditional mode of production would split the product internal
parallel processing and assembly relations and reduce the
production efficiency. In order to seek solutions for this new
research field, Zhi-Qiang et al. [20] proposed an integrated
scheduling algorithm that simultaneously promotes product
processing and assembly, developed a series of scheduling
optimization algorithms, and expanded many new research
fields.

2. Review of Related Studies

At present, in the field of general integrated scheduling
research, the following research studies have been mainly
carried out.

Zhi-Qiang et al. [20] firstly pointed out the important
position of critical path in the process tree and emphasized
that the scheduling of processes with vertical relationship in
the process tree is closely related to the final scheduling
result. Yang et al. [21] put forward the strategy of layer
priority, short time, long path, and dynamic adjustment and
pointed out that adding the parallel relationship between
processes with horizontal relationship in the process tree can
make the scheduling result better. Yang et al. [22] pointed
out that reference [20] paid attention to the vertical structure
of product tree structure and ignored the horizontal parallel
processing of the same equipment process; at the same time,
it is pointed out that reference [21] focuses on the horizontal
structure of the product tree structure and considers the
vertical path on the basis of the horizontal layer. However,
the strategy of emphasizing horizontal and neglecting ver-
tical does not conform to themechanism of vertical-oriented
product scheduling. A scheduling scheme with vertical as the
main factor and horizontal as the main factor is proposed.
-e advantages of the algorithm are as follows: on the basis
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of both vertical and horizontal, the vertical scheduling is
further optimized, which is in line with the idea that the
integrated scheduling is mainly vertical. -e disadvantages
are as follows: although the dynamic critical path idea is used
to solve the problem that the serial process and parallel
process are pushed forward at the same time, the idea of the
algorithm is too macro, and due to the restriction of some
factors, it is impossible to consider the tightness between
serial processes.

Xin et al. [23] determined the scheduling sequence of
process according to the length of path according to the
scheduling algorithm in document [20], and forms parallel 4
processing among groups, resulting in more idle time. An
integrated scheduling algorithm based on device idle event
driven is proposed. On the basis of reference [23], Xin et al.
[24] proposed to further optimize the scheduling results by
using rollback strategy to schedule the processes with long
path of parent node first; the advantages are as follows: it
increases the utilization rate of equipment, maximizes the
“equipment busy” principle, reduces the idle time of
equipment, and makes the process more compact. -e
disadvantage is that “device-driven events” always look for
processes in the current schedulable parallel processes. From
the perspective of processes, the algorithm can be regarded
as an improved “layer first” scheduling under the “leaf
alignment” mode. -is algorithm increases the parallelism
and the processing waiting time between the serial processes
and ignores the impact of vertical scheduling optimization
on the scheduling results.

To sum up, the current research can optimize the parallel
scheduling of processes in products, but the scheduling
optimization of serial processes needs to be improved while
considering the parallelism. On the basis of the above re-
search, Xie et al. [25] proposed a time-selective integrated
scheduling algorithm considering the compactness of serial
operations (ISAOPSTSS). -e algorithm not only inherits
the advantages of the current algorithm to ensure the
parallelism between processes but also optimizes the com-
pactness between serial processes on the basis of it and
further emphasizes the scheduling idea of vertical optimi-
zation. It avoids the disadvantages of previous algorithms
and optimizes the scheduling results. However, ISAOPSTSS
in determining the scheduling scheme of the process is more
complex, resulting in operation redundancy. -is paper
proposes an improved algorithm, which can reduce exe-
cution time of algorithm and improve the performance of
the algorithmwithout reducing the optimization effect of the
algorithm.

3. Problem Description and Analysis

-e integrated scheduling problem is to study how to
schedule the processes to minimize the product completion
time when the product is in the production mode of as-
sembly while processing. Among them, the researchers
regard the processing and assembly of each process as a
whole, collectively referred to as processing. -e processing
time, processing equipment, and partial order of each
process in the product are clearly indicated by the product

processing tree. -e integrated dispatching shall meet the
following requirements:

(1) Each process can only be processed on one machine
(2) Each time a machine can only process one process
(3) If and only if all the preprocesses of a process are in

the state of finished processing (or no preprocesses),
the process can be processed

(4) -e processing of a certain process cannot be
interrupted

(5) -e difference between the processing end time of
the latest finishing process and the processing start
time of the earliest starting process is the total
processing time of the product

