Research Article

Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected

Zhen-Mu Hong, Zheng-Jiang Xia, Fuyuan Chen, and Lutz Volkmann

1 School of Finance, Anhui University of Finance & Economics, Bengbu 233030, China
2 Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China
3 Lehrstuhl II für Mathematik, RWTH Aachen University, Aachen 52056, Germany

Correspondence should be addressed to Zhen-Mu Hong; zmhong@mail.ustc.edu.cn

Received 7 January 2021; Revised 24 January 2021; Accepted 27 January 2021; Published 22 February 2021

Academic Editor: M. Irfan Uddin

Copyright © 2021 Zhen-Mu Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a connected graph with minimum degree $\delta(G)$ and vertex-connectivity $\kappa(G)$. The graph G is k-connected if $\kappa(G) \geq k$, maximally connected if $\kappa(G) = \delta(G)$, and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. Analogous results for triangle-free graphs with given minimum degree to be k-connected, maximally connected, or super-connected are also presented.

1. Introduction

Let $G = (V, E)$ be a simple connected undirected graph, where $V = V(G)$ is the vertex-set of G and $E = E(G)$ is the edge-set of G. The order and size of G are defined by $n = |V(G)|$ and $m = |E(G)|$, respectively; $d_G(x)$ is the degree of a vertex x in G, that is, the number of edges incident with x in G; $\delta(G) = \min\{d_G(x) : x \in V(G)\}$ is the minimum degree of G. For a subset $X \subseteq V(G)$, use $G[X]$ to denote the subgraph of G induced by X. For two subsets X and Y of $V(G)$, let $[X, Y]$ be the set of edges between X and Y. The complement of G is denoted by \overline{G}. Let $G_1 \cup G_2$ denote the disjoint union of graphs G_1 and G_2, and let $G_1 \vee G_2$ denote the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2. The graph G is called a triangle-free graph if G contains no triangle. Denote by $\rho(G)$ the largest eigenvalue or the spectral radius of the adjacency matrix of G and it is called the spectral radius of G. If G is connected, then, by Perron-Frobenius Theorem, $\rho(G)$ is simple and there exists a unique (up to a multiple) corresponding positive eigenvector.

A vertex-cut of a connected graph G is a set of vertices whose removal disconnects G. The vertex-connectivity or simply the connectivity $\kappa = \kappa(G)$ of a connected graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G) = n - 1$ if G is the complete graph K_n of order n. A vertex-cut S is a minimum vertex-cut or a κ-cut of G if $|S| = \kappa(G)$. Apparently, $\kappa(G) \leq \delta(G)$ for any graph G. The graph G is k-connected if $\kappa(G) \geq k$, maximally connected if $\kappa(G) = \delta(G)$, and super-connected (or super-κ) if every minimum vertex-cut isolates a vertex of minimum degree. Hence, every super-connected graph is also maximally connected. An edge-cut of a connected graph G is a set of edges whose removal disconnects G. The edge connectivity $\lambda = \lambda(G)$ of a connected graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts of G. An edge-cut S is a minimum edge-cut if $|S| = \lambda(G)$. The inequality $\lambda(G) \leq \delta(G)$ is obvious. The graph G is maximally edge-connected if $\lambda(G) = \delta(G)$, and it is super-edge-connected if every minimum edge-cut consists of edges incident with a vertex of minimum degree. Therefore, every super-edge-connected graph is also maximally edge-connected. For graph-theoretical terminology and notation not defined here, one can refer to [1, 2].
2 Complexity

Section 2, by setting parameters as in terms of the same parameters as in graphs with fixed minimum degree to be maximally connected or super-connected, or super-edge-connected if the number of edges is large enough, and the results corresponding to triangle-free graphs were generalized to connected graphs with given clique number by Volkman[5].

On the other hand, the relationship between graph properties and eigenvalues has attracted much attention. Fiedler [6] initiated the research on the relationship between graph connectivity and graph eigenvalues, and Fiedler and Nikiforov [7] initiated the investigation on the spectral radius of the graph, or its complement, respectively. In addition, we also give sufficient conditions for a triangle-free graph to be super-connected in terms of the number of edges and the spectral radius of the graph, respectively.

