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Statistical distributions play a prominent role for modeling data in applied fields, particularly in actuarial, financial sciences, and
risk management fields. Among the statistical distributions, the heavy-tailed distributions have proven the best choice to use for
modeling heavy-tailed financial data.*e actuaries are often in search of such types of distributions to provide the best description
of the actuarial and financial data. *is study presents a new power transformation to introduce a new family of heavy-tailed
distributions useful for modeling heavy-tailed financial data. A submodel, namely, heavy-tailed beta-power transformed Weibull
model is considered to demonstrate the adequacy of the proposedmethod. Some actuarial measures such as value at risk, tail value
at risk, tail variance, and tail variance premium are calculated. A brief simulation study based on these measures is provided.
Finally, an application to the insurance loss dataset is analyzed, which revealed that the proposed distribution is a superior model
among the competitors and could potentially be very adequate in describing and modeling actuarial and financial data.

1. Introduction

Heavy-tailed distributions have been studied for decades by
actuaries to investigate various aspects of financial portfolio
theory and risk management problems. As always, most
insurance loss datasets share the same properties such as
skewed to the right, unimodal shaped, and have a very thick
right tail, refer the studies of Kazemi and Noorizadeh [1],
Adcock et al. [2], Bhati and Ravi [3], Ahmad et al. [4], Ahmad
et al. [5], Ahmad et al. [6], and Ahmad et al. [7]. A distribution
possess these characteristics is quite appropriate for modeling
insurance loss data and can also be used for estimating the
business risk level.*ese distributions include Pareto (Coorey
and Ananada [8]), Lomax (Scollnik [9]), beta (Hogg and
Klugman [10], lognormal (Klugman et al. [11]), Burr
(Nadarajah and Bakar [12]), and Weibull (Bakar et al. [13]).
*ese are the most appropriate models for modeling of

insurance losses. For more details, refer to the studies by
Shushi [14], Punzo et al. [15], Punzo et al. [16], and Punzo
[17].

However, despite these classical distributions having
many merits, there are still some deficiencies in these models
as they are not flexible enough to provide the best fit to the
heavy-tailed datasets. As an example, (i) the Pareto model,
which is one of the prominent models used for modeling
financial data, sometimes provides poor fitting to many
financial applications, (ii) on the other hand, the Weibull
model can only cover the behavior of small losses adequately
but is not a reasonable candidate model to deal with the
behavior of large losses, and (iii) the distribution functions of
both the lognormal and the beta distributions have no closed
form expressions causing difficulties in the derivation of
many mathematical properties and make them less popular
to use for analyzing financial datasets (Bhati and Ravi [18]).

Hindawi
Complexity
Volume 2021, Article ID 5580228, 18 pages
https://doi.org/10.1155/2021/5580228

mailto:emahmoudi@yazd.ac.ir
https://orcid.org/0000-0003-3782-4081
https://orcid.org/0000-0001-6109-7342
https://orcid.org/0000-0002-5344-8138
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5580228


Due to the importance of the heavy-tailed distributions in
the field of actuarial sciences, the actuaries are always in search
for introducing new statistical distributions to cover the de-
ficiencies of the traditional distributions. *is motivated the
researchers to search for new flexible heavy-tailed distributions.

In this context, serious efforts have been performed to
propose new approaches for developing new flexible dis-
tributions such as (i) composition of two or more distri-
butions, (ii) transformation of variables, (iii) finite mixture
of distributions, and (iv) compounding of distributions.
However, still these methods are suffering from some sort of
deficiencies (Ahmad [19] and Ahmad et al. [20]). *us, it is
imperative to develop new statistical models having a closed
form of distribution functions, heavy-tailed than the ex-
ponential class of distributions, and are capable of ade-
quately modeling the financial risk management problems.

In the premises of the above, we further carry this area of
distribution theory and propose a newmethod to introduce new
flexible heavy-tailed distributions. *e proposed family may be
called a new heavy-tailed beta-power transformed (HTBPT)
family of distributions. *e proposed method may be an in-
teresting alternative to the existing literature for fitting heavy-
tailed data. We study a new model called the heavy-tailed beta-
power transformed Weibull (HTBPT–Weibull) distribution as
a special case of the HTBPTdistributions. *e proposed model
is very flexible and could be chosen as a good candidate model
for modeling heavy-tailed data. Some mathematical properties
along with the actuarial measures are derived. Based on the
actuarial measures, a comparative simulation study of the
proposed model andWeibull (also known as superexponential)
distributions is conducted.*e simulation results show that the
HTBPT–Weibull distribution has heavier tail than the super-
exponential distribution.

*e study is sectioned as follows. In Section 2, we
provided the steps followed in the derivation of the proposed
method. In Section 3, we introduced a special case of the
proposed family. In Section 4, we introduced some math-
ematical properties of the proposed family. In Section 5, the
maximum likelihood estimation method is used in order to
estimate the parameters of the model. A brief Monte Carlo
simulation study is provided in Section 6. Actuarial mea-
sures of the proposed model are discussed in Section 7. A
real-life application of the proposed model to insurance loss
data is provided in Section 8. Finally, Section 9 contains the
conclusions and the major findings of this research study.

