
Research Article
Towards the Concurrent Optimization of the Server: A Case
Study on Sport Health Simulation

Nan Jia ,1 Ruomei Wang ,2 Mingliang Li,1 Yuhan Guan,2 and Fan Zhou2

1School of Information Engineering, Intelligent Sensor Network Engineering Research Center of Hebei Province,
Hebei GEO University, Shijiazhuang 050031, China
2School of Computer Science and Engineering, National Engineering Research Center of Digital Life, Sun Yat-sen University,
Guangzhou 510006, China

Correspondence should be addressed to Ruomei Wang; isswrm@mail.sysu.edu.cn

Received 7 January 2021; Revised 24 February 2021; Accepted 3 March 2021; Published 15 March 2021

Academic Editor: Wei Wang

Copyright © 2021 Nan Jia et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using computers to conduct human body simulation experiments (e.g., human sport simulation, human physiology simulation,
and human clothing simulation) can benefit from both economic and security. However, the human simulation experiment
usually requires vast computational resources due to the complex simulation model which combines complicated mathematical
and physical principles. As a result, the simulation process is usually time-consuming and simulation efficiency is low. One
solution to address the issue of simulation efficiency is to improve the computing performance of the server when the complexity
of the simulation model is determined. In this paper, we proposed a concurrent optimization scheme for the server that runs
simulation experiments. Specifically, we firstly propose the architecture of the server cluster for the human body simulation, and
then we design the concurrent optimization scheme for the server cluster by using Nginx. )e experiment results show that the
proposed concurrent optimization scheme can make better use of server resources and improve the simulation efficiency in the
case of human sport simulation.

1. Introduction

With the development of fundamental subjects (such as
mathematics and physics) and computer technology, it
becomes possible to use computer technology to conduct the
simulation experiments related to human body, such as
human sport simulation [1], human physiology simulation
[2, 3], and human clothing simulation [4–6]. Human body
simulation has many benefits. First of all, the experiment
cost is reduced. In the simulation experiment, the experi-
mental objects and equipment are digitized, and the cost is
much lower than that of the real experimental objects and
equipment [7]. For example, in the human body clothing
simulation, the clothing is a digital clothing model, and it is
not necessary to design and buy real clothes for the ex-
periment. Secondly, the way of simulation can reduce the
risk of the experiment. For instance, in human sport sim-
ulation, the simulation scene is used to replace the sport state

of real human body in extreme environment to avoid ir-
reversible damage caused by excessive exercise [8].

Although the use of simulation experiments instead of
real experiments can bring many benefits, efficient imple-
mentation of simulation experiments faces the following
challenge. To accurately simulate the dynamic evolution of
simulation objects in real environment, the simulation
models often build based on complex mathematical mod-
elling as well as following the complicated physical laws. As a
result, the simulation model for a specific domain is often
very complex. For example, in the process of establishing the
heat and moisture simulation model of clothing human
body, it is necessary to understand the human physiological
tissue structure and construct the simulation model of
human thermal physiological regulation mechanism by
comprehensively considering dozens of factors such as
metabolism, blood flow, respiration, and heart rate [9, 10]. It
is also necessary to consider the law of conservation of mass

Hindawi
Complexity
Volume 2021, Article ID 5587170, 13 pages
https://doi.org/10.1155/2021/5587170

mailto:isswrm@mail.sysu.edu.cn
https://orcid.org/0000-0002-7684-6980
https://orcid.org/0000-0002-2712-4412
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5587170


and energy to construct the heat and moisture transfer
model of clothing corresponding to human body and the
interaction model between human body and clothing [11].
In order to solve a large number of partial differential
equations established in the simulation model, it is necessary
to introduce the finite element numerical solution method.
)e finite element method is famous for its high compu-
tational complexity [12], and it takes an average of 16 hours
for a single human heat and moisture simulation in our
previous study [1].

)e complex simulation model means that a lot of
computing resources are needed to perform efficient cal-
culations. )e traditional single server computing method is
obviously not suitable for most simulation scenarios. For
example, human sport simulation requires to provide ex-
ercise suggestions to users according to the current exercise
state, and this puts forward a higher requirement for the
simulation efficiency of the model [1]. Usually, when the
complexity of the simulation model is determined, the
simulation efficiency of the model can be improved by the
computing performance of the server. In theory, a large
number of high-performance servers can be stacked to
improve the computation efficiency of the simulation
platform. However, a single high-performance server is
often expensive, which is not a good choice for researchers
without sufficient budget.

A feasible solution is to use the server cluster technology.
)at is, multiple servers with lower hardware configuration
are gathered together to improve the computation efficiency
and provide services for users. Even if the computation
efficiency can be improved by server cluster technology, the
performance problem of server concurrency needs to be
solved. When a large number of users use the simulation
platform at the same time, the simulation results will not be
obtained in time. In serious cases, the server will crash.
)erefore, this paper will focus on how to design and im-
plement a concurrent optimization scheme for simulation
server. Specifically, we propose a server cluster method
specifically to run the simulation model, in which Nginx
(http://nginx.or) is used to build the front-end server as the
user access portal, the spring boot framework is used to
deploy the simulation model on the back-end application
server, and the Redis (https://redis.io/) database is used to
save the simulation prediction results. We design and im-
plement a variety of optimization schemes to improve the
concurrent processing ability of the cluster, including a
dynamic load balancing algorithm combining polling and
real-time performance, TCP connection pool, and an effi-
cient thread model of application server. In the case study,
we deployed the human sport health simulation model on
the server cluster, and the experimental results show that the
proposed concurrent optimization scheme achieves a
throughput and response time of 70.1 and 3,093ms when the
concurrent number is 500 in the case of human sport
simulation.

