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Modelling data in applied areas particularly in reliability engineering is a prominent research topic. Statistical models play a vital
role in modelling reliability data and are useful for further decision-making policies. In this paper, we study a new class of
distributions with one additional shape parameter, called a new generalized exponential-X family. Some of its properties are taken
into account. -e maximum likelihood approach is adopted to obtain the estimates of the model parameters. For assessing the
performance of these estimators, a comprehensive Monte Carlo simulation study is carried out. -e usefulness of the proposed
family is demonstrated by means of a real-life application representing the failure times of electronic components. -e fitted
results show that the new generalized exponential-X family provides a close fit to data. Finally, considering the failure times data,
the Bayesian analysis and performance of Gibbs sampling are discussed. -e diagnostics measures such as the Raftery–Lewis,
Geweke, and Gelman–Rubin are applied to check the convergence of the algorithm.

1. Introduction

Generally speaking, lifetime distributions have been fre-
quently applied to model lifetime data in many fields es-
pecially in reliability engineering and biomedical sciences.
Due to the variability of the data, the selection of the sta-
tistical models greatly affects the quality of the modelling to
provide the best description of the phenomena under
consideration, for instance, data modelling with the expo-
nential and Rayleigh models when the data experience the
decreasing failure rate, or the utilization of the Rayleigh
model when the data has a constant failure behaviour.
Henceforth, it is always of interest to provide the best fit to
data under consideration. In such situations, the utilization
of the Weibull model may be a suitable choice to analyze

data having increasing, decreasing, or constant failure rates,
for example, modified Weibull distribution [1], beta mod-
ified Weibull distribution [2], and a new modified Weibull
distribution [3].

However, in a number of situations, where data behaves
nonmonotonically such as unimodal, modified unimodal, or
bathtub shaped failure rates, then the Weibull model is not
a good candidate model to use. So, for accurate and precise
data modelling, new extensions and modifications of the
existing models are required. -erefore, many statistical
methods are designed to find new extensions of the existing
models to provide a better fit to the data of interest.

In the literature, most of themodifications of theWeibull
model have been derived by introducing new families of
distributions; see the beta extended Weibull family [4], the
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Weibull-G family [5], a new Weibull-X family [6]. For
a more brief review, we refer to Ahamd et al. [7].

We are also continuing this research area and proposing
a new statistical distribution family, namely, a new gener-
alized exponential-X (NGE-X) family of distributions.

Genesis: let p(t) be the probability density function
(pdf) of a random variable, say T, where T ∈ [κ1, κ2],
− ∞≤ κ1 < κ2 <∞, and let W[F(x)] be a function of cu-
mulative distribution function (cdf) F(x) of a random
variable, say X, satisfying the conditions given below:

(1) W[F(x)] ∈ [κ1, κ2]
(2) W[F(x)] is differentiable and monotonically

increasing
(3) W[F(x)]⟶ κ1 as x⟶ − ∞ and W[F(x)]

⟶ κ2 as x⟶∞

-e cdf of the T-X family of distributions [8] is defined
by

G(x) � 􏽚
W[F(x)]

κ1
p(t)dt, x ∈ R, (1)

where W[F(x)] satisfies the conditions stated above.-e pdf
corresponding to (1) is

g(x) �
z

zx
W[F(x)]􏼨 􏼩v W[F(x)]{ }, x ∈ R. (2)

Using the approach of the T-X method, one can in-
troduce newmembers of the survival family via the cdf given
by

G(x) � 1 − 􏽚
W[F(x)]

κ1
v(t)dt, x ∈ R, (3)

where F(x) � 1 − F(x) is the survival function of the
baseline distribution.

Taking inspiration from (1), we introduce a new flexible
class of distributions, namely, a new generalized exponen-
tial-X (NGE-X) family of distributions. Let T ∼ exp (1);
then, its cdf is given by

P(t) � 1 − e
− t

, t≥ 0. (4)

-e density function corresponding to (4) is

p(t) � e
− t

, t> 0. (5)

If p(t) follows (5) and setting W[F(x)] � − log([1−

F(x; ξ)2]θ/eθF(x;ξ)2) in (1), we define the cdf of the NGE-X
family given by

G(x; θ, ξ) � 1 −
1 − F(x; ξ)

2
􏽨 􏽩

θ

e
θF(x;ξ)2

⎛⎝ ⎞⎠, x ∈ R. (6)

-e corresponding pdf is

g(x; θ, ξ) �
2θf(x; ξ)F(x; ξ) 1 − F(x; ξ)

2
􏽨 􏽩

θ− 1

e
θF(x;ξ)2

2 − F(x; ξ)
2

􏽮 􏽯, x ∈ R.

(7)

Based on the proposed procedure defined in (6), a special
case is being studied, namely, a new generalized exponential-
Weibull (NGE-Weibull), in the belief that it will be most
effective in all areas where the Weibull model is applicable.
-e new distribution is a flexible model that is able to play an
important role in reliability analysis as it can take on a va-
riety of shapes of the failure rate function.

Furthermore, we consider the maximum likelihood
and Bayesian approaches in order to estimate the pa-
rameters of the model. In the Bayesian discussion, we
consider different types of symmetric and asymmetric loss
functions including weighted squared error, squared error
loss, precautionary, K-loss, and modified squared error
loss function to estimate the unknown parameters of the
NGE-Weibull model. Since all the parameters are positive,
we use gamma prior distributions. Bayesian 95% credible
and highest posterior density (HPD) intervals [9] are
given for each of the proposed model parameters. -e
posterior samples were extracted via the Gibbs sampling
process. From the graphical point of view, we sketch the
posterior summary plots. Next, to explore the MCMC
process in Bayesian analysis, we used the Gelman–Rubin,
Geweke, and Raftery–Lewis diagnostic methods for
testing the convergence of the algorithm.