2. Steps Followed for Developing the
Proposed Family

Suppose that a random variable T ∈ [a1, a2] for
− ∞≤ a1 < a2 <∞, with density function v(t), and let the
random variable X has the cumulative distribution function
(cdf) W[F(x; ψ)], satisfying

(1) W[F(x;ψ)] ∈ [a1, a2]

(2) W[F(x;ψ)] must be monotonically increasing and
can be differentiated

(3) W[F(x;ψ)]⟶ a1 as x⟶ − ∞ and
W[F(x;ψ)]⟶ a2 as x⟶∞

*e T − X family method was originally proposed by
Alzaatreh et al. [21] as follows:

G(x) � 􏽚
W[F(x;ψ)]

a1

v(t)dt, x ∈ R, (1)

where W[F(x;ψ)] satisfies the above conditions. Corre-
sponding to (1), the probability density function (pdf) is

g(x) �
z

zx
W[F(x;ψ)]􏼨 􏼩v W[F(x;ψ)]􏼈 􏼉, x ∈ R. (2)

More information about the T − X technique for in-
troducing new families of distributions is given by Ahmad
et al. [19]. By applying the T − X technique, let us assume
that T follows the exponential distribution with the scale
parameter, say λ � 1; then, its cdf has the form given by

V(t) � 1 − e
− t

, t≥ 0. (3)

By differentiating equation (3) with respect to t, we have

v(t) � e
− t

, t> 0. (4)

Assume that v(t) is as represented in equation (4) and
use W[F(x;ψ)] � − log[1 − β1− F(x;ψ) − β(1 − F(x;ψ))􏽮 􏽯] in
(1). *en, we have

G(x; β,ψ) �
β1− F(x;ψ)

− β(1 − F(x;ψ)), β> 0, β≠ 1, x ∈ R,

F(x;ψ), β � 1,

⎧⎨

⎩

(5)

where F(x;ψ) is the cdf of the baseline model which de-
pends on the vector parameter ψ ∈ R. From expression (5),
we can see that the proposed cdf reduces to the baseline cdf
for β � 1. *e density function of equation (5) is as follows:

g(x; β,ψ) � f(x;ψ) β − (log β)β1− F(x;ψ)
􏼐 􏼑, x ∈ R. (6)

*e expression (6) can also be written as

g(x; β;ψ) �
βf(x;ψ)

βF(x;ψ)
βF(x;ψ)

− (log β)􏽮 􏽯, x ∈ R. (7)

*e survival function (sf) and hazard rate function (hrf )
of the proposed family are given by

S(x; β,ψ) � 1 − β1− F(x;ψ)
− β(1 − F(x;ψ))􏽮 􏽯, x ∈ R,

h(x; β,ψ) �
f(x;ψ) β − (log β)β1− F(x;ψ)

􏽮 􏽯

1 − β1− F(x;ψ)
− β(1 − F(x;ψ))􏽮 􏽯

, x ∈ R,

(8)
respectively.

*e random variable X with pdf (5) will be denoted by
X ∼ HTBPT(x; β,ψ). For the sake of simplicity, we can
omit the dependence on the parameters and simply write
G(x) � G(x; β,ψ).

3. Description of the Proposed Model

*is section deals with the introduction of the new
HTBPT–Weibull distribution and its special cases.
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3.1. Heavy-Tailed Beta-Power Transformed Weibull
Distribution. Referring to the cdf of theWeibull distribution
with shape parameter α> 0 and scale parameter c> 0,
F(x;ψ) � 1 − e− cxα

, x> 0, α, c> 0, and pdf f(x;ψ) � αc

xα− 1e− cxα , where ψ � (α, c). A random variable sayX has the
HTBPT–Weibull distribution, if its cdf is

G(x; β,ψ) � βe− cxα

− βe
− cxα

, x≥ 0, α, β, c> 0, β≠ 1. (9)

*e pdf, sf, and hrf of the HTBPT–Weibull distributions
are given by

g(x; β,ψ) � αcx
α− 1

e
− cxα

β − (log β)βe− cxα

􏼒 􏼓, x> 0,

S(x; β,ψ) � 1 − βe− cxα

− βe
− cxα

􏼒 􏼓, x> 0,

h(x; β,ψ) �
αcx

α− 1
e

− cxα
β − (log β)βe− cxα

􏼒 􏼓

1 − βe− cxα

− βe
− cxα

􏼒 􏼓

, x> 0,

(10)

respectively.
In order to see the effect of adding β to the proposed

distribution, we fixed the distribution’s parameters
(α � 1.2 and c � 1) and changed the values of β and
sketched the plots. From the plots provided in Figure 1, it
is clear that as the value of the additional parameter β
increases, the proposed model tends to a heavy-tailed
distribution.

Plots for the cdf and sf of the proposed model are
provided in Figure 2. Whereas, the plots of the hrf are shown
in Figure 3.

3.2. Special Cases of the HTBPT–Weibull Distribution.
*is subsection deals with the subcases of the proposed
distribution. Let X has the HTBPT–Weibull distribution
with parameters (α, β, c). *en, we obtain

*e Weibull distribution with parameters α and c,
using β � 1
*e one parameter Weibull distribution with param-
eter α, using β � c � 1
*e exponential distribution with parameter c, using
β � α � 1
*e Rayleigh distribution with parameter c, if β � 1 and
α � 2
*e one parameter HTBPT–Weibull distribution with
parameters α and β, if c � 1 (new)
*e heavy-tailed beta-power transformed exponential
distribution with parameters β and c, if α � 1 (new)
*e HTBPTR–Rayleigh distribution with parameters β
and c, if α � 2 (new)

4. Mathematical Properties

*is section is devoted to some basic mathematical
properties of the HTBPT family.

4.1. Shape of Density and Hazard Functions of the HTBPT
Distributions. *e shapes of the density function and the
hrf of the HTBPT distributions can be expressed by an
analytical formula. We can also find the critical points of
the density function by differentiating it with respect to x as
follows:

z

zx
logg(x; β,ψ) � 0. (11)

*e above equation may have more than one root. If
x � xo is a root of the above equation, then it corresponds to
(i) a local maximum, if (z2/z2x)logg(x; β,ψ)< 0, (ii) a local
minimum, if (z2/z2x)logg(x; β,ψ)> 0, and (iii) a point of
inflection, if (z2/z2x)logg(x; β,ψ) � 0.