)e rest of this paper is organized as follows. In Section 2
we introduce the basic technology and framework of the
server, including Nginx server and load balancing algorithm.
In Section 3, we present the designed server cluster

architecture as well as the concurrent optimization scheme.
Section 4 is the case study, and we implement a sport health
simulation platform based on the proposed concurrent
optimization schemes and conduct a performance analysis.
Section 5 contains conclusions.

2. Background

In this section, we will introduce some concurrent opti-
mization techniques on the server-side used in this study,
including NGINX, load balancing technology, and IO
multiplexing technology.

2.1. NGINX. Nginx is an open-source high-performance
reverse proxy server [13, 14]. In order to deal with the
concurrent problem of C10K (http://www.kegel.com/c10k.
html), Nginx designs an asynchronous processing model
based on event driven, which can handle a large number of
concurrent connections without blocking in a low memory
consumption level. At the same time, developers can freely
develop third-party modules and integrate them into the
Nginx server. )e well-known modules in Nginx includes
ngx _http_upstream_ fair_module, which implements load
balancing based on response time; ngx_nodes_htt-
p_healthcheck_module, which implements health check of
back-end. At present, Nginx has become the leader in the
field of web server, which is adopted by many famous
websites such as GitHub (https://github.com/), Pinterest
(http://www.pinterest.com), Netflix (https://ir.netflix.net),
and Airbnb (https://www.airbnb.cn).

2.1.1. Module Structure. )e high stability and scalability of
Nginx is closely related to its architecture design. It makes
each functional module completely decoupled to eliminate
the possible adverse effects between them. )e latest version
of the Nginx framework defines six types of modules,
namely, CORE, EVENT, HTTP, MAIL, STREAM, and
CONFIGURATION. )e CORE module provides basic
functions such as string processing, file reading and writing,
digest algorithm, encoding, and decoding. )e CORE
module also defines some improved data structures based on
C language. )ese data structures can help Nginx process
data more efficiently in high concurrency web environment.

)e EVENT module is mainly responsible for moni-
toring connection, adding and deleting read/write events,
notifying callback function when the event is ready, and
timer and other auxiliary functions. )e HTTP module is
responsible for receiving, processing, and filtering HTTP
requests, including the implementation of reverse proxy and
load balancing algorithm. It is the basis of Nginx to provide
efficient web services. )e MAIL module adds mail protocol
to HTTP module. )e STREAMmodule works in the fourth
layer of OSI seven layer network model, which can realize
the forwarding, proxy, and load balancing of TCP and UDP
requests.

)e CONFIGURATION module records the configu-
ration information in the whole Nginx framework. Any
official or third-party developed Nginxmodules must belong

2 Complexity

http://nginx.or
https://redis.io/
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
https://github.com/
http://www.pinterest.com
https://ir.netflix.net
https://www.airbnb.cn


to one of the six categories. )e hierarchical relationship
among the six modules can be found in Figure 1. )e CORE
module and CONFIGURATION module are closely related
to the Nginx framework. )e other four modules are not
directly related to the framework, but each has a “manager”
in the CORE module.

2.1.2. Process Model. )ere is usually a master process and
multiple worker processes running in the Nginx server. )e
relationships between them is shown in Figure 2. )e master
process does not deal with specific web requests. It is only
responsible for establishing, binding, closing socket con-
nections, and managing and monitoring the worker process.
Worker processes are generated by master process when the
server starts. )ey execute the actual business logic and
cooperate with the I/O mechanism provided by the oper-
ating system to process HTTP requests and return the re-
sponse data to the client. After the master process starts, it
will suspend waiting for the signal sent by the user. After
receiving the signal, it will pass the signal to the worker
process through the interprocess communication mecha-
nism provided by the operating system. Each worker process
will compete fairly to obtain the request. )en, the master
process hangs again, waiting for the next signal. )erefore,
the master process is usually relatively idle, while the worker
process is busy most of the time.

2.1.3. Reverse Proxy. Reverse proxy [15] is a core function of
Nginx. Nginx generally plays a front-end server of the cluster
to receive client requests, then forwards the request to the
upstream server (that is, the server in the cluster that
processes the business logic), and finally receives the re-
sponse data and returns it to the users. When the number of
upstream servers is more than one, the load balancing al-
gorithm is needed to select the forwarding target server. )e
client thinks it is communicating directly with the reverse
proxy server, and it does not know that the request has been
processed by the upstream server.

Nginx’s reverse proxy method shortens the time for the
upstream server to maintain the connection. At the same
time, because of the internal LAN communication between
the proxy server and the upstream server, the speed is faster,
so it can effectively reduce the concurrency pressure of the
upstream server.

2.2. Load Balancing Technology. Load balancing [16] tech-
nology is usually used together with server cluster. Its idea is
that multiple servers with equivalent status form a set, and
the request is allocated to a server in the cluster through
some algorithm, and the server receiving the request in-
dependently responds to the request of the client.