2. k-Connected Graphs

Let G be a connected graph of order n, minimum degree δ, and vertex-connectivity k. If n ≤ 4 or k = 1, then k = δ. If δ = n − 1, then G = Kn, and k = δ. If δ = n − 2, then when u and v are nonadjacent, the other n − 2 vertices are all common neighbors of u and v. It is necessary to delete all common neighbors of some pair of vertices to separate the graph, so k ≥ n − 2 = δ. Therefore, we only need to consider n ≥ 5 and 2 ≤ δ ≤ 3 in the following.

Theorem 1. Let G be a connected graph of order n ≥ 5, size m, and minimum degree δ ≥ k ≥ 2.

(a) If

\[m ≥ \frac{1}{2} n(n-1) - (δ - k + 2)(n - δ - 1), \] (1)

then G is k-connected, unless G = K_{k-1} ∨ (K_{δ-k+2} ∪ K_{n-δ-1}).

(b) If n ≥ (1/2)(k + 1)(δ - k + 2) + (δ + 2) and

\[m ≥ \frac{1}{2} n(n-1) - \frac{1}{2} (δ - k + 2)(2n - 2δ + k - 3), \] (2)

then G is k-connected, unless G is a subgraph of K_{k-1} ∨ (K_{δ-k+2} ∪ K_{n-δ-1}).

Proof. Let k = k(G). On the contrary, suppose that G is not k-connected; that is, 1 ≤ k ≤ k − 1. Let S be an arbitrary minimum vertex-cut, and let X_0, X_1, . . . , X_k−1 be the vertex sets of the components of G − S, where |X_0| ≤ |X_1| ≤ · · · ≤ |X_k−1|. Each vertex in X_0 is adjacent to at most |X_0| − 1 vertices of X_0 and k = |S| vertices of S. Thus,

\[δ|X_0| ≥ \sum_{x ∈ X_0} d(x) ≥ |X_0|[|X_0| + κ − 1], \] (3)

and so |X_0| ≥ δ − κ + 1. Let Y = \bigcup_{i=1}^{k-1} X_i; then |Y| = n − k − |X_0|. Therefore,

\[δ − κ + 1 ≤ |X_0| ≤ |Y| ≤ n − δ − 1. \] (4)

Since G − S is disconnected, there are no edges between X_0 and Y in G and

\[m ≤ \frac{1}{2} n(n-1) - |X_0| · |Y|. \] (5)

(a) Since we suppose that G is not k-connected, it suffices to prove G = K_{k-1} ∨ (K_{δ-k+2} ∪ K_{n-δ-1}). By (4) and |X_0| + |Y| = n − k, and since k ≤ k − 1, we obtain

\[|X_0| · |Y| ≥ (δ - κ + 1)(n - δ - 1) ≥ (δ - k + 2)(n - δ - 1). \] (6)

Substituting (6) into (5), it follows that
Combining this with (1), we obtain \(m = (1/2)n \) \((n - 1) - (\delta - k + 2)(n - \delta - 1)\). Thus, all the inequalities in (6) must be equalities and so \(\kappa = k - 1 \), \(|X_0| = \delta - k + 2 \), and \(|Y| = n - \delta - 1 \). Thus, \(G \) is obtained from \(K_\kappa \) by deleting all the edges of the complete bipartite subgraph \(K_{|X_0||Y|} \) of \(K_\kappa \). That is, \(G[X_0] = K_{\delta-k+2} \), \(G[S] = K_{k-1} \), \(G[Y] = K_{n-\delta-1} \), and \(G = K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \).