-e remaining sections of the article are organized as
follows: Section 2 offers the proposed model with its
graphical illustrations. In Section 3, the statistical
properties are obtained. Section 4 is devoted to the
parameter estimation by maximum likelihood estima-
tion (MLE) and Monte Carlo simulation study. In Sec-
tion 5, the proposed distribution is illustrated by
analyzing the failure time data. -e Bayesian analysis is
provided in Section 6. Finally, this research is concluded
in the last section.

2. Submodel Description

-e two-parameter Weibull distribution (ξ � α, c) has pdf,
cdf, survival function (sf ), hazard rate function (hrf), and
cumulative hazard rate function (chrf ) given by
f(x; ξ) � αcxα− 1e− cxα , F(x; ξ) � 1 − e− cxα , S(x; ξ) � e− cxα ,
h(x; ξ) � αcxα− 1 and H(x; ξ) � cxα, respectively. -en, the
cdf and pdf of the NGE-Weibull distribution are given by
(for x> 0)
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G(x; θ, ξ) � 1 −
1 − 1 − e

− cxα
􏼐 􏼑

2
􏼔 􏼕

θ

e
θ 1− e− cxα( )

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

g(x; θ, ξ) �
2θαcx

α− 1
e

− cxα
1 − e

− cxα
􏼐 􏼑 1 − 1 − e

− cxα
􏼐 􏼑

2
􏼔 􏼕

θ− 1

e
θ 1− e− cxα( )

2 2 − 1 − e
− cxα

􏼐 􏼑
2

􏼚 􏼛,

(8)

respectively.
-e NGE-Weibull density and hazard rate plots for

chosen parameter values are provided, respectively, in
Figures 1 and 2.

3. Mathematical Properties

-is section is devoted to deriving the mathematical
properties of the NGE-X distributions including the quantile
function, expansions of cdf and pdf, reliability, random
number generation, rth noncentral moments, and entropy
with numerical illustrations. Furthermore, a characteriza-
tion theorem extending the NGE-X class of distributions is
also derived.

3.1. Quantile Function. Letting 0<p< 1, we must solve the
following equation for Q(p):

p � 1 −
1 − F(Q(p))

2
􏼐 􏼑

θ

e
θF(Q(p))2

. (9)

Letting y � F(Q(p)), then solving the following equa-
tion for y (using software like MATHEMATICA)

p � 1 −
1 − y

2
􏼐 􏼑

θ

e
θy2 , (10)

it can be shown that

F(Q(p)) �

��������������������

1 − W − e
θ
(p − 1)􏼐 􏼑

1/θ
􏼒 􏼓

􏽲

, (11)

where W(z) gives the principal solution for m in z � mem.
-us,

Q(p) � F
− 1

��������������������

1 − W − e
θ
(p − 1)􏼐 􏼑

1/θ
􏼒 􏼓

􏽲

􏼨 􏼩, (12)

where F− 1 is the quantile of the baseline distribution with cdf
F(x).

Remark 1. -roughout, we assume the Weibull distribution
has quantile:

Q(x, a, b) � b(− log(1 − x))
1/a

, (13)

where a, b> 0 and 0< u< 1. Whenever the baseline distri-
bution is Weibull, we refer to the submodel as
NGE − Weibull(θ, a, b).

Some numerical values of the quantile measure are
provided in Table 1.

-e quantile function is used to measure the effect of the
shape parameters on the skewness and kurtosis. Henceforth,
using the quantile function of the NGE-Weibull distribution,
we obtained the expressions for skewness and kurtosis. -e
formulas for Bowley’s skewness and Moor’s kurtosis are
given

skewness �
Q(1/4) + Q(3/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
,

kurtosis �
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
,

(14)

receptively.
For c � 1 and different values of α and θ, graphs for the

skewness and kurtosis of the NGE-Weibull are sketched in
Figures 3 and 4.

3.2. Expansion forDistributionFunction. Using the binomial
theorem, we have

1 − F(x)
2

􏼐 􏼑
θ

� 􏽘
θ

k�0

θ
k

􏼠 􏼡(− 1)
k
F(x)

2k
. (15)

Using the power series representation for the expo-
nential function (EP), we have

e
− θF(x)2

� 􏽘
∞

q�0

(− 1)
qθq

F(x)
2q

q!
. (16)

Put

Ωk,q �

θ

k

⎛⎝ ⎞⎠(− 1)
k(− 1)

qθq

q!
. (17)

It now follows that the cdf can be expressed as

1 − 􏽘

θ

k�0
􏽘

∞

q�0
Ωk,qF(x)

2k+2q
. (18)

3.3. Expansion for Density Function. From the binomial
theorem, we have

1 − F(x)
2

􏼐 􏼑
θ− 1

� 􏽘
θ− 1

k�0

θ − 1

k
􏼠 􏼡(− 1)

k
F(x)

2k
. (19)

By the power series representation for the exponential
function, we can write
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Table 1: Some quantile values.

x Q(x) of NGE-Weibull (3, 1, 1)
0.1 0.14182
0.2 0.213124
0.3 0.277044
0.4 0.340545
0.5 0.407744
0.6 0.482993
0.7 0.573055
0.8 0.692116
0.9 0.884714

α = 1.2, θ = 0.5, γ = 1
α = 1.8, θ = 1.5, γ = 1
α = 0.2, θ = 1.2, γ = 1

α = 3.5, θ = 1.4, γ = 0.2
α = 1.8, θ = 2.5, γ = 0.5
α = 2.5, θ = 1.2, γ = 0.2

0.0
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x
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x

Figure 1: Density plots of the NGE-Weibull distribution.