)ere are three main ways to achieve load balancing
[17–19]. )e first is based on DNS domain name resolution.
)e specific method is to bind multiple IP addresses for
domain name in DNS server. In this way, the IP address
corresponding to the domain name obtained by each client
is different, and the request is sent to different servers. )e

second is based on NAT (network address translation)
technology. A NAT server is used as the only channel be-
tween the external network and the internal LAN of the
cluster. When the NATserver receives an external request, it
modifies the target IP address in the request message to
redirect to a machine in the cluster. )e third is based on
reverse proxy: the proxy server acts as the front-end server of
the cluster. When the user’s request arrives at the proxy
server, the proxy server selects a back-end server, rewrites
the request, and initiates access to it. )e load balancing of
Nginx is based on reverse proxy [20, 21].

In the initial stage, static performance of each back-end
server is calculated according to its CPU configuration, as
shown in equation (1) where performance [i], frequency [i],
and cores [i] represent the static performance, CPU main
frequency, and CPU core of the ith back-end server, re-
spectively.We then set the static weight sw for each back-end
server based on the static performance, as shown in equation
(2), where performanceMin represents the minimum static
performance for all back-ends servers. )us, the server with
the worst static performance must have a static weight of 10:

performance[i] � frequency[i]∗ cores [i], (1)

sw [i] �
performance[i]

performancemin
∗ 10. (2)

2.3. IO Multiplexing. IO multiplexing technology can
monitor the status of multiple sockets in one thread at the
same time. epoll [22] is the best IO multiplexing method in
the Linux system. Before epoll was born, select and poll [22]
are the most commonly used IO multiplexing methods in
the Linux system. )eir characteristics are as follows: when
collecting events, they will pass all sockets of established
connection to the operating system kernel, and then the
kernel will find whether there are unprocessed events on
these connections.)e disadvantage of this method is that in
the high concurrency scenario, the server process maintains
connection with a large number of users at the same time,
and a large number of sockets are passed to the kernel every
time the event is collected, resulting in a large number of
memory copies from the user mode to the kernel mode.
)erefore, its efficiency is inversely proportional to the
number of events monitored. )is is particularly wasteful
when the server maintains a large number of connections,
but only a few connections have events. For example, only
200 out of 100 000 connections actually have events to
handle. In order to process the 200 connection requests, the
server needs to check all 100000 connections.

However, epoll has different processing mode, and it
separates the two parts of sending socket to kernel and
getting event and divides the original call of select and poll
into three parts: calling epoll_create to create an epoll object
and calling epoll_ctl to add connected socket to epoll object,
and calling epoll_wait to collect the connection where the
event occurred. epoll is efficient because it can add con-
nections to the event_poll object in the kernel to be mon-
itored in advance, so that every time an event is collected,

Complexity 3



there is no need to pass all connections to the kernel, and the
kernel does not need to traverse and check all connections.
)erefore, epoll can handle a large number of connections
more efficiently than select and poll and has more advan-
tages in concurrent scenarios.

3. Sever Concurrent Optimization Scheme

In this section, we firstly introduce the architecture of the
server cluster we proposed for the human body simulation,
and then we will design the concurrent optimization scheme
for the server cluster.

3.1. Design of Server Cluster Architecture. )e traditional
server architecture is a single-thread model in which user’s
requests follow a first-come-first-served rule. )is archi-
tecture is not problematic in situations where user’s requests
are low or arrival times are scattered. However, when the
number of user’s requests increases or is concentrated over a
short period of time, that is, when there are high concurrent
requests, the waiting queue can be long. In the human body
simulation scene, the thread handling each request should
processes a time-consuming simulation calculation. )ese
time-consuming processes are accumulated, resulting in an
increase in the average user wait response time.

Core

ngx_http_module

ngx_events_module ngx_stream_module

ngx_mail_module
ngx_core_module

Configuration

ngx_conf_module

HTTP

ngx_http_proy_module

ngx_http_upstream_module

ngx_http_core_module

Mail

ngx_mail_pop3_module

ngx_mail_imap_module

ngx_mail_core_module

Event

ngx_event_core_module

ngx_epoll_module

ngx_aio_module

Stream

ngx_stream_core_module

ngx_stream_ssl_module

ngx_stream_proxy_module

Figure 1: Relationship between Nginx modules.

Master process

Worker
process

Worker
process

Worker
process

Client

Management 
and 

communication

Management 
and 

communication

Management 
and 

communication Request

Request

Request

Communication

Communication
communication

…

Figure 2: Relationships between master process and worker processes.

4 Complexity



In order to reduce the average waiting time of users, we
can analyse and design from reducing the actual processing
time and reducing the queuing time. However, the human
simulation models usually include most iterative operations,
and it is difficult to divide into parallel tasks. )erefore, the
actual processing time cannot be reduced.

To reduce the queuing time, we can replace the single-
threaded model with a multithreaded model. In the mul-
tithreaded model, the server starts a new thread for pro-
cessing each request it receives without waiting for the
previous one to complete. Since each thread consumes a
certain amount of memory resources, this approach con-
sumes space as well as time. )erefore, we design the server
thread pool to handle user requests. )e thread pool will
maintain in an interval number of threads and avoid run-
ning out of memory. At the same time, the thread pool can
maintain a waiting queue to store the requests that are failed
to deal with at the first time. Because the threads processing
the requests are more than one, the waiting queue length will
be shorter than using a single-thread model.

