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By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated
from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial
differential systems.

1. Introduction

As we know that the second part of the 16 Hilbert problem
([1, 2]) wants to find a uniform upper bound for the number
of limit cycles of all polynomial differential systems of a given
degree, we refer the readers to see [3, 4]. *e limit cycles
problem and the center problem are fastened on specified
classes of systems. For instance, we refer to Kukles systems
(see, for example, [5–9]) and Liénard systems given by

_u � v,

_v � − u − f(u),
􏼨 (1)

where f(u) is a polynomial in the variable u of degree m. For
these systems, in 1977, Lins et al. [10] presented the con-
jecture that if f(u) has degree m≥ 1, then system (1) has at
most [m/2] limit cycles where [·] denotes the integer part
function. *ey prove this conjecture for m � 1, 2. *e

conjecture for m � 3 has been proved recently by Chengzi
and Llibre in [11].

Suppose that polynomials f(u) and g(u) are in the
variable u of degrees n and m, respectively; then, Llibre et al.
[12] established the following generalized Liénard polyno-
mial differential system:

_u � v,

_v � − g(u) − f(u)v,
􏼨 (2)

where [n + m − 1/2] is limit cycles.
Llibre and Makhlouf [13] studied the number of limit

cycles of the following generalized Liénard polynomial
differential system:

_u � − v
2p− 1

,

_v � u
2q− 1

− ϵf(u)v
2n− 1

,

⎧⎨

⎩ (3)
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where f(u) is a polynomial of degree m, p, q, and n are
positive integers, and ϵ is a small parameter.

*ey introduced the following theorem.

Theorem 1 (see [13]). Let m be the degree of the polynomial
f(u), and ϵ≠ 0; then, the polynomial differential system (3)
can have at least [m/2] limit cycles.

Also, Jianyuan and Shuliang [14] investigated the
maximum number of limit cycles of the following poly-
nomial differential system:

_u � − v
2p− 1

,

_v � u
2mp− 1

+ ϵ pu
2mp

+ mpv
2p

􏼐 􏼑(g(u, v) − A),

⎧⎨

⎩ (4)

where ϵ is a small parameter, A> 0, p, m ∈ N, and g(u, v) is a
polynomial of degree n with g(0, 0) � 0.

In this manuscript, we discuss the maximum number of
limit cycles of the following polynomial differential system:

_u � − v
2p− 1

− ϵpuf(u, v),

_v � u
2q− 1

− ϵqvf(u, v),

⎧⎨

⎩ (5)

where f(u, v) is a polynomial of degree m, ϵ is a small
parameter, and p, q ∈ N. Clearly, system (5) with ϵ � 0 is a
Hamiltonian system with Hamiltonian

H(u, v) �
1
2q

u
2q

+
1
2p

v
2p

. (6)

More precisely, our main results are the following.

Theorem 2. For the sufficiently small |ε|, system (5) has at
most

λ �
m

2
􏼔 􏼕max p, q􏼈 􏼉 (7)

limit cycles bifurcating from the periodic orbits of the center
_u � − v2p− 1, _v � u2q− 1, by using the averaging theory of first
order.

De proof of Deorem 2 is given in Section 3.

Theorem 3. Consider system (5) with q � np, where n is a
positive integer; then, for |ε| sufficiently small, the maximum
number of limit cycles of the polynomial differential system (5)
bifurcating from the periodic orbits of the center _u � − v2p− 1, _v �

u2np− 1 using the averaging theory of first order is

(a).μ1 �
1
2

m

2
􏼔 􏼕

m

2
􏼔 􏼕 + 3􏼒 􏼓􏼒 􏼓, if

m

2
􏼔 􏼕≤ n − 1,

(b).μ2 � n
m

2
􏼔 􏼕 −

n(n − 3) + 2
2

, if
m

2
􏼔 􏼕≥ n.

(8)

De proof of Deorem 3 is given in Section 4. Also, an
example is given with its limit cycles (see Figure 1).

2. First-Order Averaging Method

Here, we state the basic outcomes from the averaging theory
of first order, which will be used to prove themain outcomes.

Theorem 4. Consider the following two initial-value
problems:

_u � ϵR(t, u) + ϵ2G(t, u, ϵ),

u(0) � u0,
(9)

_v � ϵf0
(v),

v(0) � u0,
(10)

where u, v and u0 ∈ D which is an open domain of R,
t ∈ [0,∞), ϵ ∈ (0, ϵ0], R and G are periodic functions with
their period T with its variable t, and f0(v) is the average
function of R(t, v) with respect to t, that is,

f
0
(v) �

1
T

􏽚
T

0
R(t, v)dt. (11)

Assume that

(i) R, zR/zu, z2R/zu2, G, and zG/zu are well defined,
continuous, and bounded by a constant indepen-
dent by ϵ ∈ (0, ϵ0] in [0,∞) × D.