α = 0.8, θ = 0.5, γ = 1.8
α = 0.2, θ = 1.0, γ = 1
α = 1.5, θ = 0.8, γ = 1

α = 1.2, θ = 0.7, γ = 0.5
α = 1.2, θ = 0.4, γ = 1.9
α = 0.7, θ = 0.9, γ = 2.3
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Figure 2: Hazard rate plots of the NGE-Weibull distribution.
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e
− θF(x)2

� 􏽘
∞

q�0

(− 1)
qθq

F(x)
2q

q!
. (20)

Put

Ωk,q �

θ − 1

k

⎛⎝ ⎞⎠
(− 1)

k+qθq

q!
. (21)

It follows that we can write

1 − F(x)
2

􏼐 􏼑
θ− 1

e
− θF(x)2

� 􏽘
θ− 1

k�0
􏽘

∞

q�0
Ωk,qF(x)

2k+2q
. (22)

Finally, the expansion for the pdf is given as

2θf(x) 􏽘
θ− 1

k�0
􏽘

∞

q�0
Ωk,qF(x)

2k+2q+1 2 − F(x)
2

􏼐 􏼑. (23)

3.4. Reliability. In the concept of reliability theory, we know
that the life of a component has a random strength with
random stress. Random strength can be modelled by
a random variable, say Z, and the random stress can be
modelled by a random variable, say Y. -e probability that
the component works satisfactorily isR � P(Y<Z), which is
a known measure of component reliability for many ap-
plications. In particular,

R � 􏽚
∞

− ∞
kZ(x)KY(x)dx, (24)
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Figure 3: Plots for the skewness and kurtosis of the NGE-Weibull distribution.
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Figure 4: Plots for the skewness and kurtosis of the NGE-Weibull distribution.
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where k is a pdf and K is a cdf.
Let (θ; ξ) be a vector of parameters associated with the

NGE-X distributions, where ξ is a vector of parameters
associated with the distribution of the random variable X. If
Z is distributed as NGE-Xwith parameter vector (θ1, ξ1) and
Y is distributed as NGE-X with parameter vector (θ2, ξ2),
then from the expansion of the pdf and cdf, we have

R � 􏽚
∞

− ∞
kZ x; θ1, ξ1( 􏼁KY x; θ2, ξ2( 􏼁dx, (25)

where kZ(x; θ1, ξ1) is given by

2θ1f x; ξ1( 􏼁 􏽘

θ1− 1

k�0
􏽘

∞

q�0
Ωk,qF x; ξ1( 􏼁

2k+2q+1 2 − F x; ξ1( 􏼁
2

􏼐 􏼑,

(26)

with

Ωk,q �
θ1 − 1

k

⎛⎝ ⎞⎠
(− 1)

k+qθq
1

q!
, (27)

and KY(x; θ2, ξ2) is given by

1 − 􏽘

θ2

m�0
􏽘

∞

r�0
Ωm,rF x; ξ2( 􏼁

2m+2r
, (28)

with

Ωm,r �
θ2

m

⎛⎝ ⎞⎠(− 1)
m(− 1)

rθr
2

r!
. (29)

3.5. Random Number Generation. Random numbers from
the NGE-X distributions can be obtained from

X � F
− 1

��������������������

1 − W − e
θ
(U − 1)􏼐 􏼑

1/θ
􏼒 􏼓

􏽲

􏼨 􏼩, (30)

where F− 1 is the quantile of the baseline distribution with cdf
F(x), W(z) gives the principal solution for m in z � mem,
U ∼ uniform(0, 1), and θ > 0.

3.6. @e rth Noncentral Moments. We know the random
variable:

X � F
− 1

��������������������

1 − W − e
θ
(U − 1)􏼐 􏼑

1/θ
􏼒 􏼓

􏽲

􏼨 􏼩, (31)

where F− 1 is the quantile of the baseline distribution with cdf
F(x), W(z) gives the principal solution for m in z � mem,
U ∼ uniform(0, 1), and θ> 0, following the NGE-X family of
distributions. According to Nasiru et al. [10], we can write

QX(u) � 􏽘
∞

i�0
hiu

i
, (32)

where the coefficients are suitably chosen real numbers that
depend on the parameters of the F(x) distribution. For
a power series raised to a positive integer r≥ 1, we have

QX(u)( 􏼁
r

� 􏽘
∞

i�0
hiui

⎛⎝ ⎞⎠

r

� 􏽘
∞

i�0
δr,iu

i
, (33)

where δr,i are obtained from δr,i � (ih0)
− 1 􏽐

i
s�1[s(r + 1) − i]

hsδr,i− s with δr,0 � hr
0 for i � 1, 2, . . .; see Gradshteyn and

Ryzhik [11]. -us, we have the following:

μr
′ � 􏽘
∞

i�0
δr,iE

��������������������

1 − W − eθ(U − 1)( 􏼁
1/θ

􏼐 􏼑

􏽱

􏼒 􏼓
i

􏼢 􏼣, (34)

where E(·) is an expectation. By the Binomial series, we can
write

��������������������

1 − W − eθ(U − 1)( 􏼁
1/θ

􏼐 􏼑

􏽱

􏼒 􏼓
i

, (35)

as

􏽘

∞

k�0

i

2

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

k
W − e

θ
U + e

θ
􏼐 􏼑

(1/θ)
􏼔 􏼕

k

. (36)

By integer powers of the Lambert W function, we can
write

W − e
θ
U + e

θ
􏼐 􏼑

(1/θ)
􏼔 􏼕

k

, (37)

as

􏽘

∞

n�k

− k(− n)
n− k− 1

(n − k)!
− e

θ
U + e

θ
􏼐 􏼑

(n/θ)
. (38)

By the binomial series, we can write

− e
θ
U + e

θ
􏼐 􏼑

(n/θ)
� e

n
(1 − U)

(n/θ)
, (39)

as

e
n

􏽘

∞

m�0

n

θ

m

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠(− 1)

m
U

m
. (40)

Put

Ωi,k,n,m � δr,i

i

2

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)
k− k(− n)

n− k− 1

(n − k)!
e

n

n

θ

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(− 1)

m
.