To further improve the ability of the server handling
concurrent requests, we use a cluster of multiple servers
instead of a single server. User requests are distributed
reasonably to each machine to achieve load balance. Figure 3
shows the cluster architecture. A front-end server is set up in
the cluster. Its IP address is exposed to the public and serves
as the unique entry port for users to access the server. )e
front-end server is only responsible for receiving the request
and selecting an application server for forwarding; it does
not do the actual request processing. )e application server
is responsible for the actual request processing and returns
the processing results to the client side via the front-end
server. Because the application servers do not accept user
requests directly, their IP addresses are only visible to the
front-end serve.

3.2. Concurrent Optimization Scheme of Front-End Server.
)e front-end server is an important node in the entire
server cluster. It receives all user requests and forwards
requests to the application server. Meanwhile, it is also
responsible for the load balancing. In this paper, dual-
machine hot standby technology is adopted to provide high
availability for the front-end server. Two front-end servers
are deployed, and one for the host and the other for the
standby. When the host fails, the standby prepares to take
over the task of the host quickly. When the host is repaired,
the host can be serviced again. In the cluster scheme design,
Nginx is used as the front-end server software.We design the
connection scheme and load balancing algorithm for the
front-end server.

3.2.1. Connection Scheme. )e front-end server maintains
two types of connections, one to clients and one to appli-
cation servers in the cluster. Both connections use the HTTP
protocol.

In the high concurrency environment, the communi-
cation between the front-end server and the client and the
application server is relatively frequent. We should send as

many HTTP requests as possible within a single TCP
connection, that is, reusing the TCP connection to reduce
the overhead of establishing and closing the connection. So,
we adopt the HTTP long connection scheme. Nginx sup-
ports maintaining long connections with clients. Similarly,
the connection between the front-end server and the ap-
plication server is also the long connection scheme.

In addition, we apply the idea of connection pooling to
manage TCP connections. )e main steps are as follows: (1)
when the front-end server starts up, it opens up a memory
space for future establishing and opening TCP connections,
which we call connection pooling. (2) After the front-end
server decides which application server to forward the re-
quest to, it looks in the connection pool for a TCP con-
nection that has the same target IP and port as the forward. If
it is found, the TCP connection is taken out of the con-
nection pool and it is used to forward the request. If not, a
new TCP connection is created to forward the request. (3)
When the front-end server receives the request processing
results from the application server, the connection pool is
checked, and the TCP connection which is used is saved for
this request into connection pooling.

In the concurrent environment, the front-end server
forwards requests to the application server very frequently,
and the connection pool can be used to reuse TCP con-
nections as much as possible to send requests to the same
application server, which can reduce the overhead of fre-
quently establishing and closing connections. At the same
time, setting the maximum capacity of connection pool
reasonably can avoid excessive memory consumption of the
front-end server. To some extent, the scheme can avoid the
slow start of TCP and increase the utilization of network
bandwidth. Slow start is a method for TCP to estimate the
available bandwidth of the network. After the establishment
of TCP, the congestion window is set as 1; that is, the sender
can only send one message at the beginning, and after re-
ceiving the acknowledgment from the receiver, the con-
gestion window is gradually increased. Sometimes, too fast
growth of the window will lead to a large number of packet
loss. A multiplexed connection eliminates the need for the
front-end server to start with a packet segment and reduces
the chance of packet loss.

3.2.2. Load Balancing Algorithms. When forwarding a re-
quest, the front-end server uses a load balancing algorithm
to select a back-end application server. In the cluster, the
application servers are divided into two groups, one is used
to handle simulation requests and the other to handle the
query requests. )e server selection is determined by load
balancing algorithm [23, 24].

)is paper proposes a dynamic load balancing algorithm
combining polling. )is algorithm will monitor the per-
formance changes of each application server, then adjust the
weight of each server according to the performance indi-
cators, and finally select the forwarding server according to
the weight.

)e usage statuses of CPU and memory are used to
measure performance of application server. Static

Complexity 5



performance of each application server is calculated based
on its CPU configuration:

performance[i] � frequency[i]∗ cores [i], (3)

where, performance [i], frequency [i], and cores [i] rep-
resent the static performance values of the ith application
server, CPU dominant frequency, and CPU kernel number,
respectively. We then set static weights for each application
server based on static performance sw:

sw [i] �
performance[i]

frequencymin
∗ 10. (4)

After the front-end server is started, two weights are
initialized for each application server: the current weight cw
and the processing efficiency weight ew, where cw is ini-
tialized to 0 and initial value of ew is equal to the static
weight.