*e parameter space is the same as in the HTBPTfamily.
In a similar way, the critical points of the hazard function
can be obtained by differentiation as follows:

z

zx
log h(x; β,ψ) � 0. (12)

*e above equation may have more than one root. If
x � xo is a root of the above equation, then it corresponds to
(i) a local maximum, if (z2/z2x)log h(x; β,ψ)< 0, (ii) a local
minimum, if (z2/z2x)log h(x; β,ψ)> 0, and (iii) a point of
inflection, if (z2/z2x)log h(x; β,ψ) � 0.

4.2. Asymptotic Behavior of HTBPT Distributions. *is
subsection is devoted to the asymptotic behavior of the
HTBPT distributions.

As x⟶ − ∞, we have

G(x; β,ψ)⟶ 0,

g(x; β,ψ)⟶ βf(x;ψ) 1 − (log β)􏼈 􏼉,

S(x; β,ψ)⟶ 1,

h(x; β,ψ)⟶ βf(x;ψ) 1 − (log β)􏼈 􏼉.

(13)

As x⟶∞, we have

G(x; β,ψ)⟶ 1,

g(x; β,ψ)⟶ f(x;ψ) β − (log β)􏼈 􏼉,

S(x; β,ψ)⟶ 0,

h(x; β,ψ)⟶∞.

(14)

4.3. Mixture Representation of the Density of HTBPT
Distributions. *is subsection deals with the mixture
representation of the density of HTBPT distributions. We
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know that βv � 􏽐
∞
i�0((log β)i/i!)vi; therefore, the expression

(6) can be formulated as

g(x; β,ψ) � f(x;ψ) β − 􏽘
∞

i�0

(log β)
i+1

i!
(1 − F(x;ψ))

i⎛⎝ ⎞⎠,

g(x; β,ψ) � f(x;ψ) β − 􏽘
∞

i�0
􏽘

i

j�0

(− 1)
j
(log β)

i+1

i!

i

j

⎛⎝ ⎞⎠F(x;ψ)
j⎛⎝ ⎞⎠,

g(x; β,ψ) � βf(x;ψ) − 􏽘
∞

i�0
􏽘

i

j�0

(− 1)
j
(log β)

i+1

i!

i!

(i − j)!j!
f(x;ψ)F(x;ψ)

j
,

g(x; β,ψ) � βf(x;ψ) − 􏽘
∞

i�0
􏽘

i

j�0

(− 1)
j
(log β)

i+1

(i − j)!j!
f(x;ψ)F(x;ψ)

j
,

g(x; β,ψ) � βf(x;ψ) − 􏽘
∞

i�0
􏽘

i

j�0
Λi,jθf(x; ψ)F(x;ψ)

θ− 1
,

(15)

where Λi,j � ((− 1)j(log β)i+1)/((j + 1)(i − j)!j!), and
j � θ − 1.

g(x; β,ψ) � βf(x;ψ) − 􏽘
∞

i�0
􏽘

i

j�0
Λi,jhθ(x;ψ), (16)

where hθ(x;ψ) � θf(x; ψ)F(x;ψ)θ− 1 is defined as the
density function of exponentiated generated distributions
with parameter θ in its power.

4.4. Quantile Function. *e quantile functions are in ex-
tensive use in general statistics and frequently used to
generate random samples from probability distributions. Let

X denotes the HTBPT random variable; then, the quantile
function of X can be obtained as follows:

x � Q(u) � G
− 1

(u) � F
− 1

(t), (17)

where t is the solution of the equation β1− t + βt � u + β, and
u is the uniform distribution over (0, 1) interval.

4.5. Moments. In this part of the study, we derived an
important property of the HTBPT distributions called
moments, and it has a specific and important role in sta-
tistical analysis. It is used in finding the major properties and
characteristics of the distribution (e.g., central tendency,
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Figure 1: Graphical sketching of the HTBPT–Weibull density function for some parameter values.
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dispersion, skewness, and kurtosis). *e rth moment of the
HTBPT distributions is derived as follows:

μr
/ � 􏽚
∞

− ∞
x

r
g(x; β,ψ)dx

� β􏽚
∞

− ∞
x

r
f(x;ψ)dx − 􏽚

∞

− ∞
􏽘

∞

i,j�0
ηi,jx

r
f(x;ψ)F(x;ψ)

jdx

� βυr − 􏽘

∞

i,j�0
ηi,jυr,j,

(18)

where

ηi,j � 􏽘
∞

i�0

(log β)
i+1

i!

i

j

⎛⎝ ⎞⎠,

υr � 􏽚
∞

− ∞
x

r
f(x;ψ)dx,

υr,j � 􏽚
∞

− ∞
x

r
f(x;ψ)[F(x;ψ)]

jdx.

(19)

*e effects of different values of the parameters α and β
on the mean, variance, skewness, and kurtosis of the
HTBPT–Weibull distribution with c � 1 are illustrated in
Figures 4 and 5.

*emoment generating function (mgf) is another useful
tool to calculate the moments of the statistical distributions.
*e mgf of the HTBPT distributions is given by

MX(t) � 􏽚
∞

− ∞
e

tx
g(x; ζ,ψ)dx

� 􏽘
∞

r�0

t
r

r!
μr
/ � 􏽘
∞

i,r�0

t
r

r!
βυr − 􏽘

∞

i,j�0
ηi,jυr,j

⎛⎝ ⎞⎠.