(41)

-us, the rth noncentral moment is given by

μr
′ � 􏽘
∞

i�0
􏽘

∞

k�0
􏽘

∞

n�k

􏽘

∞

m�0
Ωi,k,n,mE U

m
􏼂 􏼃. (42)

Some numerical descriptions of the ordinary moments
are presented in Table 2.
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Table 2: Some quantile values.

x E[Xr] of NGE-Weibull (3, 1,1)
1 0.473155
2 0.32289
3 0.291456
4 0.332991
5 0.468629
6 0.796351
7 1.60647
8 3.78649
9 10.2706
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Figure 5: MLEs and MSEs plots of the NGE-Weibull distribution for α � 1.3, θ � 0.8, and c � 0.5.
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Figure 6: Biases and absolute biases plots of the NGE-Weibull distribution for α � 1.3, θ � 0.8, and c � 0.5.
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3.7. Renyi Entropy. Using the binomial series, we can write
(1 − F(x)2)δ(θ− 1), as

􏽘

∞

k�0

δ(θ − 1)

k
􏼠 􏼡(− 1)

k
F(x)

2k
. (43)

Using the power series representation for the expo-
nential function, we can write e− δθF(x)2 , as

􏽘

∞

q�0

(− 1)
qδqθq

F(x)
2q

q!
. (44)

By the binomial theorem, we can write (2 − F(x)2)δ as

􏽘

δ

m�0

δ
m

􏼠 􏼡2δ− m
(− 1)

m
F(x)

2m
. (45)

Put

Ωk,q,m � (2θ)
δ

δ(θ − 1)

k

⎛⎝ ⎞⎠(− 1)
k(− 1)

qδqθq

q!

δ

m

⎛⎝ ⎞⎠2δ− m
(− 1)

m
.

(46)
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Figure 8: Biases and absolute biases plots of the NGE-Weibull distribution for α � 1.5, θ � 1.2, and c � 0.8.
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Figure 7: MLEs and MSEs plots of the NGE-Weibull distribution for α � 1.5, θ � 1.2, and c � 0.8.
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-us, the Renyi entropy for δ > 0, δ ≠ 1, can be expressed
as

1
1 − δ

log 􏽘
∞

k�0
􏽘

∞

q�0
􏽘

δ

m�0
Ωk,q,m 􏽚

∞

− ∞
f(x)

δ
F(x)

δ+2(k+q+m)dx
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(47)

3.8. Characterization @eorem. It is known that the failure
rate function, hF, of a twice differentiable function, F, sat-
isfies the first-order differential equation:

f′(x)

f(x)
�

hF
′(x)

hF(x)
− hF(x). (48)

In this section, we present a Weibull-NGE-X distribu-
tion. -e result here is inspired by Alizadeh et al. [12]. First,
let us introduce the following.

Definition 1. We say a random variable X follows aWeibull-
G model if its cdf is given by

F(x; ξ) � 1 − e
− (G(x;ξ)/G(x;ξ))α

, (49)
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Figure 9: MLEs and MSEs plots of the NGE-Weibull distribution for α � 0.9, θ � 0.6, and c � 1.2.
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Figure 10: Biases and absolute biases plots of the NGE-Weibull distribution for α � 0.9, θ � 0.6, and c � 1.2.
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where G is some baseline distribution, x ∈ Supp(G), and ξ is
a vector of parameters in the baseline distribution whose
support depends on G, α> 0, and G � 1 − G.

-e pdf of the Weibull-G model is given by

f(x; ξ) � αg(x; ξ)
G(x; ξ)

α− 1

G(x; ξ)
α+1e

− (G(x;ξ)/G(x;ξ))α
, (50)

where g is the pdf of the baseline distribution. Clearly, the
hazard rate function of the Weibull-G distribution is given
by

hF(x; ξ) � αg(x; ξ)
G(x; ξ)

α− 1

G(x; ξ)
α+1 . (51)

Theorem 1. Let X: Ω↦R be a continuous random variable.
@e pdf of X is

αg(x; ξ)
G(x; ξ)

α− 1

G(x; ξ)
α+1e

− (G(x;ξ)/G(x;ξ))α
, (52)

for some baseline distribution with pdf g, cdf G, α> 0, and
G � 1 − G, if and only if its hazard rate function hF(x)

satisfies the differential equation given by

hF
′(x) − g′(x)g(x)

− 1
hF(x) � αg(x)

d
dx

G(x)
α− 1

G(x)
α+1 , (53)

with x ∈ R, with the initial condition hF(0) � 0 for α> 1.

Proof. If X has pdf as stated in the theorem, then the
differential equation as stated in the theorem holds. Now if
the stated differential equation holds, then

d
dx

g(x)
− 1

hF(x)􏽮 􏽯 � α
d
dx

G(x)
α− 1

G(x)
α+1 , (54)

or

hF(x; ξ) � αg(x; ξ)
G(x; ξ)

α− 1

G(x; ξ)
α+1 , (55)

which is the hazard function of Weibull-G
Clearly, a characterization of the Weibull-NGE-X dis-

tribution is obtained from the above theorem by letting the
baseline pdf and cdf be given as in Section 1. □

4. Estimation of the Parameters and Monte
Carlo Simulation

-e section deals with the derivation of the MLEs (maxi-
mum likelihood estimators) of distribution of the NGE-
textit X and then conducts a simulation study using the
Monte Carlo approach to evaluate the MLEs.

4.1. Maximum Likelihood Estimation. Consider a set of
observed values, say x1, x2, . . . , xn, observed from the NGE-
X distributions with parameters α and ξ. -e total LLF (log-
likelihood function) for Θ � (α, ξ) is

ℓ(Θ) � n log 2 + n log θ + 􏽘
n

i�1
log f(x; ξ) + 􏽘

n

i�1
log F(x; ξ)

+(θ − 1) 􏽘
n

i�1
log 1 − F(x; ξ)

2
􏼐 􏼑

+ 􏽘
n

i�1
log 2 − F(x; ξ)

2
􏼐 􏼑 − θ􏽘

n

i�1
F(x; ξ)

2
.