(b) To prove that \(G \) is a subgraph of \(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \), we first show that \(|X_0| = \delta - k + 2 \). Suppose that \(|X_0| > \delta - k + 3 \). Since \(|X_0| \leq |Y|, |X_0| + |Y| = n - \kappa \), and \(\kappa \leq k - 1 \), we have

\[
|X_0| \cdot |Y| \geq (\delta - k + 3)(n - \kappa - (\delta - k + 3))
\]

\[
\geq (\delta - k + 3)(n - \delta - 2).
\]

Substituting (8) into (5), it follows that

\[
m \leq \frac{1}{2} n(n - 1) - (\delta - k + 3)(n - \delta - 2).
\]

Combining this with (2), it is easy to get \(n \leq (1/2)(k + 1)(\delta - k + 2) + \delta + 2 \). By the hypothesis, we have \(n = (1/2)(k + 1)(\delta - k + 2) + \delta + 2 \). Hence, \(m = (1/2)n \) \((n - 1) - (\delta - k + 3)(n - \delta - 2)\) and all the inequalities in (8) must be equalities. Thus, \(\kappa = k - 1 \), \(|X_0| = \delta - k + 3 \), \(|Y| = n - \delta - 2 \), and \(G \) is obtained from \(K_\kappa \) by deleting all the edges of the complete bipartite subgraph \(K_{|X_0||Y|} \) of \(K_\kappa \). That is, \(G = K_{k-1} \cup (K_{\delta-k+3} \cup K_{n-\delta-2}) \). However, \(\delta(G) = \delta(K_{k-1} \cup (K_{\delta-k+3} \cup K_{n-\delta-2})) = \delta + 1 > \delta \), a contradiction. Thus, \(|X_0| \leq \delta - k + 2 \). Combining this with \(|X_0| \geq \delta - k + 1 \geq \delta - k + 2 \), we get \(|X_0| = \delta - k + 2 \). Since \(|S| = \kappa \leq k - 1 \) and \(d_G(x) \geq \delta \) for each \(x \in X_0 \), we have that each vertex of \(X_0 \) is adjacent to each vertex of \(S \) and \(|S| = \kappa - 1 \). Therefore, \(G[X_0 \cup S] = K_{\delta+1} \) and \(G \) is a subgraph of \(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \).

Theorem 2. Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta \geq k \geq 2 \). If

\[
\rho(G) \geq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})),
\]

then \(G \) is \(k \)-connected, unless \(G = K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \), where \(\rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})) \) is the largest root of the equation

\[
\lambda^3 - (n - 3)\lambda^2 + ((\delta - k + 2)(n - \delta - 1) - 2n + 3)\lambda + (\delta - k + 2)(n - \delta - 1)k - n + 1 = 0.
\]

Proof. Let \(\kappa = \kappa(G) \). Assume that (10) holds but \(1 \leq \kappa \leq k - 1 \). Let \(S \) be an arbitrary minimum vertex-cut of \(G \), and let \(X_0, X_1, \ldots, X_{p-1} \) \((p \geq 2)\), denote the vertex-sets of the components of \(G - S \), where \(|X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}| \). Each vertex in \(X_i \) is adjacent to at most \(|X_{i-1}| \) vertices of \(X_i \) and \(\kappa = |S| \) vertices of \(S \). Thus,

\[
\delta |X_i| \leq \sum_{x \in X_i} d(x) \leq |X_i|(|X_i| - 1 + \kappa),
\]

and so \(|X_i| \geq \delta - \kappa + 1 \) for each \(i = 0, 1, \ldots, p - 1 \). Let \(Y = \bigcup_{i=1}^{p-1} X_i \). Then, \(\delta - k + 1 \leq |X_0| \leq |Y| \leq n - \delta - 1 \) and \(|X_0| + |Y| = n - \kappa \). Since there are no edges between \(X_0 \) and \(Y \) in \(G \), \(G \) is a subgraph of \(K_{k-1} \cup (K_{|X_0|} \cup K_{|Y|}) \) and \(\rho(G) \leq \rho(K_{k-1} \cup (K_{|X_0|} \cup K_{|Y|})) \).