(20)

4.6. Incomplete Moments. *e shape of many statistical
distributions can be conveniently described by the incom-
plete moments. It plays a very important role in measuring
inequalities (e.g., income quantiles as well as Lorenz and
Bonferroni curves). Here, we drive the rth incomplete
moment of HTBPT distributions as
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Figure 2: Graphical sketching of the HTBPT–Weibull cdf and sf plots for selected parameter values.
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Υr(x) � 􏽚
x

− ∞
x

r
g(x; β,ψ)dx

� β􏽚
x

− ∞
x

r
f(x;ψ)dx − 􏽚

x

− ∞
􏽘

∞

i,j�0
ηi,jx

r
f(x;ψ)[F(x;ψ)]

jdx

� βbr − 􏽘

∞

i,j�0
ηi,jbr,j,

(21)

where br � 􏽒
x

− ∞ xrf(x;ψ)dx, and br,j � 􏽒
x

− ∞ xrf

(x;ψ)F(x;ψ)jdx. Furthermore, we can find the conditional
measures of the HTBPT-distributed random variable X as

E
X

r

X
> t􏼠 􏼡 �

1
S(t;ψ)

β􏽚
∞

− ∞
x

r
f(x;ψ)dx

−
1

S(t;ψ)
􏽚
∞

− ∞
􏽘

∞

i,j�0
ηi,jx

r
f(x;ψ)F(x;ψ)

jdx

�
1

S(t;ψ)
βΛr − 􏽘

∞

i,j�0
ηi,jΛr,j

⎛⎝ ⎞⎠,

(22)

Alpha

1
2

3
4

5
Be
ta

1

2

3

4
5

M
ea
n

0.6

0.8

1.0

(a)

Alpha

1
2

3
4

5

Be
ta

1

2

3

4
5

V
ar
ia
nc
e

0.5

1.0

(b)

Alpha

1
2

3
4

5

Be
ta

1

2

3

4
5

Sk
ew

ne
ss

0

1

2

(c)

Alpha

1
2

3
4

5
Be
ta

1

2

3

4
5

Ku
rto

sis

5

10

15

(d)

Figure 4: Graphical display of the mean, variance, skewness, and kurtosis of the proposed model.
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where Λr � 􏽒
∞
− ∞ xrf(x;ψ)dx, and Λr,j � 􏽒

∞
− ∞ xr f(x;ψ)

[F(x;ψ)]jdx.

5. Estimation

*is part of the study is concerned with the estimation of the
unknown parameters of the HTBPT distributions. Let
X1, X2, . . . , Xn be a random sample taken from HTBPT
distributions with parameters (β,ψ). *en, the corre-
sponding log-likelihood function of this sample is

logL xi; β,ψ( 􏼁 � 􏽘
n

i�1
logf xi;ψ( 􏼁

+ 􏽘
n

i�1
log β − (log β)β1− F xi;ψ( )􏼒 􏼓.

(23)

*e function (23) can be maximized either by deploying
Ox program (subroutine Max BFGS) or SAS (PROC

NLMIXED) or by solving it manually. Obtaining the partial
derivatives of (10), we have

z

zβ
L xi; β,ψ( 􏼁 � 􏽘

n

i�1

1 − 1 + (log β) 1 − F xi;ψ( 􏼁( 􏼁􏼈 􏼉( 􏼁/βF xi;ψ( )􏼒 􏼓

β − (log β)β1− F xi;ψ( )􏼒 􏼓

,

z

zψ
L xi; β,ψ( 􏼁 � 􏽘

n

i�1

zf xi;ψ( 􏼁/zψ( 􏼁

f xi;ψ( 􏼁

+ 􏽘
n

i�1

(log β)
2β1− F xi;ψ( ) zF xi;ψ( 􏼁/zψ( 􏼁

β − (log β)β1− F xi;ψ( )􏼒 􏼓

.

(24)

Equating (z/zβ)log L(xi; β,ψ) and (z/zψ)log L(xi; β,ψ)

to zero and simultaneously solving these expressions nu-
merically yields the maximum likelihood estimators (MLEs)
of (β,ψ).
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Figure 5: Graphical display of the mean, variance, skewness, and kurtosis of the proposed model.
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6. Simulation Study

*e section offers a brief Monte Carlo simulation study to
evaluate the efficiency and consistency properties of the
MLEs of the HTBPT–Weibull parameters (a particular case
from the proposed family). *e random samples are gen-
erated from the HTBPT–Weibull distribution using the
inverse cdf method. *e simulation results are obtained
using optim R function with the argument method� “L-
BFGS-B.”*e steps taken for simulation are given as follows:

(1) N � 1000 iterations are made, and different samples
of size n � 25, 50, . . . , 1000 are generated from the
HTBPT–Weibull distribution using the inversion cdf
method.

(2) *e parameter values are estimated using the
maximum likelihood estimation method

(3) *e biases and mean square errors (MSEs) are cal-
culated using the formulas

Bias(􏽢α) �
1

1000
􏽘

1000

i�1
􏽢αi − α( 􏼁,

MSE(􏽢α) �
1

1000
􏽘

1000

i�1
􏽢αi − α( 􏼁

2
,

(25)

respectively
(4) For calculating the biases as well as the MSEs of

(β, c), step (3) is repeated

*e simulation results are presented in Tables 1 and 2.
Whereas, the graphical display of the simulation results is
shown in Figures 6–9. It is important to note that, in
Figures 6–9, ζ is used for α, and η is used for c.

From the simulation results provided in Tables 1 and 2, it
is clear that the estimates of the model parameters are very
precise and close to the true value of the parameters as the
samples’ size increases. Also, we can see that the values of the
estimated biases and absolute biases tend to zero, when the
sample size n increases, which shows the accuracy of MLEs.
Also, as n increases, MSEs tend to zero. *is fact leads to the
consistency property of the MLEs of the HTBPT–Weibull
distribution.