4. Analysis and Design of Scheduling Strategy

4.1. Analysis of Improved Process Sequence Time-Selective
Strategy. As shown in Figure 1, the reverse order process
tree of product A proposed in ISAOPSTSS is analyzed as
follows:

Step 1: apply the sequencing strategy of process se-
quence to sort the processes in product A. According to
the product process tree as shown in Figure 2, first
calculate the path length of all the leaf node processes,
and the results were as follows: A10: 10, A9: 16, A5: 21,
A8: 20, and A11: 9. -erefore, all nodes on the path
where A5 is located are selected as the first process
sequence, and these processes are added to the process
queue Qu. At this time, the sequence of processes in
queue Qu is A1, A2, A3, A4, and A5; at the same time,
delete these processes in the process tree of product
A. At this time, the processing tree of product A be-
comes a forest composed of multiple subtrees. Next, the
path length of leaf nodes in these subtrees is calculated
in turn, and the results were as follows: A10: 9, A9: 1,
A8: 20, and A11: 8. Select all nodes on the path where
A8 is located as the first process sequence, and add
these processes to the process queue Qu, and the se-
quence of processes in queue Qu is A1, A2, A3, A4, A5,
A6, A7, and A8, and these processes are deleted in the
process tree of product A. By analogy, the sequence of
processes in the process queue Qu corresponding to the
process tree of final product A is A1, A2, A3, A4, A5,
A6, A7, A8, A10, A11, and A9, and this sequence will be
used as the scheduling sequence of processes.
Step 2: schedule the longest operation sequence in the
queue Qu to the previous operation to form the initial
scheduling scheme, as shown in Figure 3.
Step 3: the improved sequencing strategy of process se-
quence is used to schedule the remaining processes in the
process queue Qu in turn. First, the process A6 is
scheduled.-e earliest start processing time of A6 is 1, and
the processing device isM3. Because A2 and A5 have been
scheduled on M3 device. -e “quasi-scheduling time
points” of A6 are the earliest start processing time 1, the
end processing time 4 of process A2, and the end
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processing time 21 of process A5. Try to schedule A6 at
these three time points, and get three trial scheduling
schemes as shown in Figure 4.

In the A6 “quasi-scheduling scheme” shown in Figure 4,
ISAOPSTSS calculated the total processing time of each
“quasi-process scheduling scheme” formed at each “quasi-
scheduling time point” and the scheme shown in Figure 4(b)
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Figure 1: -e flowchart of the process sequence time-selective scheduling strategy.
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is selected as the scheduling scheme of A6. scheme with the
least total processing time as the A6 scheduling scheme.

In fact, according to the characteristics of the process
sequence time-selective algorithm, it is not necessary to
calculate the total processing time of each “quasi-process
scheduling scheme” formed on each “quasi-scheduling time
point.”

First, the total processing time of the current basic
scheduling scheme is TD, and the processing time of the
current scheduling process is t. -e total processing time of
the current process P scheduling is Tp.

TD ≤Tp ≤TD + t. (1)

According to formula (1), the total processing time of
the current process P quasi-scheduling scheme is Tp, the
minimum processing time is TD, and the maximum pro-
cessing time is the sum of the total processing time t of the
current basic scheduling scheme and the processing time t
of the current scheduling process. It can be seen that if the
“quasi-scheduling time point” is used to schedule the
processes in the order from front to back and if the total
processing time of a quasi-process scheduling scheme is
TD, it can be determined that the quasi-process scheduling
scheme on the quasi-scheduling time point is the current
process scheduling scheme, and there is no need to cal-
culate the total processing time of the quasi-process
scheduling scheme on the quasi-scheduling time point after
the time point; of course, the total processing time TD of the
“quasi-operation scheduling scheme” generated from the
“quasi-scheduling time point” is equal to the total pro-
cessing time TD of the basic scheduling scheme; however,

due to the fact that the “quasi-scheduling time point” is
scheduled in the order from the front to the back in the trial
scheduling process, the former “quasi-scheduling time
point” is better than the latter in the case of the same total
processing time from the perspective of interprocess
compactness.

-erefore, the current process scheduling scheme will be
discussed in the following two situations:

(1) If the total processing time of the “quasi-process
scheduling scheme” generated at the current “quasi-
scheduling time point” is greater than that of the
current basic scheduling scheme, the total processing
time of the “quasi-process scheduling scheme”
generated at the next “quasi-scheduling time point”
will continue to be determined.