(56)

-e partial derivatives of the LLF are given by

z

zθ
ℓ(Θ) �

n

θ
+ 􏽘

n

i�1
log 1 − F(x; ξ)

2
􏼐 􏼑 − θ 􏽐

n

i�1
F(x; ξ)

2
, (57)

and

z

zξ
ℓ(Θ) � 􏽘

n

i�1

zf(x; ξ)/zξ
f(x; ξ)

+ 􏽘
n

i�1

zF(x; ξ)/zξ
F(x; ξ)

− (θ − 1) 􏽘

n

i�1

zF (x; ξ)
2/zξ

1 − F(x; ξ)
2

􏼐 􏼑
− 􏽘

n

i�1

zF (x; ξ)
2/zξ

2 − F(x; ξ)
2

􏼐 􏼑

− θ􏽘
n

i�1
zF (x; ξ)

2
zξ.

(58)

Setting these equations to zero and solving them si-
multaneously yields the MLEs of θ and ξ.

4.2. Monte Carlo Simulation Study. In this subsection, the
MLEs of the NGE-Weibull distribution are evaluated via the
Monte Carlo simulation approach. Measures such as mean
square error (MSE), biases, and absolute biases are used for
evaluation purposes. We generate N � 750 of samples size
n � 25, 50, . . . , 750 from the proposed NGE-Weibull model
using the inverse transformed technique. For each generated
sample, MLEs (􏽢α, 􏽢θ, 􏽢c) of the NGE-Weibull are obtained.
-e estimated biases and MSEs are calculated via the for-
mulas given by

Biasε(n) �
1
N

􏽘

N

i�1
􏽢εi − ε( 􏼁,

MSEε(n) �
1
N

􏽘

N

i�1
􏽢εi − ε( 􏼁

2
,

(59)

respectively.
Figures 5–10 illustrate the simulation results for the

above measures. -ese plots show that increasing sample
size n results in decreasing the estimated biases. Also, in-
creasing sample size n results in decreasing the estimated
MSEs decay toward zero as n increases. -ese results reveal
the efficiency as well as the consistency property of the
MLEs.
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5. Data Analysis

-is section is devoted to illustrating the NGE-Weibull
distribution by analyzing an application taken from re-
liability engineering. -e data set representing the failure
times of 50 electronic components (per 1000h) is given by
0.036, 0.058, 0.061, 0.074, 0.078, 0.086, 0.102, 0.103, 0.114,
0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538,
0.570, 0.574, 0.590, 0.618, 0.645, 0.961, 1.228, 1.600, 2.006,
2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931, 4.073,
4.393, 4.534, 4.893, 6.274, 6.816, 7.896, 7.904, 8.022, 9.337,
10.940, 11.020, 13.880, 14.730, 15.080. For more details
about this data, see Aryal and Elbatal [13].

-e MLEs of the NGE-Weibull and other competing
distributions are determined, and seven analytical mea-
sures including three goodness-of-fit statistics such as
Cramer–Von Mises (CM) test statistic, Anderson Darling
(AD) test statistic, and Kolmogorov–Smirnov (KS) sta-
tistic along with p-value and four discrimination measures
such as Akaike information criterion (AIC), Consistent
Akaike Information Criterion (CAIC), Bayesian in-
formation criterion (BIC), and Hannan–Quinn in-
formation criterion (HQIC) are considered. For more
details about these measures, we refer to Ahmad et al. [7].
All the computations have been carried via the optim() R-
function with the argument method � “BFGS”; see
Appendix.

In general, a model with the smaller values of these
statistics represents the better fit to data. We fit the proposed
model and other models to the failure time data set. -e
other fitted models are: the two-parameter Weibull and
three-parameter exponentiated Weibull (EW) of Modhalkar
and Sarivasta [14] and Marshall–Olkin Weibull (MOW) of
the Marshall and Olkin [15]. -e pdfs of the competing
models are as follows:

(i) Weibull distribution:

f(x) � αcx
α− 1

e
− cxα

, x, α, c> 0. (60)

(ii) EW distribution:

f(x) � αcθx
α− 1

e
− cxα

1 − e
− cxα

􏼐 􏼑
θ− 1

, x, α, c, θ> 0.

(61)

(iii) MOW distribution:

f(x) �
αcσx

α− 1
e

− cxα

σ +(1 − σ) 1 − e
− cxα

􏼐 􏼑
, x, α, c, σ > 0. (62)

-e MLEs and their corresponding standard errors (in
parentheses) of the model parameters are presented in
Table 3. -e discrimination measures of all the competing
models are presented in Table 4 whereas the goodness-of-fit
measures are reported in Table 5.

-e results of the NGE-Weibull are compared with the
Weibull, EW, and MOW models in Tables 4 and 5. From
these results, we see that NGE-Weibull has the lowest values

for the considered measures.-erefore, we conclude that the
NGE-Weibull model can be selected as the best competitive
model for data related to the failure times of the electronic
devices.

In addition to the numerical results provided in Tables 4
and 5, the plots of the fitted density and distribution function
of the NGE-Weibull model are displayed in Figure 11. -e
Kaplan–Meier survival and the probability-probability (PP)
are shown in Figure 12. From the results provided in Tables 4
and 5 and displayed graphically in Figures 11 and 12, we see
that the NGE-Weibull provides a close fit to the reliability
engineering data.

In addition, for the failure times of electronic com-
ponents, we calculate the KS statistical values of the NGE-
Weibull distribution and other competitors. Subsequently,
we applied the parametric bootstrap method [16] and
bootstrapped the p value for all distributions. -e KS
statistic and the corresponding bootstrapped p value are
reported in Table 6. Based on the results presented in
Table 6, we see that NGE-Weibull is a good competitor
among the competing models for modeling the failure
times of the electronic component’s data.

6. Bayesian Estimation

-e Bayesian inference has been taken into consideration by
a number of researchers. In the Bayesian analysis, we do not
know the exact value of the model parameters, which can be
negatively affected by the loss when selecting an estimator.
-ese losses can be measured by the function of the pa-
rameter and the corresponding estimator. Here, in the
Bayesian analysis, we consider different types of symmetric
and asymmetric loss functions; see Table 7.

For further details, we refer to Kharazmi et al. [17] and
Ahmad et al. [7].

