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Data heterogeneity is the obstacle for the resource sharing on Semantic Web (SW), and ontology is regarded as a solution to this
problem. However, since different ontologies are constructed and maintained independently, there also exists the heterogeneity
problem between ontologies. Ontology matching is able to identify the semantic correspondences of entities in different on-
tologies, which is an effective method to address the ontology heterogeneity problem. Due to huge memory consumption and long
runtime, the performance of the existing ontology matching techniques requires further improvement. In this work, an extended
compact genetic algorithm-based ontology entity matching technique (ECGA-OEM) is proposed, which uses both the compact
encoding mechanism and linkage learning approach to match the ontologies efficiently. Compact encoding mechanism does not
need to store and maintain the whole population in the memory during the evolving process, and the utilization of linkage
learning protects the chromosome’s building blocks, which is able to reduce the algorithm’s running time and ensure the
alignment’s quality. In the experiment, ECGA-OEM is compared with the participants of ontology alignment evaluation initiative
(OAEI) and the state-of-the-art ontology matching techniques, and the experimental results show that ECGA-OEM is both
effective and efficient.

1. Introduction

Semantic Web (SW) is proposed by Tims Berners-Lee in 1998,
which makes the intelligent applications be able to understand
a word’s meaning in semantic level. Ontologies are the solution
to the issue of data heterogeneity on SW since it is able to make
consensus of a certain conception meaning of a field and
provide abundant domain knowledge and semantic vocabulary
for the interaction between application systems. However, due
to SW’s scattering essence, there might be different definitions
on a concept in separate ontologies, which leads to the issue of
ontology heterogeneity [1]. Ontology matching is regarded as

an effective method to address it, and swarm intelligent al-
gorithm- (SIA-) based ontology matching techniques have
achieved good performance in past studies [2], such as genetic
algorithm (GA) [3], particle swarm optimization algorithm
(PSO) [4], firefly algorithm (FA) [2], and artificial bee colony
algorithm (ABC) [5]. However, there are two drawbacks in the
existing SIA-based approaches: (1) massive time and memory
consumption is required, which heavily blocks the efficiency of
the ontologymatching process; (2) an expert of related field or a
reference alignment is required in the process of ontology
matching which is usually not available in real application
conditions. To overcome these drawbacks, an extended
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compact genetic algorithm-based ontology entity matching
technique (ECGA-OEM) is proposed in this work, which uses
both compact encoding mechanism [6, 7] and linkage learning
approach to efficiently match the ontologies. In particular, our
contributions are as follows:

(i) A new evaluatingmetrics on the ontology alignment
is proposed, which is able to work without the
reference alignment and the domain experts.

(ii) An optimal model on ontology entity matching
problem is constructed.

(iii) An ECGA-OEM is proposed, which uses the linkage
learning and compact encoding mechanism to ef-
ficiently address the ontology entity matching
problem.

,e rest of this paper is organized as follows: the related
works are narrated in Section 2; the statement of ontology,
ontology matching, and similarity measures are presented in
Section 3; the ontology entity matching through ECGA
proposed by this paper is revealed in Section 4; Section 5
presents the experiment results; and finally, Section 6 draws
the conclusion and presents the future work.

2. Related Works

Ontology matching is a complex, time-consuming, and error-
prone work, especially when the scale of ontologies is large.
Recently, a number of the machine learning (ML) techniques
[8–14] have been proposed to automatically determine the
ontology alignment. To improve the matching efficiency,
Araújo et al. [15] presented the matching system through
parallel computing (PC) technique and Amin et al. [16]
matching ontology based on cloud computing (CC). At the
same time, SIA-based technique has achieved great perfor-
mance in the ontology matching [1, 2, 17–20] domain [21–26].

Generally, ontology matching techniques are classified into
two categories: ontology metamatching techniques and on-
tology entitymatching techniques [27].,e former dedicates to
address the problem that how to aggregate different similarity
measures with appropriate weights, and the latter tries to di-
rectly determine the entity correspondence set between two
ontologies. ,e first SIA-based ontology metamatching system
is genetics for ontology alignment (GOAL), which aims at
optimizing the aggregating weight set for different matchers
[3, 28–30]. Memetic algorithms (MAs), which introduce local
search (LS) strategy into evolutionary algorithms (EAs) to
improve its local optimization capability, are proposed to solve
ontology metamatching problem [31]. To overcome the
drawback of overreliance reference alignment, Xue et al.
presented a partial reference alignment (PRA), in which only a
part of standard reference is used to assess the quality of
alignment [32]. Furthermore, Xue and Wang proposed an
innovativemetric named unanimous improvement ratio (UIR)
to assess the alignment’s quality, in which the reference
alignment is not required [33]. Besides, artificial bee colony
(ABC) algorithm is also adopted to address ontology meta-
matching problem, which further improves the solution’s
quality [5].