7. Actuarial Measures

One of the primary tasks of actuarial sciences institutions is
to predict the market risks in a portfolio of instruments.
Henceforth, estimating the risk measures is very important
in selling and buying products. In this section of the study,
we discuss some important risk measures such as the value at
risk (VaR), tail value at risk (TVaR), tail variance (TV), and
tail variance premium (TVP) of the proposed family.

7.1. Value at Risk. *e VaR of a random variable X is the qth

quantile of its cdf (Artzner [22]). If X follows the HTBPT

distributions with parameters (β,ψ), then the VaR of X
denoted by VaRq(X) is given by

xq � F
− 1

(t), (26)

where t is the solution of the equation β1− t + βt � u + β, and
u follows the uniform distribution on interval (0, 1).

7.2. Tail Value at Risk. Let X follows the HTBPT distribu-
tions with parameters β and ψ; then, the TVaR of X is
derived as

TVaRq(X) � E X|X>VaRq(X)􏼐 􏼑,

TVaRq(X) �
1

1 − q
􏽚
∞

VaRq

xg(x; β,ψ)dx.

(27)

Using (6) in (27), we get

Table 1: Monte Carlo simulation results of the HTBPT–Weibull
distribution.

Set 1: α � 0.9, β � 1.2, c � 1.5
n Parameters MLE MSEs Biases

25
􏽢α 0.735 0.057 − 0.164
􏽢β 2.588 3.611 1.388
􏽢c 2.049 0.552 0.549

100
􏽢α 0.811 0.021 − 0.088
􏽢β 1.684 0.571 0.484
􏽢c 1.702 0.104 0.202

200
􏽢α 0.844 0.010 − 0.055
􏽢β 1.469 0.187 0.269
􏽢c 1.622 0.043 0.122

300
􏽢α 0.858 0.006 − 0.041
􏽢β 1.397 0.112 0.197
􏽢c 1.590 0.028 0.090

400
􏽢α 0.866 0.005 − 0.033
􏽢β 1.348 0.073 0.148
􏽢c 1.569 0.019 0.069

500
􏽢α 0.874 0.003 − 0.025
􏽢β 1.313 0.052 0.113
􏽢c 1.553 0.015 0.053

600
􏽢α 0.876 0.003 − 0.023
􏽢β 1.305 0.046 0.105
􏽢c 1.552 0.013 0.052

700
􏽢α 0.880 0.003 − 0.019
􏽢β 1.289 0.040 0.089
􏽢c 1.539 0.011 0.039

800
􏽢α 0.882 0.002 − 0.017
􏽢β 1.272 0.032 0.072
􏽢c 1.535 0.009 0.035

900
􏽢α 0.884 0.002 − 0.015
􏽢β 1.271 0.029 0.071
􏽢c 1.535 0.008 0.035

1000
􏽢α 0.886 0.002 − 0.013
􏽢β 1.260 0.024 0.060
􏽢c 1.529 0.007 0.029
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TVaRq(X) �
1

1 − q
􏽚
∞

VaRq

x f(x;ψ) β − (log β)β1− F(x;ψ)
􏼐 􏼑􏽮 􏽯dx,

TVaRq(X) �
1

(1 − q)
β􏽚
∞

VaRq

xf(x;ψ)dx

−
1

(1 − q)
􏽘

∞

i,j�0

(− 1)
j
(log β)

i+1

i!

·

i

j

⎛⎝ ⎞⎠ 􏽚
∞

VaRq

xf(x;ψ)F(x;ψ)
jdx.

(28)

Using the pdf f(x;ψ) and cdf F(x;ψ) of Weibull dis-
tribution in (28), we get

TVaRq(X) �
1

(1 − q)

β
η1/α

􏽚
∞

c VaRq( 􏼁
α t

(1/α)+1− 1
e

− tdt

−
1

(1 − q)
􏽘

∞

i�0
􏽘

i

j�0
􏽘

j

t�0

(− 1)
j+t

(log β)
i+1

i!c
1/α

(t + 1)
(1/α)+1

i

j

⎛⎝ ⎞⎠
j

t

⎛⎝ ⎞⎠

× 􏽚
∞

c(t+1) VaRq( 􏼁
α t

(1/α)+1− 1
e

− tdt.

(29)

On solving (29), we have

TVaRq(X) �
1

c
1/α

(1 − q)
βc

1
α

+ 1, c VaRq􏼐 􏼑
α

􏼒 􏼓

−
1

c
1/α

(1 − q)
􏽘

∞

i�0
􏽘

i

j�0
􏽘

j

t�0

(− 1)
j+t

(log β)
i+1

(i − j)!(j − t)!t!(t + 1)
(1/α)+1

× c
1
α

+ 1, c(t + 1) VaRq􏼐 􏼑
α

􏼒 􏼓.

(30)

7.3. Tail Variance. Among the actuarial measures, TV is the
most prominent one and deals with the tail variance beyond
VaR. *e TV of the HTBPT–Weibull distributed random
variable is derived as follows:

TVq(X) � E X
2
|X> xq􏼐 􏼑 − TVaRq􏼐 􏼑

2
. (31)

Consider

E X
2
|X>xq􏼐 􏼑 �

1
1 − q

􏽚
∞

VaRq

x
2

f(x;ψ) β − (log β)β1− F(x;ψ)
􏼐 􏼑􏽮 􏽯dx.