Next, we provide a Bayesian discussion for estimating
the parameters of NGE-Weibull distribution via analyzing
complete sample data.

6.1. Joint Posterior and Marginal Posterior Distributions.
Assume that the parameters α, c, and θ of the NGE-Weibull
have independent prior distributions defined by

α ∼ Γ α0, α1( 􏼁, c ∼ Γ c0, c1( 􏼁, θ ∼ Γ θ0, θ1( 􏼁, (63)

where α0, α1, c0, c1, θ0, θ1 > 0. Consequently, the joint prior
density function can be formulated as follows:

π(α, c, θ) �
αα01 c

c0
1 θ

θ0
1

Γ α0( 􏼁Γ c0( 􏼁Γ θ0( 􏼁
αα0− 1

c
c0− 1θθ0− 1

e
− α1α+c1c+θ1θ( ).

(64)

For simplicity, let us define the function ζ as

ζ(α, c, θ) � αα0− 1
c

c0− 1θθ0− 1
e

− α1α+c1c+θ1θ( ), α> 0, c> 0, θ> 0.

(65)

-e joint posterior distribution defined from equation
(64) and the likelihood function L(data) is
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Table 3: -e MLEs with standard errors of the competing models for the failure time data.

Dist. 􏽢α 􏽢c 􏽢θ 􏽢σ
NGE-Weibull 0.657 (0.0735) 4.251 (1.5272) 0.125 (0.0550) —
Weibull 0.661 (0.0747) 0.541 (0.0994) — —
EW 0.740 (0.5262) 0.419 (0.6802) 0.824 (0.9068) —
MOW 0.727 (0.1395) 0.380 (0.2614) — 0.604 (0.5531)

Table 4: -e discrimination measures of the competing models for the failure time data.

Dist. AIC BIC CAIC HQIC
NGE-Weibull 206.168 211.904 206.690 208.353
Weibull 208.728 212.552 208.984 210.184
EW 210.716 216.452 211.238 212.901
MOW 210.432 216.168 210.954 212.617

Table 5: -e analytical measures of the competing models for the failure time data.

Dist. CM AD KS p value
NGE-Weibull 0.121 0.758 0.110 0.535
Weibull 0.152 0.954 0.126 0.365
EW 0.150 0.947 0.129 0.344
MOW 0.152 0.952 0.114 0.491
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Figure 11: Plots of fitted pdf and cdf of the NGE-Weibull distribution.
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Figure 12: Plots of the PP and the Kaplan–Meier survival function of the NGE-Weibull distribution.

12 Complexity



π∗(α, c, θ|data)∝ π(α, c, θ)L(data). (66)

-erefore, the joint posterior pdf can be expressed by

π∗ α, c, θ| x( 􏼁 � Kζ(α, c, θ)L x,Ψ( 􏼁, (67)

where

L x;Ψ( 􏼁 � (2αcθ)
n

􏽙

n

i�1

x
α− 1
i e

− θ 1− e
− cxα

i( 􏼁
2
+cxα

i􏽮 􏽯 1 − e
− cxα

i􏼐 􏼑

1 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓
1− θ

2 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓

,

(68)

Ψ � (α, c, θ), and K is given as

K
− 1

� 􏽚
∞

0
􏽚
∞

0
􏽚
∞

0
ζ(α, c, θ)L x,Ψ( 􏼁zα zc zθ. (69)

Moreover, the marginal posterior pdf of α, c, and θ
assuming that Ψ � (Ψ1,Ψ2,Ψ3) � (α, c, θ), can be given as

π Ψi| x( 􏼁 � 􏽚
∞

0
􏽚
∞

0
π∗ Ψ| x( 􏼁zΨjzΨk, (70)

where i, j, k � 1, 2, 3, i≠ j≠ k, and Ψi is the ith member of
a vector Ψ.

6.2. Bayesian Point Estimation. Under the marginal poste-
rior pdf as in (70) and the loss functions which are given in
Table 7, the Bayesian point estimation for the parameter
vector Ψ � (Ψ1,Ψ2,Ψ3) � (α, c, θ) is obtained via mini-
mizing the expectation of loss function under the marginal
posterior pdf as follows:

argminδ 􏽚
∞

0
L Ψi, δ( 􏼁π Ψj| x􏼐 􏼑zΨi. (71)

However, in practice, because of the intractable integral
in relation (71), using the well-known Gibbs sampler [18] or
Metropolis Hastings algorithms [19, 20] is suggested to
generate posterior samples. We will argue this issue more
precisely in subsection 6.5.

6.3. Credibility Interval. In the Bayesian framework, in-
terval estimation is done via credibility interval concep-
tion. Consider the parameter vector Ψ � (Ψ1,Ψ2,Ψ3) �

(α, c, θ), which is associated with the NGE-Weibull dis-
tribution and π(Ψi| x) denote the marginal posterior pdf
of the parameter Ψj; (j � 1, 2, 3) as in (70). For a given
value of η ∈ (0, 1), the (1 − η)100% credibility interval
CI(LΨj

, UΨj
) is defined as

Table 6: -e KS and the corresponding bootstrapped p value of the fitted models for the failure times of electronic components.

Distributions KS Bootstapped p value
NGE-Weibull 0.150 0.850
Weibull 0.420 0.549
EW 0.479 0.504
MOW 0.376 0.694

Table 8: Bayesian estimates and their posterior risks of the parameters under different loss functions based on the failure time data.

Data Insurance data

Bayes 􏽢α 􏽢c 􏽢θ
Loss functions Estimate Risk Estimate Risk Estimate Risk
SELF 0.2280 0.0007 2.2772 0.2107 0.1560 0.0007
WSELF 0.2249 0.0031 2.1881 0.0891 0.1516 0.0044
MSELF 0.2218 0.0138 2.1025 0.0391 0.1472 0.0292
PLF 0.2295 0.0030 2.3230 0.0916 0.1582 0.0044
KLF 0.2265 0.0136 2.2322 0.0403 0.1538 0.0291

Table 9: Credible and HPD intervals of the parameters α, c, and θ for the failure time data.