During the matching process, ontology metamatching
techniques need to maintain several similarity matrices,
which leads to huge memory consumption. For this reason,
ontology entity matching techniques, which aims at directly
determining the optimal pair set, attracts the expert’s in-
terests. Genetic algorithm-based ontology matching
(GAOM) firstly regards certain matching pairs set as the
optimizing objective [34]. MA is also utilized to solve the
ontology entity matching problem, whose performance
outperforms GA [35]. Bock et al. [4] use PSO to solve the
ontology entity matching. In detail, it evaluates the fitness of
chromosomes through a certain aggregation strategy for
multiple objective functions. Alves et al. [36] argue that
instances consisting in the ontology can be used to improve
alignment in the condition that knowledge is embedded in
them. For this reason, Xue et al. [37] take also instance-level
matching into consideration to further improve the quality
of alignment.

3. Preliminaries

3.1. Ontology and Ontology Matching

Definition 1 (ontology). An ontology O is a 5-tuple [33].O �

(C, P, I,Λ, Γ) where C is a set of classes that cannot be
empty, P is a set of properties that cannot be empty, I is a set
(it could be empty) of individuals that represent the in-
stances of classes in the real world, Λ is a nonempty set of
axioms that are used to check the consistency of ontologies
or deduce new information, and Γ is a set of annotations that
provide information metadata so that the researcher can
understand. Particularly, C, P, and I make up the entities in
ontologies.

Definition 2 (ontology matching). ,e ontology matching
can be considered as a function f(O1, O2, A′, p, r), where O1
and O2 are two ontologies to be matched; A′ is an existing
initial alignment of O1 and O2; p is a set of parameters, e.g.,
threshold, in the process of ontology matching; and r is a set
of external resources, e.g., background knowledge based and
dictionaries, which assisted in ontology matching. ,e
process of ontology matching is depicted in Figure 1, where
A is the obtained ontology alignment.

An example of matching two ontologies is presented in
Figure 2, where O1 and O2 are two ontologies to be matched
in this figure. ,e strings in the rounded rectangle are the
classes, e.g., “Reference,” “Entry,” and “Book.” ,e black
lines between two classes of the same ontology represent
their relation “has a” or “is a” in turn; e.g., “Reference” has a
“Book” and “Book” is a “Reference,” which means “Refer-
ence” is the supclass of “Book,” and “Book” is the subclass of
“Reference.” ,ere are datatype properties that describe the
features of a class; e.g., “Data,” “Title,” and “Human Creator”
are the properties of “Reference.” ,e instances of a class are
in a rectangle; e.g., “Of Natures Obvious Laws & Processes in
Vegetation” is an instance of “Article.” ,e relation of the
entities between the two ontologies are linked by the lines
with double arrowhead, and there are symbols: “ ≡ ,” “⊆” (or
“⊇”), and “⊥,” which, respectively, means equivalence, more
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specific (or less specific), and disjointness relation; e.g.,
classes “Entry” and “Book” of O2 are the equivalent and
hyponym of class “Reference” of O1, property “Event” of O1,
and property “Year” of O2 are irrelevant.

3.2. Similarity Measures. It is necessary to measure to what
extend two ontology entities are similar before finding the
reliable entity correspondences. In the ontology domain, we
usually use the similarity measure to calculate two entities’
similarity values. Generally, there are three categories of
similarity measures, i.e., syntactic, linguistic, and taxonomy-
based measures [33].

3.2.1. Syntactic Measures. Two syntactic measures, i.e.,
SMOA (string metric for ontology alignment) [37] and
Levenshtein [38], are employed in this paper. Given two
strings s1 and s2, the SMOA and Levenshtein similarity are,
respectively, defined as follows:

SMOA s1, s2( 􏼁 � Comm s1, s2( 􏼁 − Diff s1, s2( 􏼁 + WinklerImpr s1, s2( 􏼁,

(1)

where Comm(s1, s2) stands for the common length of s1 and
s2 while Diff(s1, s2) for the different lengths and
WinklerImpr(S1, S2) is the improvement to results yielded
by the method that proposed by Winkler [39].

Levenshtein s1, s2( 􏼁 � max 0,
min s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 − d s1, s2( 􏼁

min s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, s2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
⎛⎝ ⎞⎠,

(2)

where |s1| and |s2| are the cardinality of the letters contained
in s1 and s2, respectively, and d(s1, s2) is the number of
letters that need to be modified from s1 to s2. ,e final
syntactic similarity is equal to the average of SMOA and
Levenshtein.