Next, we shall show

\[
\rho(K_{k-1} \cup (K_{|X_0|} \cup K_{|Y|})) \leq \rho(K_{k-1} \cup (K_{\delta-k+1} \cup K_{n-\delta-1}))
\]

\[
\leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})).
\]

Denote \(G(a, b, \kappa) = K_{\kappa} \cup (K_a \cup K_b) \) for short, where \(b \geq a \geq \delta - k + 1 \) and \(a + b + \kappa = n \). Let \(x = (x_1, x_2, \ldots, x_n) \) be the unique positive unit eigenvector corresponding to \(\rho(G(a, b, \kappa)) \). By symmetry, let \(x = x_i \) for any \(i \in K_a; y = x_j \) for any \(j \in K_b \); \(z = x_i \) for any \(\ell \in K_\kappa \). According to \(\lambda x = \sum_{i \in E(G(ab))} x_i \) and the uniqueness of \(x \), we have that \(\rho(G(a, b, \kappa)) \) is the largest root of the following equations:

\[
\begin{align*}
\lambda x &= (a - 1)x + ky, \\
\lambda y &= ax + (\kappa - 1)y + bz, \\
\lambda z &= kx + (b - 1)z.
\end{align*}
\]

Thus, \(\rho(G(a, b, \kappa)) \) is the largest root of the equation

\[
\begin{align*}
f(\lambda; a, b, \kappa) &= \lambda^3 - (n - 3)\lambda^2 + (ab - 2n + 3)\lambda \\
&\quad + (a + b)(\kappa + 1) - n + 1 = 0.
\end{align*}
\]

Then, we have

\[
\begin{align*}
f(\lambda; a, b, \kappa) - f(\lambda; \delta - k + 1, n - \delta - 1, \kappa) &= (\lambda + \kappa + 1)(ab - (\delta - k + 1)(n - \delta - 1)) \\
&\geq 0,
\end{align*}
\]

for any \(\lambda > 0 \) and \(b \geq a \geq \delta - k + 1 \). Therefore, \(\rho(G(a, b, \kappa)) \leq \rho(G(\delta - k + 1, n - \delta - 1, \kappa)) \) for any \(b \geq a \geq \delta - k + 1 \), which means that

\[
\rho(K_{k-1} \cup (K_{\delta-k+1} \cup K_{n-\delta-1})) \leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})).
\]

Hence, from the discussion above, we have

\[
\begin{align*}
\rho(G) &\leq \rho(K_{k-1} \cup (K_{|X_0|} \cup K_{|Y|})) \\
&\leq \rho(K_{k-1} \cup (K_{\delta-k+1} \cup K_{n-\delta-1})) \\
&\leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})).
\end{align*}
\]

By (10), the above inequalities must be equalities. Thus, \(|X_0| = \delta - k + 2 \), \(\kappa = k - 1 \), \(|Y| = n - \delta - 1 \), and so \(G = K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \). The result follows from (15).
Remark 1. In Corollary 3.5 in [16], the authors showed that if \(G \) is a connected graph of minimum degree \(\delta(G) \geq k \geq 3 \) and order \(n \geq (\delta - k + 2)(k^2 - 2k + 4) + 3 \), and \(\rho(G) \geq \rho(K_{k-1} \cup (K_{k-2} \cup K_{n-\delta-1})) \), then \(G \) is \(k \)-connected, unless \(G = \rho(K_{k-1} \cup (K_{k-2} \cup K_{n-\delta-1})) \). Apparently, without restriction on the order of graph, Theorem 2 improves Corollary 3.5 in [16].

Theorem 3. Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta \geq k \geq 3 \). If \(G \) is a subgraph of \(K_{k+1} \cap (K_{k-1} \cup K_{n-\delta-1}) \) and \(n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) \), then

\[
\rho(G) < n - \delta + k - 3,
\]

unless \(G = K_{k-1} \cap (K_{k-1} \cup K_{n-\delta-1}) \).