(32)

By solving the above equations, we get

E X
2
|X> xq􏼐 􏼑 �

1
c
2/α

(1 − q)
βc

2
α

+ 1, c VaRq􏼐 􏼑
α

􏼒 􏼓

−
1

c
2/α

(1 − q)
􏽘

∞

i�0
􏽘

i

j�0
􏽘

j

t�0
(− 1)

j+t
(log β)

i+1

×
c (2/α) + 1, c(t + 1) VaRq􏼐 􏼑

α
􏼐 􏼑

(i − j)!(j − t)!t!(t + 1)
(2/α)+1 .

(33)

By referring to equations (30) and (33) and substituting in
(31), we get the TV of HTBPT–Weibull distribution.

7.4. Tail Variance Premium. In this subsection, we discuss
another most important risk measure called TVP. *e TVP
of the HTBPT–Weibull distribution is derived as follows:

Table 2: Monte Carlo simulation results of the HTBPT–Weibull
distribution.

Set 2: α � 1.2, β � 1.5, c � 0.5
n Parameters MLE MSEs Biases

25
􏽢α 1.072 0.130 − 0.127
􏽢β 2.898 4.418 1.498
􏽢c 0.756 0.199 0.256

100
􏽢α 1.152 0.040 − 0.047
􏽢β 2.019 1.580 0.619
􏽢c 0.578 0.041 0.078

200
􏽢α 1.167 0.027 − 0.032
􏽢β 1.800 0.994 0.400
􏽢c 0.549 0.022 0.049

300
􏽢α 1.186 0.013 − 0.013
􏽢β 1.750 0.745 0.280
􏽢c 0.526 0.011 0.026

400
􏽢α 1.188 0.010 − 0.011
􏽢β 1.714 0.431 0.174
􏽢c 0.520 0.008 0.020

500
􏽢α 1.196 0.010 − 0.003
􏽢β 1.680 0.422 0.150
􏽢c 0.512 0.007 0.012

600
􏽢α 1.193 0.010 − 0.006
􏽢β 1.657 0.351 0.127
􏽢c 0.512 0.008 0.012

700
􏽢α 1.199 0.006 − 0.005
􏽢β 1.610 0.215 0.080
􏽢c 0.506 0.005 0.010

800
􏽢α 1.200 0.006 0.003
􏽢β 1.573 0.219 0.073
􏽢c 0.505 0.004 0.009

900
􏽢α 1.201 0.006 0.001
􏽢β 1.530 0.179 0.060
􏽢c 0.505 0.004 0.007

1000
􏽢α 1.198 0.004 − 0.001
􏽢β 1.506 0.086 0.030
􏽢c 0.506 0.003 0.006
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TVPq(X) � TVaRq + δTVq, (34)
where 0< δ < 1. By substituting (30) and (31) in (34), we can
get the TVP of the proposed distribution.

7.5.Numerical Studyof theRiskMeasures. *e importance of
this subsection is due to the numerical study of VaR and
TVaR for theWeibull and HTBPT–Weibull distributions for
different sets of parameters. *e followed steps are given by

(1) A random sample of size n � 100 is generated from
the Weibull and HTBPT–Weibull distributions, and
the maximum likelihood method is adopted to es-
timate the model parameters.

(2) Repetitions of 1000 iterations are made to find the
values of VaR and TVaR for these distributions

Tables 3–5 contain the simulation results of the risk
measures. *e simulation results are also displayed graphically
corresponding to each table in Figures 10–12, respectively.
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Figure 7: Graphical display of the simulation results provided in Table 1. (a) Plot of absolute blases vs. n. (b) Plot of blases vs. n.
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Figure 6: Graphical display of the simulation results provided in Table 1. (a) Plot of estimated parameters vs. n. (b) Plot of MSEs vs. n.
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After performing the simulation study based on VaR and
TVaR, we observed that the proposed model is better than
the other compared models because it has higher values of
the risk measures (VaR and TVaR).

8. Practical Illustration of the Proposed Model

*is section deals with the practical illustration of the
proposed model using a real-life insurance dataset.

Additionally, we use the same data to calculate the actuarial
measures of the Weibull and HTBPT–Weibull distributions.

8.1. An Application to Vehicle Insurance Loss Data. In this
part of the study, we consider a dataset from insurance
sciences to show the practicability of the proposed distri-
bution. *ese data have also been studied by Zhao et al. [23]
and can be found at http://www.businessandeconomics.mq.
edu.au.*e comparison of the HTBPT–Weibull distribution
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Figure 8: Graphical display of the simulation results provided in Table 2. (a) Plot of estimated parameters vs. n. (b) Plot of MSEs vs. n.
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Figure 9: Graphical display of the simulation results provided in Table 2. (a) Plot of absolute biases vs. n. (b) Plot of biases vs. n.
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is made with the other well-known distributions including
the two-parameter Weibull, Lomax, Burr-XII (B-XII), three-
parameter new beta-power transformed Weibull (NBPTW),
four-parameter Kumaraswamy–Weibull (Ku–W), and new
Weibull Burr-XII (NWB-XI) distributions. *e cdfs of the
competing distributions are

(1) Weibull distribution

G(x; α, c) � 1 − e
− cxα

, x> 0, α, c> 0. (35)

(2) W-Loss distribution

G(x; α, c, σ) � 1 −
σe

− cxα

σ + cx
α, x> 0, α, c, σ > 0. (36)

(3) NBPTW distribution

G(x; α, β, c) �
β 1− e− cxα( ) − e

− cxα

β
, x> 0, α, β, c> 0, β≠ 1.

(37)

(4) Kumaraswamy–Weibull

G(x; α, c, c, t) � 1 − 1 − 1 − e
− cxα

􏼐 􏼑
c

􏼐 􏼑
t
, x> 0, α, c, c, t> 0.