3.2.2. Linguistic Measures. ,e linguistic similarity between
two strings is worked out by considering the semantic re-
lations (such as synonyms and hypernym) which usually
requires using the thesaurus and dictionaries. In this work,
WordNet [23, 40], an electronic vocabulary database that has
collected every meaning of various words, is used. Given two
words w1 and w2, Linguisitc Similarity(w1, w2) equals:

(i) 1, if words w1 and w2 are synonyms in Wordnet.

(ii) 0.5, if word w1 is the hypernym of word w2 or vice
versa in Wordnet.

(iii) 0, otherwise.

3.2.3. Taxonomy-Based Measures. ,e core ideal of taxon-
omy-based measures is to make full use of the hierarchy
relationship of ontology to determine two entities’ similarity
by considering their neighbor’s similarity. In this work, a
mutual reasoning between class and property (MRCP) is
proposed as the taxonomy-based measure, which is shown
in Figure 3.

In Figure 3, the circle is the class of the ontology, the
triangle is the properties of the ontology, and the one-way
arrow represents the hierarchical relationship; i.e., class ca1
is the supclass of class ca3, the dividing line arrow between
the class and the property indicates that the property be-
longs to this class, the bidirectional arrow indicates that
there is a high similarity between the two entities, and the
dashed two-way arrow indicates that the similarity between
them is improved after the operation. Subgraph (a) depicts
the classes’ similarity gained from their neighbor, i.e.,
supclass and subclass. ,ere is high similarity between
classes ca1 and cb1, so the similarity between their subclasses
ca3 and cb2 is supposed to increase. Likewise, similarity of
classes ca3 and cb2 would be increased because their sub-
classes ca6 and cb4 are highly similar. Subgraph (b) is the
properties’ similarity gained from their supproperty and
subproperty.,e similarity of properties pa3 and pb2 will be
improved since their supproperties pa1 and pb1 and sub-
properties pa6 and pb4 are highly similar, respectively.
Subgraph (c) is the properties’ similarity gained from the
classes which they belong to. ca1 and cb1 are the classes of
two ontologies and pa1, pa2, pa3, pb1, pb2, and pb3 are their
properties, respectively. ,e similarities between properties
of class ca1 and properties of class cb1 would be improved
because of the high similarity of ca1 and cb1; i.e., the
similarity of pa3 and pb1 would be promoted and so are the
remaining eight combinations. On the contrary, classes’
similarity will be increased due to the same or highly
similar properties they shared, as is depicted in subgraph
(d). Since pairs pa1 and pb3, pa2 and pb2, and pa3 and pb1,
the similarity of ca1 and cb1 is increased too.

3.2.4. Aggregation Strategy. ,ree similarity matrixes are
generated when the three measures have been applied. In
this work, three matrices need to be aggregated into one
matrix. ,e final similarity value Sa(s1, s2) between two
entities s1 and s2 is defined as follows:

Sa s1, s2( 􏼁 �

1, Ss � 1 or Sl � 1,

0.8∗Ssl + 0.2∗St, Ssl >Threshold,

0.2∗Ssl + 0.8∗St, Ssl < � Threshold.

⎧⎪⎪⎨

⎪⎪⎩
(3)

where Ss, Sl, and St is, respectively, the syntactic, linguistic,
and taxonomy-based similarity of s1 and s2; Ssl is the average
of Ss and Sl; and Threshold is a given parameter to filter the
matching pairs with low similarity.

p

A′ A
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O

r

f

Figure 1: ,e process of ontology matching.
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Figure 2: An example of matching two ontologies.
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Figure 3: MRCP taxonomy-based measure.
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4. Extended Compact Genetic Algorithm-Based
Ontology Entity Matching

GA is an excellent methodology to solve the ontology
matching problem due to its potential parallel search
characteristic and good searchability. In our work, an ECGA
to efficiently address the ontology entity matching problem
is proposed.

4.1. Optimal Model. ,e optimal model of ontology entity
matching problem is given as follows:

max ξ(σ),

s.t. σ � x1, x2, . . . , x O1| |􏼒 􏼓
T

,

xi ∈ 1, 2, . . . , O2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, −1􏽮 􏽯, i � 1, 2, . . . , O1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where |O1| and |O2|, respectively, are the cardinalities of
two ontologies O1 and O2; xi, i � 1, 2, . . . , |O1| is the ith
matching pairs. Particularly, it means there is no matching
of ith entity in O1 when xi � −1. ,e objective of this work
is to maximize ξ(σ), and for the details of it, refer to
Section 4.3.3.

4.2.=eFrameworkofECGA-OEM. Two ontologies are to be
matched as input and a reference alignment as output, and
the framework of ECGA-OEM is shown in Figure 4, whose
critical components are narrated in the rest of this sec-
tion.Two ontologies, generally in XML or RDF format, are
extracted into two hierarchy schema in the preprocessing
model. ,e operation of the ECGA optimization model
relies on the similarity matrix obtained in the similarity
measure model, which has been stated in detail in Section
3.2. Finally, the alignment is generated by the solution
generation model. In detail, the ECGA optimization model
is described in Section 4.3.