Proof. Denote \(H = K_{k-1} \cap (K_{k+1} \cup K_{n-\delta-1}) \) for short. Let \(x = (x_1, x_2, \ldots, x_n)^T \) be the unique positive unit eigenvector corresponding to \(\rho(G) \). Recall that Rayleigh's principle implies that

\[
\rho(G) = x^T A(G)x = 2 \sum_{ij \in E(G)} x_i x_j.
\]

Assume that \(G \) is a proper subgraph of \(H \). Clearly, we could assume that \(G \) is obtained by omitting just one edge \(uv \) of \(H \). Let \(X, Y, Z \) be the set of vertices of \(H \) of degree \(\delta \), \(n - 1 \), \(n - \delta + k - 3 \), respectively, where \(|X| = \delta - k + 2 \), \(|Y| = k - 1 \), and \(|Z| = n - \delta - 1 \). Since \(\delta(G) = \delta(G) \) must contain all the edges between \(X \) and \(Y \). Therefore, \(\{u, v\} \subset Y \cup Z \), with three possible cases: (a) \(\{u, v\} \subset Y \); (b) \(u \in Y, v \in Z \); and (c) \(\{u, v\} \subset Z \). We shall show that case (c) yields a graph whose spectral radius is not smaller than the spectral radius of the graph in case (b) and that case (b) yields a graph whose spectral radius is not smaller than the spectral radius of the graph in case (a).

Firstly, suppose that case (a) occurs; that is, \(\{u, v\} \subset Y \). Choose a vertex \(w \in Z \). If \(x_u \geq x_v \), then by removing the edge \(uv \) and adding the edge \(uw \) we obtain a new graph \(G_1 \) which is covered by case (b). By the Rayleigh principle,

\[
\rho(G_1) - \rho(G) \geq x^T A(G_1)x - x^T A(G)x = 2x_v(x_v - x_u) \geq 0.
\]

If \(x_u > x_v \), then by removing all the edges between \(X \) and \(u \) and adding all the edges between \(X \) and \(v \) we obtain a new graph \(G_1 \) which is also covered by case (b). By the Rayleigh principle,

\[
\rho(G_1) - \rho(G) \geq x^T A(G_1)x - x^T A(G)x = 2x_u(x_u - x_v) \geq 0.
\]

Secondly, suppose that case (b) occurs; that is, \(u \in Y \), \(v \in Z \). Choose a vertex \(w \in Z \) and \(w \neq v \). If \(x_u \geq x_w \), then by removing the edge \(vw \) and adding the edge \(uv \) we obtain a new graph \(G_2 \) which is covered by case (c). By the Rayleigh principle,

\[
\rho(G_2) - \rho(G) \geq x^T A(G_2)x - x^T A(G)x = 2x_v(x_v - x_u) \geq 0.
\]

Complexity

If \(x_u > x_v \), then by removing all the edges between \(X \) and \(\{u, v\} \) and adding all the edges between \(X \) and \(\{w, v\} \) we obtain a new graph \(G_2 \) which is also covered by case (c). By the Rayleigh principle,

\[
\rho(G_2) - \rho(G) \geq x^T A(G_2)x - x^T A(G)x = 2x_u(x_u - x_v) \geq 0.
\]

Therefore, we could assume that \(\{u, v\} \subset Z \). By symmetry, let \(x = x_i \) for any \(i \in X \); \(y = x_j \) for any \(j \in Y \); \(z = x_\ell \) for any \(\ell \in Z \), \(\{u, v\} \); and \(t = x_u = x_v \). According to \(\lambda x_i = \sum_{j \in E(G)} x_j \) and the uniqueness of \(x_i \), we have that \(\rho \) is the largest root of following equations:

\[
\begin{align*}
\lambda x &= (\delta - k + 1)x + (k - 1)y, \\
\lambda y &= (\delta - k + 2)x + (k - 2)y + (n - \delta - 3)z + 2t, \\
\lambda z &= (k - 1)y + (n - \delta - 4)z + 2t, \\
\lambda t &= (k - 1)y + (n - \delta - 3)z.
\end{align*}
\]

Thus, \(\rho(G) \) is the largest root of the equation

\[
f(\lambda) = \lambda^4 - (n - 5)\lambda^3 + ((n - \delta - 1)(\delta - k - 2) - 4\delta + 7)\lambda^2
\]

\[
+ \left[(\delta k + 2\delta + 2)(n - \delta - k + 3) - (k^2 + 3)(n - 1) + 6\right] + 2((\delta - k + 1)(k^2 - 2k + 7) - 1) + (k - 1)(n - \delta - 3).
\]