(ii) T is a constant independent of ϵ.
(iii) v(t) belongs to D on the time scale 1/ϵ. *en, the

following statements hold:

(a) On the time scale 1/ϵ, we have

u(t) − v(t) � O(ϵ), as ϵ⟶ 0 (12)

(b) If p is an equilibrium point of the averaged
system (10) such that

zf0

zv
|v�p ≠ 0, (13)

then system (9) has a T-periodic solution
ϕ(t, ϵ)⟶ p as ϵ⟶ 0

Figure 1: Limit cycles for the system in Example 1 with ϵ � 0.01.
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(c) If (13) is negative, the corresponding periodic
solution ϕ(t, ϵ) of equation (9) according to
(t, u) is asymptotically stable for all ϵ sufficiently
small; if (13) is positive, then it is unstable

For more information about the averaging theory, see, e.
g., [15–17].

3. Proof of Theorem 2

*e (p.q)-trigonometrical functions were defined by Lia-
punov [18]. Let u(θ) � Csθ and v(θ) � Snθ be the solution of
the following initial value problem:

_u � − v
2p− 1

,

_v � u
2q− 1

,

u(0) �
�
q2

√ 1
p
and v(0) � 0.

(14)

Furthermore, the following properties are satisfied:

(a) *e functions Csθ and Snθ are T–periodic with

T � 2p
(− 1/2q)

q
(− 1/2p) Γ(1/2p)Γ(1/2q)

Γ((1/2p) +(1/2q))
, (15)

where Γ is the gamma function.
(b) For p � q � 1, we have Csθ � cos θ and Snθ � sin θ
(c) pCs2pθ + qSn2qθ � 1
(d) Let Csθ and Snθ be the (1.q)-trigonometrical

functions, when i and j are both even (see [19])

􏽚
T

0
Cs

iθSn
jθdθ � 2q

− (j+1/2) Γ(i + 1/2q)Γ(j + 1/2)

Γ((i + 1/2q) +(j + 1/2))
.

(16)

We shall need the first-order averaging theory to prove
*eorem 2. We write system (5) in (p, q)-polar coordinates
(r, θ), where u � rpCsθ and v � rqSnθ. In this way, system (5)
will become written in the standard form for applying the
averaging theory. If we write f(u, v) � 􏽐

m
i+j�0 ai,ju

ivj, then
system (5) becomes

_r � − ϵr 􏽘
m

i+j�0
ai,jr

pi+qj
Cs

iθSn
jθ􏼐 􏼑􏼑, θ

.

� r
2pq− p− q

.
⎧⎨

⎩ (17)

Treating θ as the independent variable, we get from
system (17) the following:

dr

dθ
� ϵR(r, θ), (18)

where

R(r, θ) � − r
− 2pq+p+q+1

􏽘

m

i+j�0
ai,jr

pi+qj
Cs

iθSn
jθ􏼐 􏼑. (19)

By using the notation which is introduced in Section 2,
we get

f
0
(r) � −

r
− 2pq+p+q+1

T
􏽘

m

i+j�0
ai,jr

pi+qj
􏽚

T

0
Cs

iθSn
jθdθ􏼠 􏼡,

(20)

and we write

f
0
(r) � −

r
− 2pq+p+q+1

T
􏽘

m

i+j�0
ai,jαi,jr

pi+qj
, (21)

where

αi,j � 􏽚
T

0
Cs

iθSn
jθdθ. (22)

It is known that

αi,j � 0, if i or j is odd,

αi,j > 0, if i and j are even.
(23)

Hence,

f
0
(r) � −

r
− 2pq+p+q+1

T
􏽘

[m/2]

s+k�0
a2s,2kα2s,2kr

2(ps+qk)
. (24)

For the simplicity of calculation, let As,k � a2s,2kα2s,2k;
therefore, (24) can be reduced to

f
0
(r) � −

r
− 2pq+p+q+1

T
􏽘

[m/2]

s+k�0
As,kr

2(ps+qk)
. (25)

*e positive zeros number of f0(r), as we know, is equal
to the following:

K(r) � 􏽘

[m/2]

s+k�0
As,kr

2(ps+qk)
, (26)

and then, to find the real positive roots of K(r), we must find
the zeros of a polynomial in the variable t � r2:

H(t) � 􏽘

[m/2]

s+k�0
As,kt

ps+qk
. (27)

Now, we stretch the polynomial (27) as follows:

H(t) � A0,0 + A1,0t
p

+ A0,1t
q

+ A2,0t
2p

+ A1,1t
p+q

+ A0,2t
2q

+ · · · + Al,0t
lp

+ Al− 1,1t
(l− 1)p+q

+ Al− 2,2t
(l− 2)p+2q

+ · · · + A2,l− 2t
2p+(l− 2)q

+ A1,l− 1t
p+(l− 1)q

+ A0,lt
ql

+ · · · + A[m/2],0t
[m/2]p

+ A[m/2]− 1,1t
([m/2]− 1)p+q

+ A[m/2]− 2,2t
([m/2]− 2)p+2q

+ · · · + A2,[m/2]− 2t
2p+([m/2]− 2)q

+ A1,[m/2]− 1t
p+([m/2]− 1)q

+ A0,[m/2]t
[m/2]q

.

(28)
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So, the degree of H(t) is bounded by
λ � [m/2]max p, q􏼈 􏼉, and we conclude that f0(r) has at most
λ positive root r. Hence, *eorem 2 is proved.

4. Proof of Theorem 3

Consider the polynomial differential system (5) withq� np.
From equation (25), we obtain

f
0
(r) � −

r
np(− 2p+1)+p+1

T
􏽘

[m/2]

s+k�0
As,kr

2p(s+nk)
. (29)

*e zeros positive number of f0(r) is equal to the
following:

S(r) � 􏽘

[m/2]

s+k�0
As,kr

2p(s+nk)
. (30)

We write (30) as follows:

S(r) � A0,0 + A1,0r
2p

+ A0,1r
2pn

􏼐 􏼑 + A2,0r
4p

+ A1,1r
(n+1)2p

+ A0,2r
4np

􏼐 􏼑 + A3,0r
6p

+ A2,1r
(n+2)2p

+ A1,2r
(1+2n)2p

+ A0,3r
6np

􏼐 􏼑

· A4,0r
8p

+ A3,1r
(n+3)2p

+ A2,2r
(2+2n)2p

+ A1,3r
(1+3n)2p

+ A0,4r
8np

􏼐􏼐 􏼑 + · · ·

+
A[m/2]− 2,0r

([m/2]− 2)2p
+ A[m/2]− 3,1r

([m/2]+n− 3)2p
+ A[m/2]− 4,2r

([m/2]+2n− 4)2p
+ · · · + A2,[m/2]− 4r

(2+([m/2]− 4)n)2p

+A1,[m/2]− 3r
(1+([m/2]− 3)n)2p

+ A0,([m/2]− 2)r
([m/2]− 2)2np

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
A[m/2]− 1,0r

([m/2]− 1)2p
+ A[m/2]− 2,1r

([m/2]+n− 2)2p
+ A[m/2]− 3,2r

([m/2]+2n− 3)2p
+ · · · + A2,[m/2]− 3r

(2+([m/2]− 3)n)2p

+A1,[m/2]− 2r
(1+([m/2]− 2)n)2p

+ A0,[m/2]− 1r
([m/2]− 1)2np

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
A[m/2],0r

[m/2]2p
+ A[m/2]− 1,1r

([m/2]+n− 1)2p
+ A[m/2]− 2,2r

([m/2]+2n− 2)2p
+ · · · + A2,[m/2]− 2r

(2+([m/2]− 2)n)2p

+A1,[m/2]− 1r
(1+([m/2]− 1)n)2p

+ A0,[m/2]r
[m/2]2np

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(31)

Let us write (31) as

S(r) � A0,0 + A1,0r
2p

+ A2,0r
4p

+ · · · + A[m/2]− 2,0r
([m/2]− 2)2p

+ A[m/2]− 1,0r
([m/2]− 1)2p

+ A[m/2],0r
[m/2]2p

􏽨 􏽩+

· A0,1r
2np

+ A1,1r
(n+1)2p

+ A2,1r
(n+2)2p

+ · · · + A[m/2]− 3,1r
(n+[m/2]− 3)2p

􏽨

+ A[m/2]− 2,1r
(n+[m/2]− 2)2p

+ A[m/2]− 1,1r
(n+[m/2]− 1)2p

􏽩

+ A0,2r
4np

+ A1,2r
(2n+1)2p

+ A2,2r
(2n+2)2p

+ · · · + A[m/2]− 4,2r
(2n+[m/2]− 4)2p

+ A[m/2]− 3,2r
(2n+[m/2]− 3)2p

􏽨

+ A[m/2]− 2,2r
(2n+[m/2]− 2)2p

􏽩

+ · · · + A0,([m/2]− 2)r
(([m/2]− 2)n)2p

+ A1,[m/2]− 2r
(1+([m/2]− 2)n)2p

+ A2,[m/2]− 2r
(2+([m/2]− 2)n)2p

􏽨 􏽩

+ A0,[m/2]− 1r
([m/2]− 1)2np

+ A1,[m/2]− 1r
(1+([m/2]− 1)n)2p

􏽨 􏽩

+ A0,[m/2]r
[m/2]n

.