4.3. ECGA Optimization Model. Given the virtual pop-
ulation’s maximum generation, MaxGeneration� 2000
(normally, the number of iterations in the convergence of
ECGA is much less than MaxGeneration), Threshold� 0.7,
and the hierarchy schema of ontology1 and ontology2 as
input and final alignment as output. ,e pseudocode of
ECGA is proposed in Algorithm 1, where PV and BB are
probability vector (see also Section 4.3.1) and building blocks
(refer to also Section 4.3.7), respectively.

4.3.1. Probability Vector Initialization. Different from bi-
nary coding, the probability vector (PV) in this work is two-
dimensional. ,e initialized PV and convergent PV are
shown in Tables 1 and 2, respectively.,e value in the ith row
and jth column represents the possibility of matching be-
tween the ith entity in O1 and the jth entity in O2; i.e., it
means the probability of 0th entity of O1 (reference) and 0th
entity of O2 (entry) is 1/1 + 1 + 1 + 1 + 1, which is shown in

Table 1 (peculiarly, the header “−1 (null)” denotes the
probability of no matching). ,e convergence condition is
that the probability of taking a unique number on each locus
in the PV is 1; i.e., in Table 2, the probability of the 0th entity
of O1 (reference) and the 0th entity of O2 (entry) is
23.72/0 + 23.72 + 0 + 0 + 0 and so do the rest.

4.3.2. Chromosomes Generation. Certain size chromosomes
are produced in each generation through PV. An example of
chromosome is given in Figure 5. In particular, subgraph (a)
shows the locus of the chromosome and corresponding code,
and subgraph (b) illustrates decoding chromosome in sub-
graph (b); i.e., it denotes that the fourth entity of O1 “Article”
correspondent to the third entity of O2 “Article” as the code of
the fourth locus is “3” (“−1 (Null)” indicates no matching).

4.3.3. Fitness Function. ,e fitness function is used to de-
termine which chromosomes in the population can better
adapt the environment. In the context of ontology matching,
the objective of fitness function is to find the best chromosome,
whose corresponding alignment’s quality is the highest, with
algorithm convergence. ,e objective function of the optimal
model is used as the fitness function of this work, and given a
chromosome σ, its fitness function is defined as follows:

ξ(σ) � 2 · (β · ϕ(|A|) +(1 − β) · f(A)), (5)

where ξ(σ) is the fitness function that is used in this paper; A
is the alignment determined by σ; |A| is the cardinality of A;
β, a fraction in the range [0, 1], is the relative weight of
ϕ(|A|) and f(A), which is set to 0.25 in this paper; ϕ is a
normalization function; and f is a function that calculates
the mean of the matched entity pairs’ similarity values in A.
In addition, ϕ(|A|) and f(A) are defined as follows:

ϕ(|A|) �
|A|

min O1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, O2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
, (6)

f(A) �
􏽐

|A|
i�1 ηi

|A|
, (7)

where |O1| and |O2| are, respectively, the cardinality of O1
and O2 and ηi is the similarity of the ith matching pair in
alignment A. In particular, ϕ(|A|) is the ratio of the number
of matching pair found to the value of the smaller entity
number of the two ontologies and f(A) is the average
similarity of the matching pairs found, which, respectively,
approximates the recall value and precision value.

4.3.4. Selection Operator. ,e selection operator selects the
best chromosomes in the current population to participate
in the next step [41] and updates the PV. Firstly, the
chromosomes are sorted in descending order according to
their fitness scores. Secondly, the first half of the chromo-
somes will be retained as a temporary population. Finally,
with fitness as the weight through roulette, we can select the
chromosome from the temporary population for subsequent
operation.
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4.3.5. Elite Strategy. ,e goal of elite strategy is to keep the
historical optimal solution and prevent the fitness of the
optimal chromosome from “degenerating” in the process of
evolution. In this work, the elite strategy has two steps: the
historical optimal solution Elite first competes with the
current optimal solution Best, and the winner will become
the new Elite; the historical optimal solution then partici-
pates in the PV update in each generation.