Calculating the total remaining resources of the appli-
cation server,

totalResource � idleCPU +
freeMEM

200
􏼠 􏼡, (5)

where idleCPU is CPU vacancy rate and freeMEM is
memory residual size. Update ew of the application server:

ew �
(totalResource∗ sw)

10
. (6)

After the front-end server receives the user request, the
following steps are used to select an application server for
forwarding:

(1) Update cw values for each application server,
cw� cw+ ew, and totalWeight is defined as the sum
of the ew values for all the application servers

(2) Select the largest server on the cw
(3) Update the cw value of the selected server,

cw� cw− totalWeight and start forwarding request

)e details are shown in Figure 4. In general, this al-
gorithm combines the idea of polling and dynamic weight
adjustment. cw is a key parameter to decide which server to
choose.)e larger the cw is, the more likely the server will be
selected. ew reflects the server’s ability to process requests at
the current moment. In Step (1), the superposition of ew
value makes the cw of the server with strong processing
capacity grow rapidly and has a greater chance to be selected.
In Step (3), the update operation makes the current request
to choose the server of the cw decrease sharply, when for-
warding a request under the chosen less likely, and this
avoids multiple continuous forward requests to the same
server. At the same time, if the server processing ability is
very strong, the ew value is very high, which can bear more
request; then, its cw can quickly recover in Step (1).

3.3. Concurrent Optimization Scheme of Application Server.
In our server cluster, the application server is responsible for
executing the real user request business. For a single request,
the work flow of application server can be summarized as
follows:

Step 1: monitoring the specified port and receiving the
connection initiated by the front-end server
Step 2: reading the user request data forwarded by the
front-end server from the connection and parsing the
HTTP message
Step 3: finding the corresponding processing method
based on the URL address and starting executing the
actual business process
Step 4: when the business process completes, the
processing results are sent back to the front-end server
along the connection

In view of the threads blocking caused by sequential
execution of the above steps, we divides application server
threads into two categories. One is responsible for the first
step operation, namely, receiving and establishing the

User

User

User

External network IP:
120.236.174.167

Front-end server

Internal network IP:
192.168.1.10

Internal network IP:
192.168.1.20

Internal network IP:
192.168.1.30

Internal network IP:
192.168.1.40

Application server

Application server

Application server

Figure 3: Cluster architecture.

6 Complexity



connections, which is called the receiver thread. )e other
type of thread is responsible for Steps 2 to 4, that is, reading
and writing request data, parsing messages, matching URL,
executing business processes, etc., and we call it worker
thread. In this way, after the receiver thread establishes the
connection, it will create a socket for the connection and give
it to the worker thread for subsequent processing. It will
continue to listen on the port without blocking and can
continue to receive new connections. )e application server
uses only one port to receive connection requests from the
front-end server, so setting up a receiver thread is enough.
We set the number of worker threads to be equal to the
number of CPU cores in order to maximize the parallelism
of multicore servers. Both types of threads use the epoll
mechanism at the bottom to wait for IO

Figure 5 shows the thread model of application server
designed in this paper. As shown in Figure 5, a business
thread pool consists of several business threads and a task
queue. min)reads and max)reads are minimum number
of threads and maximum number of threads of business
thread pool. When the application server is initially started,
the number of threads in the thread pool is 0 and the task
queue is empty. )e worker thread encapsulates the oper-
ation that actually handles the request as a task. )ere are
three situations:

(1) If the current number of threads is less than
max)reads and all threads are running tasks, a new
thread is created to perform the new task

(2) If the current number of threads is less than
max)reads, but there are idle threads that are not
executing, then the new task is placed at the end of
the task queue

(3) If the current number of threads is greater than or
equal to max)reads, the new task is placed at the
end of the task queue

After each business thread is created, it is repeatedly to
fetch the task from the task queue header and execute it in a
loop, after that the result is asynchronously returned to the
worker thread. If a business thread does not execute any
tasks within the set timeout period, then the task queue is
empty for a long time and the application server is idle. We
can close the thread to save resources. However, if the
number of business threads has been reduced to min-
)reads, we should not continue to close threads, because we
need to maintain a certain number of threads to cope with
the concurrent requests.

4. Case Study

To evaluate the effectiveness of the proposed scheme for
server, we deploy a human sport health simulation model on
the server that implements the concurrent optimization
scheme.

4.1.HumanSportHealthSimulation. With the improvement
of people’s health awareness, sports have become an in-
dispensable part of life [25, 26]. However, if the exercise plan
is not properly arranged, it is easy to cause physical dis-
comfort. )e human sport simulation model based on
clothing heat and moisture transfer model can predict the
physiological characteristics of human body during the
exercise and further help people judge the change of body
state and adjust the exercise plan reasonably [1]. At present,
there is some software for sport health simulation [27], but

Begin

Set the initial weight cw and ew of the 
application server

Listening port and waiting for request

Is there a new 
request coming?

Determine the 
source of the 

request

Update ew

Get the CPU 
memory utilization 
and the size of the 

remaining memory 
space

Forward the request to the selected server

Updates cw of the selected server

Select the application server with largest cw 

Updata cw of all application servers and 
calculate totalWeight

Does the load 
balancing service 

end?

End

Client requestApplication server feedback

No

Yes

Yes

No

Figure 4: Flowchart of the dynamic load balancing algorithm.

Complexity 7



the computation overhead of this software is large, as well as
the parameter setting is complex, and the operation is
cumbersome.)erefore, most of these software are deployed
on the PC side, and they are mostly for professional re-
searchers. It is difficult to popularize them to ordinary users.
)erefore, it is of great significance to build an efficient and
optimized sport health simulation platform and make it
widely used in the field of the human sport.