(2) If the total processing time of the “quasi-process
scheduling scheme” generated from the current
“quasi-scheduling time point” is equal to the total
processing time of the current basic scheduling
scheme, the calculation of the “quasi-scheduling
time point” behind will be stopped, and the
“quasi-process scheduling scheme” generated
from the current “quasi-scheduling time point”
will be taken as the current process scheduling
scheme.

4.2. Algorithm Design of Improved Process Sequence Time-
Selective Scheduling Strategy. -e specific steps of the im-
proved algorithm are as follows:

Step 1: set the basic scheduling scheme of process P as
D.
Step 2: in scheme D, k “quasi-scheduling time points”
on the processing equipment m of process P are found,
and they are queued QT from front to back, j� 1.
Step 3: judge whether the QTqueue is empty. If it is not
empty, make a queue operation on the QTi queue. Take
out the “quasi-scheduling time point” T and go to step
4. If it is empty, go to step 12.
Step 4: judge whether T is the idle time of processing
equipment M or the end time of a process in scheme
D. If not, go to step 5 and if so, go to step 6.
Step 5: the processing start time of the process involved
in time point T (the process being processed at time
point T) is set as the sum of Tand the processing time of
process P.
Step 6: time point T is used as the starting processing
time of process P to schedule process P.
Step 7: the process sequence time-selective adjustment
strategy [25] is used to adjust the process affected by
scheduling process P, forming the j-th quasi-process P
scheduling scheme.
Step 8: the total processing time TP[j] of the j-th quasi-
process P scheduling scheme is calculated.
Step 9: judge whether TP[j] � TD is true. If yes, go to
step 10; otherwise, go to step 11.
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A9/1/1 A5/3/6
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Figure 2: Process tree of product A.
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Figure 3: Gantt chart of initial scheduling scheme for product A.
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Step 10: the scheduling scheme obtained at time point T
is taken as the scheduling scheme of process P, and go
to step 14.
Step 11: j++, go to Step 3.
Step 12: the total processing time of j quasi-process P
scheduling schemes is compared, and the scheme with
the smallest total processing time is selected.
Step 13: judge whether the scheme is unique. If it is
unique, select it. If it is not unique, select the scheme
with the earliest processing start time of process P.
Step 14: exit.

-e flowchart of the process sequence time-selective
scheduling strategy is shown in Figure 1.

5. Algorithm Design

-e implementation steps of the improved algorithm are as
follows:

Step 1: the reverse order processing tree is obtained by
reversing the partial order relationship of processing
processes in the processing tree.
Step 2: the operation queue Qu is obtained by using the
process sequence sorting strategy.
Step 3: all processes in the longest process sequence on
Qu are queued and scheduled to form the initial
scheduling scheme P0.
Step 4: i� 1.
Step 5: judge whether Qu is empty. If it is empty, go to
step 8; otherwise, go to step 6.
Step 6: the queue Qu is queued to obtain the current
scheduling process P; the processing time is t, and the
processing equipment is M.
Step 7: the improved process sequence time-selective
strategy is applied to schedule P, and the process P
scheduling scheme is obtained; i++, go to step 5.
Step 8: form product scheduling Gantt chart and output.
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Complexity 5



6. Experimental Method

In order to verify the performance of the algorithm, a group of
experiments is designed for comparison. -e algorithm per-
formance is affected by the structure of product process tree, the
number of processing equipment, and the processing time.
-erefore, the proposed algorithm is compared with the
ISAOPSTSS algorithm from the perspective of different scale
parameters. First, each experiment will randomly generate 50
products. -e parameters in the process tree are randomly
generated. -e parameters are as follows: the structure of the
process tree (including the total number of layers of the process
tree, the number of processes in each layer, and the relationship
between the front and back of the process), the processing time
and equipment number of the process in the process tree, and
the total number of processing equipment of the process. Each
group of experiments will randomly generate 50 products
because the product structure is random, which can effectively
prove the effectiveness of the algorithm in different cases. -e
above two algorithms are implemented in C++ language by dev
c++ 4.9.9.2. Schedule the randomly generated product process
trees, set counters in the two algorithms to monitor the times of
“trial scheduling” in each algorithm, and record them for
comparison. Since the algorithm proposed in this paper is an
improvement on the algorithm proposed in ISAOPSTSS, if the
number of “trial scheduling” of the algorithm proposed in this
paper is less than that in ISAOPSTSS under different parameter

conditions, the effectiveness of the algorithm proposed in this
paper can be proved.