4.3.6. Probability Vector Updating. An example of updating
the PV is presented in Figure 6, where subgraph (a) is a
chromosome generated by the initialized PV. ,e similarity
is derived from the similarity matrix according to the
chromosome’s code. It should be noted that the code of the
third locus is “0,” which means that the entity “Part” with
sequence number “3” in O1 does not match any entity in O2,
so its similarity is equal to 1 minus the value of the highest

Input: the hierarchy schemas of O1 and O2; the aggregated similarity matrix, Mas;
Output: the best chromosome, Bestchromosome;

(1) PV � initialization(lenofO1, lenofO2)

(2) WhileCurrentGeneration<MaxGenerationdo
(3) chromosomes � generation(PV,BB);
(4) Elite � compete(Elite, chromosomes);
(5) Betters � select(Elite, chromosomes);
(6) PV � update(PV,Betters);
(7) BB � LinkageLearning(BB,PV);
(8) end while

ALGORITHM 1: ECGA optimization model.

Table 1: An example of initialized PV.

PV 0 (Entry) 1 (Book) 2 (Proceedings) 3 (Article) −1 (Null)
0 (Reference) 1 1 1 1 1
1 (Book) 1 1 1 1 1
2 (Proceedings) 1 1 1 1 1
3 (Part) 1 1 1 1 1
4 (Article) 1 1 1 1 1

Table 2: An example of convergent PV.

PV 0 (Entry) 1 (Book) 2 (Proceedings) 3 (Article) −1 (Null)
0 (Reference) 23.72 0 0 0 0
1 (Book) 0 25.33 0 0 0
2 (Proceedings) 0 0 26.01 0 0
3 (Part) 0 0 0 0 22.46
4 (Article) 0 0 0 24.11 0

Input
Ontology 1
Ontology 2 Preprocessing model

Similarity measure model

ECGA optimization model

Solution generation model Alignment Output

Figure 4: ,e framework of ECGA-OEM.
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similarity between “Part” and all entities in O2, i.e.,
(1 − 0.38) � 0.62. PV will be updated by the normalized
similarity of each locus, which is shown in subgraph (b). ,e
probability of being updated in the PV is bold; i.e., the
probability of matching pair “Reference” and “Entry”
changed from “1” to “1.2” since the normalized similarity of
the corresponding locus of chromosome is “0.20.”

4.3.7. Linkage Learning. Building blocks will be saved
through linkage learning, thus to improve the efficiency of
algorithm and quality of solution [42]. In simple GA,
linkage learning is to identify great locus and protect them
so that they will not be destroyed in the subsequent
crossover and mutation operations; in ECGA, linkage
learning keeps good probability distribution so that they
are not disturbed in the subsequent update process. A
linkage learning approach is proposed in this work, and its
detail is shown in Figure 7.

For clarity, only column 1 of the original probability
vector is selected for narration. In each generation, a low
probability clearing operation is performed. ,e value of
each column is divided by the maximum value of the row,
and the value of the column will be cleared if the decimal is
less than a specific value (0.2 in this work); i.e., 0, 2, 3, and −1

bits in PV are cleared and marked.,e row of PV is a “good”
probability distribution when all but one bit of this row are
zero. Link learning generates building blocks based on the
“good” probability distribution, i.e., a building block, the
pair of index “0,” and code “0,” which was included in the
rounded rectangle produced by linkage learning. After that,
all the building blocks are directly put into each chromo-
some (the bold numbers), which reduces the consumption of
runtime and memory consumption.

5. Experiments and Discussion

5.1. Experiment Setup. In the experiment, the Biblio
benchmark provided by the Ontology Alignment Evaluation
Initiative (OAEI) is used to verify the effectiveness of our
approach. Normally, two ontologies to be matched and a
reference alignment are included in each testing case as a
standard to evaluate the quality of matching results. ,e
testing cases can be classified into five categories, which are
briefly described in Table 3.

In this work, the method is compared with the partic-
ipants of OAEI-, GA-, and CGA-based ontology matching
techniques. ,e experimental results are the H-mean values
of 30 independent runs.

0 1 2 3 4
0 1 2 3–1

Index
Code

(a)
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Book

Proceedings

Article

Part

Book

Proceedings

Article

Entry0

1

2

3

4

0

1

2

3

Index IDIndex

O1 O2

ID

(b)

Figure 5: An example of chromosome.

0

0
0.92
0.20

1

1
1.00
0.22

4

3
1.00
0.22

2

2
1.00
0.22

3

–1
0.62
0.14

Similarity
Normalized similarity

Index

Code

(a)

PV

0 (Reference)

3 (Part)
4 (Article)

1 (Book)
2 (Proceedings)

1

1
1

1.22
1

1 (Book)

1

1
1

1
1.22

2 (Proceedings)

1

1
1.22

1
1

3 (Article)

1
1
1

1.14
1

–1 (Null)

1.2

1
1

1
1

0 (Entry)

(b)

Figure 6: An example of update PV.
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5.2. Alignment Evaluation Metrics according to Reference
Alignment. A criterion is needed when evaluating the
quality of matching systems. Given an alignment result A,
two measures, recall and precision, are employed in this
work and their formula is as follows [22, 23]:

recall(A) �
R∩A| |

|R|
, (8)

precision(A) �
R∩A| |

|A|
, (9)

where |R| and |A| are the cardinality of matching pairs in the
reference alignment provided in case set and the matching
pairs in alignment are produced by the matching system and
|R∩A| is the cardinality of matching pairs, which exist in
both reference alignment and alignment found. It means
that all the matching pairs in reference alignment have been
found when recall is 1, while all the matching pairs found is
correct when precision is 1.