(32)
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To find the number of positive roots of polynomials S(r),
we distinguish two cases.

Case 1. For [m/2]≤ n − 1, the number term in polynomial
(32) is

m

2
􏼔 􏼕 + 1􏼒 􏼓 +

m

2
􏼔 􏼕 +

m

2
􏼔 􏼕 − 1􏼒 􏼓

+ · · · + 2 + 1 �
1
2

m

2
􏼔 􏼕 + 2􏼒 􏼓

m

2
􏼔 􏼕 + 1􏼒 􏼓.

(33)

Now, the Descartes theorem of the Appendix will be
applied, and the appropriate coefficients Ai,j can be selected
for the simple positive zeros number of S(r) as at most

μ1 �
1
2

m

2
􏼔 􏼕 + 2􏼒 􏼓

m

2
􏼔 􏼕 + 1􏼒 􏼓 − 1 �

1
2

m

2
􏼔 􏼕

m

2
􏼔 􏼕 + 3􏼒 􏼓􏼒 􏼓.

(34)

Hence, (a) of *eorem 3 is proved.

Case 2. For [m/2] ≥ n, the number term in polynomial (32)
is

m

2
􏼔 􏼕 + 1􏼒 􏼓 +

m

2
􏼔 􏼕 +

m

2
􏼔 􏼕 − 1􏼒 􏼓 + · · · + 2 + 1 −

m

2
􏼔 􏼕 − n + 1􏼒 􏼓 −

m

2
􏼔 􏼕 − n􏼒 􏼓 −

m

2
􏼔 􏼕 − n − 1􏼒 􏼓 − · · · − 2 − 1

�
1
2

m

2
􏼔 􏼕 + 2􏼒 􏼓

m

2
􏼔 􏼕 + 1􏼒 􏼓 −

m

2
􏼔 􏼕 − n + 1􏼒 􏼓

m

2
􏼔 􏼕 − n + 2􏼒 􏼓􏼔 􏼕 � n

m

2
􏼔 􏼕 −

n(n − 3)

2
,

(35)

by Descartes theorem of the Appendix, and we can choose
the appropriate coefficients Ai,j in order that the simple
positive roots number of S(r) is at most

μ2 � n
m

2
􏼔 􏼕 −

n(n − 3)

2
− 1 � n

m

2
􏼔 􏼕 −

n(n − 3) + 2
2

. (36)

Hence, (b) of *eorem 3 is proved.

Example 1. We consider system (5), where p � 1, q � 3, and

f(u, v) � 2u
3

+ u
2
v − 7.2365u

2
+ 5v

2
− 0.5u + 0.7605.

(37)

In this case, m � 3, n � 3 and Csθ and Snθ are T-periodic
functions with period T � 8.413 1. From equation (5), we
obtain

f
0
(r) � −

1
Tr

A0.0 + A1.0r
2

+ A0.1r
6

􏼐 􏼑. (38)

Upon using (16), we get

α0,0 � 8.4131,

α2,0 � 3.6276 and α0,2 � 2.1033.
(39)

So,

f
0
(r) � −

1
8.4131r

6.3982 − 26.251r
2

+ 10.517r
6

􏼐 􏼑. (40)

*is polynomial has two positive real roots, r1 � 0.5 and
r2 � 1.2. According to statement (a) of*eorem 3, that system
has exactly two limit cycles bifurcating from the periodic orbits
of the center _u � − v, _u � v5, using the averaging theory of first
order. Figure 1 shows the limit cycles for Example 1.

Appendix

We remember Descartes’ theorem regarding the real roots
number of a real polynomial (for a proof, see, for example,
[20]).

Descartes theorem: consider the following real
polynomial:

p(u) � al1
ul1

+ al2
ul2

+ · · · + alk
ulk

, (A.1)

with 0≤ l1 < l2 < · · · < lk and ali
≠ 0 real constants for

i ∈ 1, 2, 3, . . . , k{ }. Since ali
ali+1
< 0, it can said that ali

and ali+1
admit a variation of sign. If the signs variations number of is
n, then p(u) admits at most m positive real zeros. In aditios,
it is always possible to pick out the coefficients of p(u),
where p(u) admits exactly k − 1 positive real zero.
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