Parameters Credible interval HPD interval
α (0.2096, 0.2451) (0.1794, 0.2819)
c (1.9490, 2.5563) (1.4270, 3.1600)
θ (0.1377, 0.1725) (0.1082, 0.2101)

Table 7: Bayes estimator and posterior risk under different loss functions.

Loss function L(ψ, δ) Bayes estimator ψB Posterior risk ρψ
SELF � (ψ − d)2 E(ψ|x) Var(ψ|x)

WSELF � ((ψ − d)2/ψ) (E(ψ− 1|x))− 1 E(ψ|x) − (E(ψ− 1|x))− 1

MSELF � (1 − (d/ψ))2 (E(ψ− 1|x)/E(ψ− 2|x)) 1 − (E(ψ− 1|x)2/E(ψ− 2|x))

PLF � ((ψ − d)2/d)
�������
E(ψ2|x)

􏽰
2(

�������
E(ψ2|x)

􏽰
− E(ψ|x))

KLF � (
��������������
(d/ψ) −

�����
(ψ/d)

􏽰􏽱
)

����������������
(E(ψ|x)/E(ψ− 1|x))

􏽰
2(

��������������
E(ψ|x)E(ψ− 1|x)

􏽰
− 1)
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􏽚
∞

LΨj

π Ψj| x􏼐 􏼑zΨj � 1 −
η
2
,

􏽚
∞

UΨj

π Ψj| x􏼐 􏼑zΨi �
η
2
.

(72)

By considering the relation (72), it is very difficult to
obtain the marginal pdf from the joint posterior pdf. We use
the Gibbs sampler to generate posterior samples. Let
Ψ1, . . . ,Ψk (whereΨi � (Ψi

1,Ψ
i
2,Ψ

i
3) ) be a posterior random

sample of size k, which is extracted from the joint posterior
pdf as in (67). Using these generated posterior samples, the
marginal posteriors pdfs of Ψj given x can be given by

1
K

􏽘

K

i�1
π∗ Ψj,Ψ

i
− j| x􏼐 􏼑; j � 1, 2, 3, (73)

where Ψi
− j shows the vector of posterior samples when the jth

component is removed. Using (73) in (72), one can be able to
compute the credibility intervals for Ψj, j � 1, 2, 3 as follows:

1
K

􏽘

K

i�1
􏽚
∞

LΨj

π∗ Ψj,Ψ
i
− j| x􏼐 􏼑zΨj � 1 −

η
2
,

1
K

􏽘

K

i�1
􏽚
∞

UΨj

π∗ Ψj,Ψ
i
− j| x􏼐 􏼑zΨj �

η
2
.

(74)

6.4. @e Highest Posterior Density Interval. -e highest
posterior density interval is a kind of credibility interval
which imposed a specific restriction. A (1 − η)100% (i �

1, . . . , p) HPD interval forΨj, j � 1, 2, 3, is the simultaneous
solution of the following integral equations:

1
K

􏽘

K

i�1
􏽚

UΨj

LΨj

π∗ Ψj,Ψ
i
− j| x􏼐 􏼑zΨj � 1 − η,

􏽘

K

i�1
π∗ LΨj

,Ψi
− j| x􏼒 􏼓 � 􏽘

K

i�1
π∗ UΨj

,Ψi
− j| x􏼒 􏼓.

(75)

6.5. Generating Posterior Samples. It is clear from (67) and
(70) that there are no explicit expressions for the Bayesian
point estimators under the loss functions; see Table 7. Due to
the intractable integrals associated with joint posterior and
marginal posterior distributions, therefore, we require nu-
merical software to solve numerically the integral equations
via MCMC methods such as Gibbs sampling and the
Metropolis–Hastings algorithm.

Suppose that the general model f(x |ψ) is associated
with parameter vector ψ � (ψ1,ψ2, . . . ,ψp) and observed
data x. -us, the joint posterior distribution is
π(ψ1,ψ2, . . . ,ψp| x). We also assume that ψ0 � (ψ(0)

1 ,ψ(0)
2 ,

. . . ,ψ(0)
p ) is the initial values vector to start the Gibbs

sampler. -e Gibbs sampling approach draws the values for
each iteration in p steps by drawing a new value for each
parameter from its full conditional given the most recently
drawn values of all other parameters. -e steps for any it-
eration, say iteration k, are as follows:

(i) Starting with an initial estimate (ψ(0)
1 ,ψ(0)

2 , . . . ,ψ(0)
p )
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Figure 13: Trace plots of each parameter of NGE-Weibull distribution.
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(ii) Draw ψk
1 from π(ψ1|ψk− 1

2 ,ψk− 1
3 , . . . ,ψk− 1

p , x)

(iii) Draw ψk
2 from π(ψ2|ψk

1,ψ
k− 1
3 , . . . ,ψk− 1

p , x) and so on
down to

(iv) Draw ψk
p from π(ψp|ψk

1,ψ
k
2, . . . ,ψk

p− 1, x)

In the case of the NGE-Weibull distribution, by con-
sidering the parameter vector Ψ � (α, c, θ) and initial pa-
rameter vector Ψ0 � c(α0, c0, θ0), the posterior samples are
extracted by the above Gibbs sampler where the full con-
ditional distributions are given as

π α|c
k− 1

, θk− 1
, x􏼐 􏼑∝ αα0+n

e
− α1α 􏽙

n

i�1

x
α− 1
i e

− θ 1− e
− cxα

i( 􏼁
2
+cxα

i􏽮 􏽯 1 − e
− cxα

i􏼐 􏼑

1 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓
1− θ

2 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓

,

π c|αk− 1
, θk− 1

, x􏼐 􏼑∝ c
c0+n

e
− c1c

􏽙

n

i�1

e
− θ 1− e

− cxα
i( 􏼁

2
+cxα

i􏽮 􏽯 1 − e
− cxα

i􏼐 􏼑

1 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓
1− θ

2 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓

,

π θ|αk− 1
, c

k− 1
, x􏼐 􏼑∝ θθ0+n

e
− θ1θ 􏽙

n

i�1

e
− θ 1− e

− cxα
i( 􏼁

2

1 − 1 − e
− cxα

i􏼐 􏼑
2

􏼒 􏼓
1− θ.