7. Results and Discussion

Six groups of experiments were designed as follows. In
Experiment 1, as shown in Figure 5, the proposed algorithm
is compared with the algorithm in ISAOPSTSS. In order to
compare, 50 product process trees were randomly generated,
the total number of processes is 30, and the total number of
processing equipment is 3, 6, and 9, respectively. In Ex-
periment 2, as shown in Figure 6, the proposed algorithm is
compared with the algorithm in ISAOPSTSS. -e com-
parison data are used to randomly generate 50 groups, the
total number of processes is 50, and the total number of
processing equipment is 3, 6, and 9, respectively. In Ex-
periment 3, as shown in Figure 7, the proposed algorithm is
compared with the algorithm in ISAOPSTSS. -e com-
parison data are used to randomly generate 50 groups, the
total number of processes is 80, and the total number of
processing equipment is 3, 6, and 9, respectively. In Ex-
periment 4, as shown in Figure 8, the proposed algorithm is
compared with the algorithm in ISAOPSTSS. -e com-
parison data are used to randomly generate 50 groups, the
total number of processes is 100, and the total number of
processing equipment is 3, 6, and 9, respectively. As shown
in Figure 9, Experiment 5 shows the average scheduling
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Figure 5: Comparison of scheduling times when the total number of processes is 30. (a) -e scheduling times of 30 processes in 3 devices.
(b) -e scheduling times of 30 processes in 6 devices. (c) -e scheduling times of 30 processes in 9 devices.
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times comparison between the proposed algorithm and
ISAOPSTSS algorithm when the total number of processes is
30, 50, 80, and 100, respectively. As shown in Figure 10,
Experiment 6 shows that in Experiment 1, when the total
number of devices is 3, 6, and 9, respectively, the average

scheduling times of the proposed algorithm are compared
with those of ISAOPSTSS.

Analysis of the above experimental data shows that the
number of trial scheduling times of the algorithm in this
paper is significantly reduced compared with the number of
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Figure 7: Comparison of scheduling times when the total number of processes is 80. (a) -e scheduling times of 80 processes in 3 devices.
(b) -e scheduling times of 80 processes in 6 devices. (c) -e scheduling times of 80 processes in 9 devices.
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Figure 8: Comparison of scheduling times when the total number of processes is 100. (a)-e scheduling times of 100 processes in 3 devices.
(b) -e scheduling times of 100 processes in 6 devices. (c) -e scheduling times of 100 processes in 9 devices.

0
0 10 20 30

�e product
40 50

200

400

�
e s

ch
ed

ul
in

g 
tim

es

600

800

1000

1200

�e ISAOPSTSS
�e proposed algorithm

(a)

0

200

400

�
e s

ch
ed

ul
in

g 
tim

es

600

800

1000

0 10 20 30
�e product

40 50

�e ISAOPSTSS
�e proposed algorithm

(b)

0
0 10 20 30

�e product
40 50

100
200
300
400
500

�
e s

ch
ed

ul
in

g 
tim

es

600
700
800

�e ISAOPSTSS
�e proposed algorithm

(c)

Figure 6: Comparison of scheduling times when the total number of processes is 50. (a) -e scheduling times of 50 processes in 3 devices.
(b) -e scheduling times of 50 processes in 6 devices. (c) -e scheduling times of 50 processes in 9 devices.
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Figure 9: -e comparison chart of the average scheduling times when the total number of processes is 30, 50, 80, and 100, respectively.
(a) Comparison chart of mean scheduling times when the number of processes is 30. (b) Comparison chart of mean scheduling times when
the number of processes is 50. (c) Comparison chart of mean scheduling times when the number of processes is 80. (d) Comparison chart of
mean scheduling times when the number of processes is 100.
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Figure 10: -e comparison chart of the average scheduling times when the total number of devices is 3, 6, and 9, respectively.
(a) Comparison chart of mean scheduling times when the number of devices is 3. (b) Comparison chart of mean scheduling times
when the number of devices is 6. (c) Comparison chart of mean scheduling times when the number of devices is 9.
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pilot scheduling in ISAOPSTSS, and the reduction ratio is
about 30%.

8. Conclusions

-e algorithm proposed in this paper is a further optimi-
zation of the operation sequence timing algorithm. On the
premise of ensuring the optimization results, it simplifies the
algorithm steps, reduces the algorithm execution time, and
improves the algorithm performance. At present, the
ISAOPSTSS algorithm has been applied in batch processing
scheduling and two-job-shop scheduling and other fields. It
may be the next step to apply the proposed algorithm in
these fields to improve the performance of the algorithm.
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