(38)

(5) Lomax

G(x; α, c) � 1 − 1 +
x

c
􏼠 􏼡

− α

, x> 0, α, c> 0. (39)

(6) NWB-XII

Table 3: For n � 100, the simulation study of the risk measures for Weibull and HTBPT–Weibull distributions.

Distributions Parameters Significance level VaR TVaR

Weibull

α� 0.8

0.700 1.6688 2.2356
0.750 1.7953 2.3365
0.800 1.9397 2.4542
0.850 2.1122 2.5980

c � 1

0.900 2.3352 2.7880
0.950 2.6763 3.0863
0.975 2.9810 3.3589
0.999 4.1260 4.4174

HTBPT–Weibull

α� 0.8
0.700 2.3073 5.0387
0.750 2.6034 5.5565
0.800 2.9903 6.2489

β� 2 0.850 3.5376 7.2499

c � 1

0.900 4.4248 8.9054
0.950 6.3569 12.5802
0.975 9.0147 17.6978
0.999 43.6677 85.0932

Table 4: For n � 100, the simulation study of the risk measures for
Weibull and HTBPT–Weibull distributions.

Distributions Parameters Significance
level VaR TVaR

Weibull

α� 0.5

0.700 2.5628 4.9448
0.750 2.9824 5.3806
0.800 3.5015 5.9178
0.850 4.1788 6.6160

c � 1

0.900 5.1464 7.6095
0.950 6.8296 9.3302
0.975 8.5426 11.0747
0.999 16.7703 19.4062

HTBPT–Weibull

α� 0.5
0.700 4.1839 9.4191
0.750 4.7366 10.4131
0.800 5.4611 11.7463

β� 0.5 0.850 6.4904 13.6812

c � 1

0.900 8.1681 16.8977
0.950 11.8517 24.0937
0.975 16.9687 34.2111
0.999 85.8277 171.7096

Table 5: For n � 100, the simulation study of the risk measures for
Weibull and HTBPT–Weibull distributions.

Distributions Parameters Significance
level VaR TVaR

Weibull

α� 1.4

0.700 3.5223 6.5398
0.750 4.0674 7.0905
0.800 4.7365 7.7658
0.850 5.6019 8.6383

c � 1

0.900 6.8261 9.8712
0.950 8.9288 11.9865
0.975 11.0415 14.1096
0.999 20.9426 24.0443

HTBPT–Weibull

α� 1.4
0.700 5.2740 11.8733
0.750 5.9707 13.1263
0.800 6.8839 14.8067

β� 0.9 0.850 8.1815 17.2459

c � 1

0.900 10.2962 21.3004
0.950 14.9397 30.3714
0.975 21.3899 43.1248
0.999 108.1901 216.4486
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G(x; α, c, c, t) � 1 − exp − α t log 1 + x
c

( 􏼁( 􏼁
c

( 􏼁, x> 0, c, t, α, c> 0.

(40)

(7) B-XII

G(x; c, t) � 1 − 1 + x
c

( 􏼁
− t

, x> 0, c, t> 0. (41)

*e comparison is made using some certain analytical
measures called the Akaike information criterion (AIC)
(Akaike [24]), Bayesian information criterion (BIC)
(Schwarz [25]), Hannan–Quinn information criterion

(HQIC) (Hannan and Quinn [26]), and consistent Akaike
information criterion (CAIC) (Bozdogan [27]). *ese
measures are as follows:

*e AIC is given by

AIC � 2k − 2ℓ. (42)

*e CAIC is

CAIC �
2nk

n − k − 1
− 2ℓ. (43)
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Figure 11: Graphical sketching of the numerical results provided in Table 4.
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Figure 10: Graphical sketching of the numerical results provided in Table 3.
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*e BIC is calculated as follows:

BIC � k log(n) − 2ℓ. (44)

*e HQIC is

HQIC � 2k log(log(n)) − 2ℓ, (45)

where k is the number of model parameters, n is the sample
size, and ℓ refers to the log-likelihood function evaluated at
MLEs.

For the calculation of the analytical measures, we use
the optim R function with the argument method-
� “SANN.” Smaller values of these analytical measures
indicate the best fit. *e MLEs of the model parameters
along with the analytical measures are reported in Tables 6
and 7, respectively. Referring to the results provided in
Table 7, we found that the HTBPT–Weibull distribution is a
superior model and provides the best fit among the other
considered competitors. In support of Table 7, the esti-
mated pdf and cdf of the proposed distribution are shown
in Figure 13, which closely fit the proposed model. *e
probability-probability (PP) plot and Kaplan–Meier

survival plot of the HTBPT–Weibull model are shown in
Figure 14. From the PP and Kaplan–Meier survival plots, it
is clear that the proposed is a good candidate model for
modeling heavy-tailed insurance datasets. Furthermore,
the quantile-quantile (QQ) plot and box plot of the data are
shown in Figure 15.

8.2. Computation of the Actuarial Measures Using Real Data.
In this subsection, we calculate and compare the values of
the VaR and TVaR measures of the Weibull and
HTBPT–Weibull distributions using the data discussed in
subsection 8.1. *e numerical results are reported in
Table 8.

9. Concluded Remarks

*e statistical distributions are very useful for modeling
financial and actuarial datasets. Among them, the heavy-
tailed distributions are very prominent for modeling fi-
nancial and other related datasets. A number of methods to
define heavy-tailed distributions have been studied in the
literature. However, unfortunately, these methods still have
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Figure 12: Graphical sketching of the numerical results provided in Table 5.

Table 6: *e MLEs of the competing models for the vehicle insurance loss data.