(76)

Here, since there is not any prior information about
hyperparameters in (57), we implement the idea of Congdon
[21] and the hyperparameters values are set as
α0 � α1 � c0 � c1 � θ0 � θ1 � 0.0001. So, we can use the
MCMC procedure to extract posterior samples of (70) by
means of the Gibbs sampling process in OpenBUGS
software.

Next, we provide Bayesian estimation results. It is evi-
dent from equation (70) that there are no closed-form ex-
pressions for Bayesian estimators, which are extracted based
on the loss functions in Table 7. -erefore, a MCMC pro-
cedure via the Gibbs sampler process is designed using the
expressions (72), (73), and (74), with 10,000 replicates to
obtain the Bayesian estimators. In Table 8, we provide the
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Figure 14: Autocorrelation plots of each parameter of NGE-Weibull distribution.
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Figure 15: Histogram plots of each parameter of NGE-Weibull distribution.
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Figure 16: Continued.

Table 10: Diagnostics by the Gelman–Rubin, Geweke, and Raftery–Lewis methods for the parameters α, c, and θ based on the failure time
data.

Parameter Gelman–Rubin Geweke (Z0.025 � ± 1.96) Raftery–Lewis

α 1 0.846 3.47
c 1 0.080 3.97
θ 1 1.727 4.5
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corresponding point and posterior risk estimations. Fur-
therer, 95% credible and HPD intervals are provided in
Table 9. In order to provide a visual inspection, we provide
posterior summary plots in Figures 13–15. -ese plots verify
that the convergence of the Gibbs sampling process has
occurred.

Next, for evaluation of the MCMC procedure in
Bayesian analysis, we report some diagnostics measures such
as Gelman–Rubin (GR), Geweke (G), and Raftery–Lewis
(RL) for checking the convergence of the Gibbs algorithm in
Table 10. For more details about these indexes, see Lee et al.
[22]. -e GR diagnostic for parameters α, c, and θ is equal to
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Figure 16: Gelman plot diagnostic for each parameter of NGE-Weibull distribution based on the failure time data.
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Figure 17: Geweke plot diagnostic (chain 1) for each parameter of NGE-Weibull distribution based on the failure time data.

Complexity 17



1. Hence, based on the GR diagnostic measure, the chains are
acceptable. Figure 16 shows that the estimates come from
state spaces of the corresponding parameters. From Table 10,
Geweke’s test statistics for parameters α, c, and θ are 0.846,
0.080, and 1.727, respectively. Hence, the G diagnostic
measure also confirms the acceptance of chains as shown in
Figures 17 and 18. Moreover, the reported diagnostic sta-
tistics for parameters α, c, and θ based on the RL method do
not show a significant degree of dependence between
estimates.

7. Concluding Remarks

We have introduced a new generalized exponential-X
family. A special submodel of this family named a new
generalized exponential-Weibull distribution is discussed.
-e density of the NGE-Weibull model can take different
shapes of density and failure rate functions. Parameters of
the NGE-Weibull distribution are estimated using the
method of maximum likelihood estimation. A simulation
study was conducted to evaluate the behavior of the esti-
mators. Statistical properties of the NGE-X distributions
are also obtained. A real application related to the failure
times data is considered and it is observed that the NGE-
Weibull model provides the best fit to data than other well-
known competitors. Finally, the Bayesian estimation
method is used to estimate the model parameters and
conduct the Bayesian analysis under five different loss
functions. Furthermore, the diagnostics measures such as

the Gelman–Rubin, Geweke, and Raftery Lewis are also
discussed to evaluate the MCMC procedure in the Bayesian
analysis.

Appendix

A. R Code for Analysis

Note: in the following R-code, pm is used for the proposed
model.

Data� c(0.036, 0.058, 0.061, 0.074, 0.078, 0.086, 0.102,
0.103, 0.114,
0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381,
0.538, 0.570,
0.574, 0.590, 0.618, 0.645, 0.961, 1.228, 1.600, 2.006,
2.054, 2.804,
3.058, 3.076, 3.147, 3.625, 3.704, 3.931, 4.073, 4.393,
4.534, 4.893,
6.274, 6.816, 7.896, 7.904, 8.022, 9.337, 10.940, 11.020,
13.880, 14.730, 15.080)
######################################
###########################
############### pdf of the proposed model
##########################################
#######################
pdf_pm< - function(par,x)
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Figure 18: Geweke plot diagnostic (chain 2) for each parameter of NGE-Weibull distribution based on the failure time data.
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{
alpha� par[1]
theta� par[2]
gamma� par[3]
2∗theta∗alpha∗gamma∗(x̂(alpha − 1))∗exp(-
gamma∗x̂alpha)
∗ (1 − exp(-gamma∗x̂alpha)) ∗((1 − ((1 − exp(-
gamma∗x̂alpha))̂2))̂(theta − 1))
∗ (2 − ((1 − exp(-gamma∗x̂alpha))̂2))
∗ (1/(exp (theta∗((1 − exp(− gamma∗x̂alpha))̂2))))
}
##############################
###################################
############### cdf of the proposed model

###############################################
##################
cdf_pm< - function(par,x)
{
alpha� par[1]
theta� par[2]
gamma� par[3]
1 − ((((1 − ((1-exp(-gamma∗x̂alpha))̂2))̂(theta)))
/((exp (theta∗((1 − exp(-gamma∗x̂alpha))̂2)))))
}
set.seed(0)
goodness.fit(pdf� pdf_pm, cdf� cdf_pm,
starts� c(0.5,0.5,0.5), data� data,
method� “BFGS”, domain� c(0,Inf), mle�NULL)
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