Both recall and precision are important parameters of
the evaluation results and they should be considered at the
same time. A weighted harmonic mean of recall and pre-
cision, F-measure, is used in this work, which is presented in
the following equation[43]:

f − measure(A) �
recall(A) · precison(A)

α · recall(A) +(1 − α) · precison(A)
,

(10)

where α[0, 1] is the relative weight of recall and precision
and it is set as 0.5 in this work, which is named f1-measure.

5.3. Comparison with OAEI’s Participants. ,e participants
from OAEI 2016, 2015, and 2014 are selected to compare
with our approach. In particular, if a matching system has
participated for more than one year, only the latest results
are used. ,e harmonic mean comparison of participants
and ECGA-OEM is shown in Figure 8. ,e vertical axis
represents different matching systems, and the horizontal
axis represents the score of their corresponding parameters.
In terms of f-measure, ECGA-OEM ranks third, which it is
slightly lower than Lily and CroMatch. Wiki has been used
as the linguistic measure in Lily and CroMatch, which is able
to improve the performance of the algorithm at the expense
of efficiency. In addition, ECGA-OEM has an unparalleled
performance in maintaining the balance between precision
and recall, while one of them is much higher than the other
in the participants, which is very important in evaluating
results quality.

Further f-measure comparison of OAEI participants and
ECGA-OEM in a total of 32 test cases is given. Figure 9
shows the numbers of participants with ECGA-OEM su-
perior, equal, and inferior, respectively. ,e horizontal axis
is the set of different test cases, and the vertical axis is the
number of matching systems. In the vast majority of test
cases, the number of matching systems with ECGA-OEM
superior to is much higher than those ones with ECGA-
OEM inferior to. Only in No. 246, No. 247, and No. 254
cases, the ranking of ECGA-OEM is relatively low (refer to
also Table 4 for the specific f-measure values in each testing
case).

In Table 4, the numbers from 1 to 18 in the first row are
edna, AML, CroMatch, Lily, LogMap, LogMapLt, Xmap,

PV 1 (Book)

1 (Book)

1 (Book)

2 (Proceedings) 3 (Article) –1 (Null)0 (Entry)

PV 1 (Book) 2 (Proceedings) 3 (Article) –1 (Null)0 (Entry)

Index

Code

0

0

1 42 3

1.25 25.33 1.36 3.87 2.14

0 25.33 0 0 0

1 2 –1 3

Linkage learning

Low probability clearing

Building block

Chromosome generation

Index Code 11

Figure 7: An example of linkage learning.

Table 3: A brief description of OAEI Biblio benchmark.
Cases Brief description
101–104 ,e ontologies to be matched are the same or there is only a slight difference in OWL restriction between them
201–210 ,e ontologies to be matched have the same structural, but different lexical and linguistic features
221–247 ,e ontologies to be matched have the same lexical and linguistic, but different structural features
248–266 ,e ontologies to be matched have different lexical, linguistic, and structure features
301–304 ,e ontologies in the real world often have strong heterogeneity
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LogMapBio, AML-2014, Gmap, LogMap-C, Mamba, AOT-
2014, AOTL, MassMatch, OMReasoner, RSDLWB, and
Xmap2, respectively. ECGA-OEM is the matching system
proposed by us. ,e value of each column represents the f-
measure score of the matching system in the corresponding
case. ,e f-measure of participants higher than that of
ECGA-OEM is bold, and the equal ones are underlined. ,e
“+,” “�,” and “−” in the last column, respectively, indicate
the number of matching systems, with ECGA-OEM supe-
rior, equal, and inferior.

5.4. Comparison among GA, CGA, and ECGA. To verify the
performance of linkage learning, we compare ECGA with GA
and CGA. ,e detailed f-measure and runtime of the three
competitors are, respectively, shown in Tables 5 and 6. All the
GA, CGA, and ECGA’s results are the mean value of 30 in-
dependent runs. It can be seen that the replacement of

crossover andmutation operators (GA) with probability vector
(CGA) improves the f-measure and significantly reduces the
runtime. ,e average f-measure is slightly improved, while the
average runtime is reduced from 31.975 seconds to 3.540
seconds; i.e., it largely improves the algorithm’s efficiency with
only takes about 1/10 of runtime. Except testing cases No. 301
and No. 304, CGA is more stable than GA in terms of both f-
measure and runtime since their standard deviation is smaller.
Testing cases No. 301 and No. 304 are the representatives of
real-world cases with unique heterogeneity, which make the f-
measure produced by CGA decreased slightly. Linkage
learning, the technique applied in ECGA, further increased the
score of f-measure and made decrement in runtime with av-
erage 1.749 seconds based CGA. A smaller standard deviation
than CGA was obtained by ECGA, which certified the strong
stability of ECGA. It is worth to be noticed that the f-measure
score of ECGA in testing caseNo. 301 andNo. 304 is almost the
same as that of GA (only 0.003 score lower in testing case No.