Distributions 􏽢α 􏽢β 􏽢c 􏽢c 􏽢t 􏽢σ
HTBPT–Weibull 0.99 1.06 0.004
Weibull 1.01 0.003
W-Loss 0.94 1.29 1.63
Ku–W 0.87 0.008 1.50 1.12
NBPTW 0.90 1.18 0.86
Lomax 0.49 30.00
NWB-XII 0.08 25.55 0.06 1.22
B-XII 0.04 4.42
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certain limitations. To address the issues associated with the
former methods, we introduced a new heavy-tailed family of
distributions. By using the proposed method, a new three-
parameter special model, called the heavy-tailed beta power

transformed Weibull distribution is studied in detail. Ac-
tuarial measures of the proposed model are calculated, and a
simulation study is conducted to show the usefulness of the
proposed method in actuarial sciences. *e applicability of

x

Es
tim

at
ed

 p
df

0 200 400 600 800 1000

0.000

0.001

0.002

0.003

0.004

(a)

x
0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 cd
f

(b)

Figure 13: *e estimated pdf and cdf of the HTBPT–Weibull distribution for the vehicle insurance loss data.
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Figure 14: *e PP and Kaplan–Meier survival survival plots of the HTBPT–Weibull distribution for the vehicle insurance loss data.

Table 7: Analytical measures of the competing models for the vehicle insurance loss data.

Distributions AIC BIC CIAC HQIC
HTBPT–Weibull 430.6 435.0 431.4 432.0
Weibull 432.3 439.2 434.0 435.7
W-Loss 432.1 437.5 433.7 434.9
Ku–W 432.2 438.1 433.7 434.1
NBPTW 434.8 440.0 435.5 437.2
Lomax 460.1 463.0 460.5 461.1
NWB-XII 431.7 437.6 433.2 433.6
B-XII 503.4 506.3 503.8 504.4
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the family of distributions has been illustrated using a real-
life heavy-tailed dataset from insurance and shown that the
proposed model performs reasonably well compared to
other well-known heavy-tailed distributions.

Appendix

R Code for Analysis

Note: in the following R-code, pm is used for the
proposed model.
data<-read.csv(file.choose(), header�TRUE)
data�data[,1]
data�data[!is.na(data)]
data

\paraindent ##########################
#########################
################# PDF of the proposed model
##########################################
#########
pdf_pm <− function(par,x)
{
alpha�par [1]
gamma�par [2]
beta�par [3]
alpha∗ gamma∗ (x̂(alpha-1))∗ exp(-
gamma∗ x̂alpha)
<v:shape xmlns:wpc�“http://schemas.micro-
soft.com/office/word/2010/wordpro-
cessingCanvas”xmlns:mc�“http://schemas.
openxmlformats.org/markup-compatibility/2006” xml-
ns:w14�“http://schemas.microsoft.com/office/word/20-
10/wordml” xmlns:wpg�“http://schemas.microsoft.
com/office/word/2010/wordprocessingGroup” xmlns:
wpi�“http://schemas.microsoft.com/office/word/2010/
wordprocessingInk” xmlns:wps�“http://schemas.micr-
osoft.com/office/word/2010/wordprocessingShape” id
�“_x0000_i1910” type�“#_x0000_t75” style�“width:
6.8pt;height:14.75pt” o:ole�””><v:imagedata r:id�

“rId554” o:title�””/><o:OLEObject xmlns:wpc�
“http://schemas.microsoft.com/office/word/2010/word-
processingCanvas” xmlns:mc�“http://schemas.open
xmlformats.org/markup-compatibility/2006” xmlns:
w14�“http://schemas.microsoft.com/office/word/2010
/wordml” xmlns:wpg�“http://schemas.microsoft.com/
office/word/2010/wordprocessingGroup” xmlns:wpi�
“http://schemas.microsoft.com/office/word/2010/word
processingInk” xmlns:wps�“http://schemas.microsoft.
com/office/word/2010/wordprocessingShape” Type�
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Figure 15: *e QQ and box plots of the vehicle insurance loss data.

Table 8: Results for the actuarial measures using the vehicle in-
surance loss data.

Distributions Parameters Significance
level VaR TVaR

Weibull

􏽢α� 1.012

0.700 326.949 593.777
0.750 375.850 642.400
0.800 435.601 701.844
0.850 512.495 778.385

􏽢c � 0.003

0.900 620.646 886.105
0.950 805.042 1069.886
0.975 988.944 1253.282
0.999 1838.590 2101.309

HTBPT–Weibull

􏽢α� 0.991
0.700 335.147 691.138
0.750 386.355 748.644
0.800 449.103 819.083

􏽢β� 1.061 0.850 530.105 909.978

􏽢c � 0.004

0.900 644.443 1038.238
0.950 840.290 1257.859
0.975 1036.531 1477.869
0.999 1951.423 2503.161
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“Embed” ProgID�“Equation.DSMT4” ShapeID�

“_x0000_i1910” DrawAspect�“Content” ObjectID�“_
1677760135”r:id�“rId555”/>(beta-(log(beta))
∗ betâ(exp(-gamma∗ x̂alpha)))
}

####################################
###############

################# CDF of the proposed model

#######################
############################

cdf_pm <- function(par,x)

{

alpha�par [1]
gamma�par [2]
beta�par [3]
betâ(exp(-gamma ∗ x̂alpha))-beta∗ (exp(-
gamma ∗ x̂alpha))
}

set.seed(0)

goodness.fit(pdf�pdf_pm, cdf�cdf_pm,

starts � c(0.5,0.5,0.5), data � data,

method�“BFGS”, domain�c(0,Inf),mle�NULL)

Data Availability

*e link of the dataset used in this study is included within
the article, and the data are available from Zubair Ahmad
upon request.
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