By some basic calculations, we have

\[
f(n - \delta + k - 3) = 2n^2 - (\delta - k + 2)(k^2 - 2k + 7)n
\]

\[
+ (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7) - 1).
\]

Set \(g(x) = 2x^2 - (\delta - k + 2)(k^2 - 2k + 7)x + (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 5) - 2(k - 3)) \). It is easy to see that the function \(g(x) \) is strictly increasing when \(x > (1/2)(\delta - k + 2)(k^2 - 2k + 7) > (1/4)(\delta - k)(k^2 - 2k + 7) \), we get

\[
f(n - \delta + k - 3) = g(n) \geq g\left(\frac{1}{2}(\delta - k + 2)(k^2 - 2k + 7)\right)
\]

\[
= (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7) - 1)
\]

\[
\geq (\delta - k + 2)(k^2 - 4k + 11) > 0.
\]
\[f(n - \delta + k - 4) = -n^2 + 4(\delta - k + 3)n^2 \]
\[-\left(\left(k^2 - 8k + 5\delta + 23\right)(\delta - k + 2) - 5\right)n \]
\[+ \left(\left(k^2 - 5k + 2\delta + 15\right)(\delta - k + 2) + 2\right) \]
\[= -n(n - 2(\delta - k + 3))^2 \]
\[-\left(\left(k^2 - 4k + 2\delta + 7\right)(\delta - k + 2) + 1\right) \]
\[\cdot (\delta - k + 2)(k - 1) \]
\[\leq -2(3 \cdot 3 + k(1 - k)) < 0, \]
\[(30) \]
\[f(0) = 2((\delta - k + 1)(n - \delta - 2) - 1) + (k - 1)(n - \delta - 3)) \]
\[\geq 2(k - 1) > 0, \]
\[f(-2) = -2(k - 2)(\delta - k + 2) + 2 < 0, \]
\[\text{and } f(-\infty) > 0. \]
\[
\rho(G) \geq n - \delta - k - 3, \quad \text{Lemma 1 (see [25]).} \]

Equality holds if and only if G is either a regular graph or a bipartite graph in which each vertex is of degree either \(\delta \) or \(n - 1 \).

Theorem 4. Let G be a connected graph of order n and minimum degree \(\delta \geq k \geq 3 \). If \(n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) \) and

\[\rho(G) \geq n - \delta - k - 3, \]

then G is k-connected, unless G = \(K_{\delta - 1} \cup K_{n - \delta - 1} \).

Proof. On the contrary, suppose that \(\kappa(G) < k \). Since G is connected and \(\rho(G) \geq n - \delta - k - 3 \), by Lemma 1, we have

\[n - \delta - k - 3 \leq \rho(G) \leq \frac{\delta - 1}{2} + \sqrt{2E(G) - \delta n + \frac{(\delta + 1)^2}{4}}, \]

which yields

\[|E(G)| \geq \frac{1}{2}n(n - 1) - \frac{1}{2}(\delta - k + 2)(2n - 2\delta + k - 3). \]

Since \(n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) \), we obtain \(n \geq (1/2)(k + 1)(\delta - k + 2) + (\delta + 2) \). By Theorem 1 (b), G is a subgraph of \(K_{\delta - 1} \cup K_{n - \delta - 1} \). Since \(\rho(G) \geq n - \delta - k - 3 \), by Theorem 3, G = \(K_{\delta - 1} \cup K_{n - \delta - 1} \). The proof is completed.

Remark 2. In Theorem 3.4 in [16], the authors proved that if G is a connected graph of minimum degree \(\delta(G) \geq \delta \geq k \geq 3 \) and order \(n \geq (\delta - k + 1)(k^2 - 2k + 4) + 3 \), and \(\rho(G) \geq n - \delta - k - 3 \), then G is k-connected unless G = \(K_{\delta + 1} \cup (K_{\delta - 2} \cup K_{n - \delta - 1}) \). Obviously, Theorem 4 improves Theorem 3.4 in [16] from the perspective of the restriction on the order of graph.

Another sufficient condition for graphs to be k-connected can be obtained by using the spectral radius of the complement of a graph.