ECGA-OEM
OMReasoner

RSDLWB
XMap2

MaasMtch
AOTL

AOT-2014
Mamba

LogMap-C
Gmap

AML2014
LogMapBio

XMap
LogMapLt

LogMap
Lily

CroMatch
AML
edna

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall
F-measure
Precision

Figure 8: ,e harmonic mean of OAEI’s participants and ECGA-OEM.
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Figure 9: ,e number of participants with ECGA-OEM superior, equal, and inferior.
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Table 4: Comparison on F-measure harmonic mean on each testing case among OAEI participants and ECGA-OEM.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ECGA-OEM +/�/-
101 0.97 0.96 1 1 1 0.93 0 0.98 0.73 0.87 0.78 0 1 1 0.95 0.71 0.97 0.52 1 13/5/0
201 0.95 0.94 0.93 0.61 0.89 0.82 0.68 0.95 0.62 0.77 0.62 0.44 1 1 0.84 0.62 0.77 0.47 1 16/2/0
202 0.81 0.84 0.92 0.81 0.86 0.82 0.64 0.87 0.62 0.76 0.62 0.42 0.98 0.99 0.85 0.62 0.76 0.48 0.96 16/0/2
221 0.97 0.95 1 1 0.98 0.93 0.99 0.98 0.73 0.87 0.78 0.51 1 1 0.94 0.72 0.97 0.53 1 14/4/0
222 0.97 0.95 1 0.8 0.98 0.94 0.77 0.99 0 0.85 0.77 0.5 1 1 0 0.72 0.78 0 0.99 14/1/3
223 0.97 0.96 1 1 1 0.93 0.99 0.98 0.73 0.86 0.78 0.51 1 1 0.94 0.72 0.97 0.53 1 13/5/0
224 0.96 0.95 1 1 1 0.93 0.97 0.98 0.92 0.87 1 0.51 1 1 0.94 0.9 0.97 0.53 1 12/6/0
225 0.97 0.96 1 1 1 0.93 0.99 0.98 0.73 0.87 0.78 0.51 1 1 0.95 0.72 0.97 0.52 1 13/5/0
228 1 1 0.93 1 1 0.84 0.97 0.96 0.5 0.88 0.55 1 1 1 0.92 0.48 1 0.8 1 10/8/0
232 0.97 0.96 1 1 0.98 0.93 0.97 0.98 0.93 0.87 1 0.51 1 1 0.94 0.9 0.97 0.53 1 13/5/0
233 1 1 0.93 1 1 0.84 0.97 0.96 0.5 0.88 0.55 1 1 1 0.92 0.48 1 0.8 1 10/8/0
236 1 1 0.93 1 1 0.84 0.97 0.96 0.86 0.88 1 1 1 1 0.92 0.8 1 0.8 1 9/9/0
237 0.96 0.95 1 0.8 1 0.94 0.77 0.99 0 0.85 0.99 0.5 1 1 0 0.91 0.78 0 0.99 12/2/4
238 0.97 0.95 1 1 1 0.93 0.99 0.98 0.93 0.87 1 0.51 1 1 0.95 0.9 0.97 0.52 1 12/6/0
239 1 1 0.93 1 1 0.84 0.97 0.96 0.5 0.88 0.55 1 1 1 0.92 0.48 1 0.8 0.97 9/1/8
240 1 1 0.93 1 1 0.84 0.97 0.96 0.5 0.88 0.55 1 1 1 0.92 0.48 1 0.8 0.99 10/0/8
241 1 1 0.93 1 1 0.84 0.97 0.96 0.86 0.88 1 1 1 1 0.92 0.8 1 0.8 1 9/9/0
246 1 1 0.93 1 1 0.84 0.97 0.96 0.86 0.88 1 1 1 1 0.92 0.8 1 0.8 0.98 9/0/9
247 1 1 0.93 1 1 0.84 0.97 0.96 0.86 0.88 1 1 1 1 0.92 0.8 1 0.8 0.99 9/0/9
248 0.83 0.84 0.93 0.81 0.86 0.82 0.84 0.87 0.63 0.76 0.62 0.45 0.98 0.97 0.8 0.62 0.77 0.43 0.9 15/0/3
249 0.81 0.8 0.87 0.65 0.89 0.82 0.81 0.87 0.81 0.76 0.79 0.42 0.95 0.95 0.82 0.8 0.82 0.48 0.96 18/0/0
250 0.81 0.83 0.85 0.88 0.88 0.72 0.87 0.84 0.42 0.76 0.43 0.9 0.94 0.98 0.81 0.4 0.88 0.69 1 18/0/0
251 0.83 0.82 0.94 0.6 0.87 0.83 0.59 0.87 0 0.75 0.61 0.43 0.93 0.97 0 0.61 0.59 0 0.91 15/0/3
252 0.82 0.83 0 0.86 0.89 0.82 0.78 0.87 0.61 0.75 0.62 0.45 0.97 0.95 0.83 0.62 0.76 0.49 0.92 16/0/2
253 0.83 0.83 0 0.79 0.87 0.82 0.79 0.87 0.81 0.76 0.79 0.42 0.97 0.94 0.86 0.79 0.81 0.47 0.9 16/0/2
254 0.83 0.85 0 0.88 0.88 0.72 0.89 0.84 0.42 0.76 0.43 0.92 0.94 0.98 0.81 0.4 0.88 0 0.83 8/1/9
257 0.84 0.85 0 0.88 0.88 0.72 0.87 0.84 0.74 0.76 0.79 0.92 0.9 0.95 0.88 0.72 0.88 0.74 1 18/0/0
258 0.81 0.83 0 0.6 0.88 0.83 0.58 0.87 0.68 0.73 0.79 0.45 0.93 0.95 0 0.8 0.66 0 0.91 16/0/2
259 0.83 0.85 0 0.8 0.89 0.82 0.83 0.87 0.8 0.75 0.79 0.46 0.96 0.94 0.83 0.8 0.81 0 0.92 16/0/2
260 0.81 0.82 0 0.88 0.88 0.74 0.87 0.85 0 0.79 0.43 0.9 0.93 0.95 0 0.41 0.9 0 0.88 12/2/4
261 0.8 0.85 0 0.88 0.88 0.72 0.87 0.84 0.42 0.76 0.43 0.9 0.89 0.89 0.83 0.4 0.88 0 0.89 15/2/1
262 0.81 0.83 0 0.88 0.88 0.72 0.85 0.84 0.74 0.76 0.79 0.92 0.94 0.94 0.81 0.7 0.88 0.69 0.83 9/1/8