In this paper, we employ the 25-node human physical
model to build the clothing heat and moisture transfer
model. )e human body in the 25-node model is divided
into head, torso, arms, hands, legs, and feet (six parts), and
each part from inside to outside is divided into the kernel,
muscle, fat, and skin (four layers), plus central blood pool;
therefore, it is called “25-node” [5]. )e proposed human
sport health simulation platform is divided into four
modules: user information management, clothing man-
agement, simulation calculation, and simulation record
management. User information management is responsible
for executing the login and registration logic of the platform,
saving the user’s personal ID and password, and managing
the user’s height, weight and gender information, as shown
in Figure 6(a). Clothing management is responsible for
adding, deleting, checking, and modifying the user’s pre-
ferred clothing, as shown in Figure 6(b). According to the
relevant parameters provided by the user, the human sport
simulation model is used to simulate the states of human
during the exercise, and the change information of skin
temperature and sweating amount during the user’s exercise
is returned in simulation calculation module. Simulation
record management is responsible for saving the result data
after each simulation process, and it can support users to
query the previous sport health simulation results.

)e human sport health simulation platform is deployed
as C\S architecture. A friendly user interface is provided on
the client app to facilitate the user to input personal in-
formation, clothing information, and exercise plan; the
server employs the concurrent optimization schemes

proposed in this paper, and we use the mature clothing heat
and moisture transfer model and human thermal physio-
logical regulation model to calculate the changes of human
physiological characteristics [1]. When users start the sim-
ulation, they will set the simulation parameters on the
mobile phone and upload them to the server that imple-
ments the concurrent optimization scheme, and the server
will perform human sport simulation calculation according
to those parameters. In general, the simulation process of
this paper is an iterative solution process. We will iterate
according to a certain step size within the duration set by the
user’s sport plan. Each iteration will involve the calculation
of clothing heat and moisture transfer model and human
thermal physiological regulation model.

4.2. Results Analysis

4.2.1. Application Server Performance. In this case, we use
Netty framework (https://netty.io/index.html) to implement
a lightweight servlet container (hereinafter referred to as the
“article container”) on the application server to replace the
Tomcat container that spring boot uses by default. )e
concurrent optimization scheme designed in Section 3 is
implemented in this container. Now, we test and compare
the efficiency of this container and Tomcat container in
processing requests in concurrent environment. )e ap-
plication server used in the test is configured with 3.4GHz
quad core CPU and 8 g memory. We deploy the server-side
program of sport health simulation platform on the server.

We use JMeter (https://jmeter.apache.org/) to simulate
the user to send simulation request. )e parameters [23] of
the request are shown in Table 1. We send concurrent re-
quests to the server-side programs with this container and
Tomcat container, respectively. Tables 2 and 3 show the
throughput and average response time of the two containers
when the number of concurrent requests per second is 100,
300, 500, 800, and 1000, respectively. Figures 7 and 8 show

Business thread pool

Read 
data

Actual
business

processing
Write
data

Keep reading

User

User

User

Recipient thread

Listening port

Receive
connection

1

Receive
connection

2

Receive
connection

3

Hands over the connection
to the work thread

Keep listening
Read
data

Actual
business

processing
Write
data

Read
data

Actual
business

processing
Write
data

Submit

Business
processing
completed

Business
processing
completed

Submit

Submit

Business
processing
completed

Business
thread

Business
thread

Business 
thread

…

Task
queue

Keep reading

Keep reading

Work thread

Work thread

Work thread

Figure 5: )read model of application server.

8 Complexity

https://netty.io/index.html
https://jmeter.apache.org/


(a) (b)

Figure 6: Client interface for inputting simulation parameters. (a) Human setting interface. (b) Clothing setting interface.

Table 1: Simulation settings and parameters.

Subject settings Clothing settings
Height (cm) Weight (kg) Sex Material )ickness Style

170 60 Male Cotton Middle Short
Nylon Middle Trousers

Environment conditions Exercise settings
Temperature (°C) Humidity Type Speed (m/min) Duration (min)
30 30% Running 150 1

Table 2: )roughput comparison between article container and Tomcat.

Concurrent number
Container 100 300 500 800 1000
Article container 42.9 40.4 40.8 39.5 40.3
Tomcat container 38.8 37.1 35.8 34.7 38.3

Table 3: Average response time comparison between article container and Tomcat.

Concurrent number
Container 100 (ms) 300 (ms) 500 800 (ms) 1000
Article container 914 3519 5836ms 9576 11689ms
Tomcat container 1806 5345 10066ms 14897 15710ms

Complexity 9



the trend of throughput and average response time with the
number of concurrent requests. Compared with the data in
the figure, we can find that in the process of increasing the
number of concurrent requests from 100 to 1000, the
throughput of our container is higher and the average re-
sponse time is shorter. Considering that 1000 concurrent
simulation requests are already quite high concurrency for
the server used in this experiment, we can think that the
concurrency optimization scheme designed and imple-
mented on the application server in this paper really im-
proves the efficiency of the application server of the sport
health simulation platform to process the requests
concurrently.

4.2.2. Cluster Performance. Based onNginx, we implement a
dynamic load balancing algorithm and TCP connection
pool, which combines polling and real-time performance on
the front-end server. )is section builds a cluster composed
of a front-end server FS, a database server DS, and three
application servers AS1, AS2, and AS3 for testing. )e
hardware configuration of each server is shown in Table 4.
According to the calculation method in Section 3.2.2, the
static weights for AS1, AS2, and AS3 are 11, 10, and 23,
respectively.