Table 5: Comparison of F-measure and its standard deviation.

Testing case GA CGA ECGA
f-Measure St. dev f-Measure St. dev f-Measure St. dev

101 0.996 0.004 1.000 0.000 1.000 0.000
201 0.999 0.003 1.000 0.000 1.000 0.000
221 0.996 0.006 1.000 0.000 1.000 0.000
223 0.994 0.007 0.998 0.004 1.000 0.002
224 0.997 0.005 1.000 0.000 1.000 0.000
233 0.996 0.007 1.000 0.000 1.000 0.000
236 0.997 0.007 1.000 0.000 1.000 0.000
240 0.978 0.020 0.994 0.012 1.000 0.000
241 0.994 0.010 1.000 0.000 1.000 0.000
250 0.995 0.009 1.000 0.000 1.000 0.000
257 0.993 0.010 1.000 0.000 1.000 0.000
301 0.606 0.003 0.586 0.025 0.603 0.007
304 0.665 0.004 0.650 0.033 0.672 0.007
Average 0.939 0.007 0.941 0.006 0.944 0.001

10 Complexity



301 and this minor difference could be ignored), which em-
bodied the ability of linkage learning to overcome the CGA’s
shortcoming.

6. Conclusions

Ontology matching can effectively solve the problem of data
heterogeneity by discovering correspondence between two
ontologies’ entities. Compact encoding mechanism shows
high efficiency in ontology matching, especially in ontology
entity matching. Linkage learning, which is employed in
ECGA-OEM proposed in this paper, can produce qualified
alignment of ontology matching. ,e experiment results
have shown that our approach outperforms the participants
of OAEI in terms of f-measure, recall, and precision. ,e
comparison on terms of f-measure and runtime with GA,
CGA, and ECGA shows that ECGA-OEM is able to greatly
reduce the runtime consumption while maintaining the
alignment’s quality.

In the future, we would like to apply the linkage learning
in other compact SIAs for better results. In addition,
matching large-scale ontologies, such as anatomy and large
biomedical track in OAEI, are an open challenge in the
domain of ontology matching.We are interested in using the
improved ECGA to match these large-scale ontologies.
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[15] T. B. Araújo, C. E. Santos Pires, T. Pereira Da Nóbrega, and
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