JMeter is also used to test in the experiment. )e sim-
ulation user sends simulation request to the front-end
server.)e simulation parameters used are the same as those
in Table 1. We use three schemes on the front-end server for
comparative testing, which are the concurrent optimization
scheme we proposed, the Nginx using polling (shorten for:
Nginx Round Robin) and the Nginx using the least con-
nection algorithm (shorten for: Nginx LBLC). )e appli-
cation server is used to deploy the human sport simulation
model. Tables 5 and 6 show the cluster throughput and
average response time of the three front-end server solutions
when the number of concurrent requests per second is 500,
1000, 2000, 3000, and 4000, respectively. Figures 9 and 10
show the trend of the throughput and average response time

0
5

10
15
20
25
30
35
40
45
50

100 300 500 800 1000

�
ro

ug
hp

ut
Concurrent number

Article container
Tomcat container

Figure 7: )roughput comparison of two containers.

Article container
Tomcat container

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

100 300 500 800 1000

A
ve

ra
ge

 re
sp

on
se

 ti
m

e (
m

s)

Concurrent number

Figure 8: Average response time comparison of two containers.

Table 4: Hardware configuration of test machines.

Configuration
Machine CPU Memory (G)
FS CPU frequency 3.20GHz, dual core 2
AS1 CPU frequency 3.20GHz, dual core 2
AS2 CPU frequency 2.93GHz, dual core 2
AS3 CPU frequency 3.40GHz, quad core 4
DS CPU frequency 3.20GHz, dual core 4

10 Complexity



of the cluster with the number of concurrent requests.
Compared with the data in the chart, it can be found that the
cluster using the front-end server concurrency optimization
scheme in this paper has higher throughput and shorter
average response time. In addition, when the number of
concurrency increases to 4500, no matter which algorithm is
used, the cluster will start to have request failure. )is is

limited by the hardware configuration of the machine used
in the experiment. )erefore, 4000 concurrent requests are
very high for the server cluster used in this experiment. )e
experimental results show that the design and imple-
mentation of the front-end server concurrency optimization
scheme, including the dynamic load balancing algorithm
and TCP connection pool combining polling and real-time

Table 6: Average response time comparison of three front-end server solutions.

Concurrent number
Scheme 500 (ms) 1000 (ms) 2000 (ms) 3000 (ms) 4000 (ms)
Our algorithm 3093 6680 8455 11562 15514
Nginx Round Robin 3902 8508 14409 16707 19477
Nginx LBLC 3406 6695 9742 13528 17962

Table 5: )roughput comparison of three front-end server schemes.

Concurrent number
Scheme 500 1000 2000 3000 4000
Our algorithm 70.1 72.2 72.6 59.1 61.2
Nginx Round Robin 49.6 52.3 52.7 44.2 38.5
Nginx LBLC 66.8 64.6 65.3 56.8 54.9

500 1000 2000 3000 4000
Concurrent number

Our Algorithm
Nginx Round Robin
Nginx LBLC

0
10
20
30
40
50
60
70
80

�
ro

ut
hp

ut

Figure 9: )roughput comparison of three schemes.

Our algorithm
Nginx Round Robin
Nginx LBLC

500 1000 2000 3000 4000

A
ve

ra
ge

 re
sp

on
se

 ti
m

e (
m

s)

Concurrent number

0

5000

10000

15000

20000

25000

Figure 10: Average response time comparison of three schemes.

Complexity 11



performance, can effectively improve the efficiency of the
server cluster of the sport health prediction platform to
process concurrent simulation prediction requests.

5. Conclusions

In this paper, a concurrent optimization scheme for human
body simulation is reported. It deploys a cluster of servers to
handle concurrent user requests. )is cluster uses the front-
end server to receive and forward user requests and realizes
the simulation model on the application server. )e human
exercise health simulation platform is designed and
implemented on the server that optimized by the proposed
concurrent scheme. )e experiment results show that the
concurrent optimization scheme designed and implemented
in this paper can make better use of server resources and
improve the processing efficiency of simulation applications
in the face of concurrent simulation requests.

Data Availability

)e data are being sorted out and will be released later.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e work was supported by the National Natural Science
Foundation of China (nos. 61902105 and 61672547), Soft
Science Research Project of Hebei Provincial Science and
Technology Plan (no. 20550302D), and Key Research Project
of Social Science Development of Hebei Province in 2019
(no. 2019021201005).

References

[1] N. Jia, X. H. Chen, L. Yu et al., “An exercise health simulation
method based on integrated human thermophysiological
model,” Computational and Mathematical Methods in Med-
icine, vol. 2017, Article ID 9073706, 15 pages, 2017.

[2] D. W. Hensley, A. E. Mark, J. R. Abella et al., “50 years of
computer simulation of the human thermoregulatory sys-
tem,” Journal of Biomechanical Engineering, vol. 135, no. 2,
pp. 6–21, 2013.

[3] J. She, H. Nakamura, K. Makino, Y. Ohyama, and
H. Hashimoto, “Selection of suitable maximum-heart-rate
formulas for use with Karvonen formula to calculate exercise
intensity,” International Journal of Automation and Com-
puting, vol. 12, no. 1, pp. 62–69, 2015.

[4] J. Jiao, Effects of Clothing on Running Physiology and Per-
formance in a Hot Condition, )e Hong Kong Polytechnic
University, Hung Hom, Hong Kong, 2014.

[5] A. Mao, Y. Li, X. Luo, R. Wang, and S. Wang, “A CAD system
for multi-style thermal functional design of clothing,”
Computer-Aided Design, vol. 40, no. 9, pp. 916–930, 2008.

[6] F. Z. Li, Y. Wang, and Y. Li, “A. transient 3-D thermal model
for clothed human body considering more real geometry,”
Journal of Computers, vol. 8, no. 3, pp. 676–684, 2013.

[7] L. Peng, B. Su, A. Yu, and X. Jiang, “Review of clothing for
thermal management with advanced materials,” Cellulose,
vol. 26, no. 10, 2019.

[8] M. V. Rodicheva, A. V. Abramov, E. M. Gneusheva,
M. V. Rodicheva, A. V. Abramov, and E. M. Gneusheva,
“Reducing the natural risk of the people working in the open
area by clothing based on textile operating systems,” IOP
Conference Series: Materials Science and Engineering, vol. 962,
no. 4, Article ID 042028, 2020.

[9] W. L. Kenney, J. Wilmore, and D. Costill, Physiology of Sport
and Exercise, Human Kinetics, Champaign, IL, USA, 2015.

[10] T. Hamatani, A. Uchiyama, and T. Higashino, “Estimating
core body temperature based on human thermal model using
wearable sensors,” in Proceedings of the 30th Annual Sym-
posium on Applied Computing, Salamanca, Spain: ACM,
pp. 521–526, New York, NY, USA, April 2015.

[11] M. Guan, S. Annaheim, M. Camenzind et al., “Moisture
transfer of the clothing–human body system during contin-
uous sweating under radiant heat,” Textile Research Journal,
vol. 89, 2019.

[12] N. Jia, Y. Huang, J. Li, H. An, X. Jia, and R. Wang, “Parallel
simulation model for heat and moisture transfer of clothed
human body,” ;e Journal of Supercomputing, vol. 75, no. 8,
pp. 4731–4749, 2019.

[13] Y. H. Wang, High Performance Web Server Performance
Optimization Based on Nginx and Load Balancing Improve-
ment and Implementation, University of Electronic Science
and Technology of China, Chengdu, China, 2015.

[14] R. Will, “Nginx: the high-performance web server and reverse
proxy,” Linux Journal, vol. 173, p. 2, 2008.

[15] J. L. Abitbol, E. Fleury, and M. Karsai, “Optimal proxy se-
lection for socioeconomic status inference on Twitter,”
Complexity, vol. 2019, no. 5915, 15 pages, 2019.

[16] D. R. Karger and M. Ruhl, “Simple efficient load balancing
algorithms for peer-to-peer systems,” ;eory of Computing
Systems, vol. 39, no. 6, 2004.

[17] M. Elgili, “Load balancing algorithms round-robin (RR),
least-connection and least loaded efficiency,” International
Journal of Computer and Information Technology, vol. 4, no. 2,
pp. 255–257, 2015.

[18] C. H. Qu, R. N. Calheiros, and R. Buyya, “Mitigating impact of
short-term overload on multi-cloud web applications through
geographical load balancing: mitigating overload on multi-
cloud web applications through GLB,” Concurrency and
Computation Practice and Experience, vol. 29, no. 1, Article ID
e4126, 2017.

[19] E. Daniel, Y. Cheng, C. Contavalli et al., K. J. Argyraki and
R. Isaacs, Maglev: a fast and reliable software network load
balancer,” in Proceedings of 13th USENIX Symposium on
Networked Systems Design and Implementation, pp. 523–535,
USENIX Association, Santa Clara, CA, USA, March 2016.

[20] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for
dynamic load balancing on highly parallel computers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 9,
pp. 979–993, 1993.

[21] X. Chi, B. Liu, and Q. Niu, “Web load balance and cache
optimization design based Nginx under high-concurrency
environment,” Journal of Physics A Mathematical & ;eo-
retical, vol. 45, no. 48, Article ID 485305, 2012.

[22] L. Gammo, T. Brecht, A. Shukla et al., “Comparing and
evaluating epoll, select, and poll event mechanisms,” in
Proceedings of the 6th Annual Ottawa Linux Symposium,
Ottawa, Canada, July 2004.

12 Complexity



[23] G. Zhang, H. Liu, P. Li et al., “Load prediction based on hybrid
model of VMD-mRMR-BPNN-LSSVM,” Complexity,
vol. 2020, no. 4, 20 pages, 2020.

[24] J.-P. Yang, “Elastic load balancing using self-adaptive repli-
cation management,” IEEE Access, vol. 5, pp. 7495–7504,
2017.

[25] P. J. Vanbeveren and D. Avers, “Exercise and physical activity
for older adults,” Geriatric Physical ;erapy, vol. 41, pp. 64–
85, 2012.

[26] M. E. Nevill, “Exercise physiology,” Bulletin British Associa-
tion of Sport & Medicine, vol. 25, no. 4, pp. 247–259, 2005.

[27] H. Gjoreski, B. Kaluža, M. Gams, R. Milić, and M. Luštrek,
“Context-based ensemble method for human energy expen-
diture estimation,” Applied Soft Computing, vol. 37,
pp. 960–970, 2015.

Complexity 13