Theorem 5. Let G be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq k \geq 2 \). If

\[\rho(G) \leq \sqrt{(\delta - k + 2)(n - \delta - 1)}, \]

then G is k-connected, unless G = \(K_{\delta - 1} \cup (K_{\delta - 2} \cup K_{n - \delta - 1}) \).

Proof. Let \(\kappa(G) = \kappa \). Assume that (35) holds but \(1 \leq \kappa \leq k - 1 \). Let S be an arbitrary minimum vertex-cut of G, and let \(X_0, X_1, \ldots, X_{p - 1} \) (\(p \geq 2 \)), denote the vertex-sets of the components of \(G - S \), where \(|X_0| \leq |X_1| \leq \cdots \leq |X_{p - 1}| \). Each vertex in \(X_i \) is adjacent to at most \(|X_i| - 1 \) vertices of \(X_i \) and \(\kappa = |S| \) vertices of S. Thus,

\[|X_i| \leq \sum_{x \in X_i} d(x) \leq |X_i|(|X_i| - 1 + \kappa), \]

and so \(|X_i| \geq \delta - \kappa + 1 \) for each \(i = 0, 1, \ldots, p - 1 \). Let \(Y = \cup_{i=0}^{p-1} X_i \). Then, \(\delta - \kappa + 1 \leq |X_0| \leq |Y| \leq n - \delta - 1 \) and \(|X_0| + |Y| = n - \kappa \). Since there are no edges between \(X_0 \) and \(Y \) in G, \(K_{|X_0|,|Y|} \) is a subgraph of G. Thus,

\[\rho(G) \geq \rho(K_{|X_0|,|Y|}) \geq \sqrt{|X_0||Y|} = \sqrt{|X_0|(|X_0| - \kappa - |X_0|)} \]

\[\geq \sqrt{(\delta - k + 1)(n - \delta - 1)} \geq \sqrt{(\delta - k + 2)(n - \delta - 1)}. \]

By (35), the above inequalities must be equalities. Thus,

\[|X_0| = \delta - k + 2, \quad \kappa = k - 1 \text{ and } G = K_{\delta - k + 2, n - \delta - 1}, \]

and so G = \(K_{\delta - 1} \cup (K_{\delta - 2} \cup K_{n - \delta - 1}) \).

3. Maximally Connected Graphs

If \(\kappa(G) = \delta(G) \), then G is maximally connected. Therefore, by setting \(k = \delta \) in Theorem 1, we obtain the following theorem.

Theorem 6. Let G be a connected graph of order \(n \geq 5 \), size \(m \), and minimum degree \(\delta \geq 2 \).

(a) If \(m \geq \left(\frac{n - 2}{2}\right) + 2\delta - 1 \), then G is maximally connected, unless G = \(K_{\delta - 1} \cup (K_2 \cup K_{n - \delta - 1}) \).
(b) If \(n \geq 2\delta + 3 \) and \(m \geq \left(\frac{n-2}{2} \right) + \delta \), then \(G \) is maximally connected, unless \(G \) is a subgraph of \(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

Theorem 7. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If

\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{(n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}},
\]

then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_2) \).

Proof. On the contrary, suppose that \(\kappa(G) < \delta \). Since \(G \) is connected, by (38) and Lemma 1, we have

\[
\frac{\delta - 1}{2} + \sqrt{(n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}} \leq \rho(G) \leq \frac{\delta - 1}{2} + \sqrt{\frac{2E(G)}{n} - \delta n + \frac{(\delta + 1)^2}{4}},
\]

which yields

\[
|E(G)| \geq \left(\frac{n - 2}{2} \right) + 2\delta - 1.
\]

By Theorem 6 (a), \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \). To complete the proof, we only need to show \(\delta = n - 3 \).

Since \(|E(G)| = \left(\frac{n - 2}{2} \right) + 2\delta - 1 \), the equalities hold in (39). Thus, by Lemma 1, \(G \) is either a regular graph or a bidirected graph in which each vertex is of degree \(\delta \) or \(n - 1 \).

However, the vertices of \(G \) have degrees from the set \{\(\delta, n - 3, n - 1 \)\}. Therefore, \(\delta = n - 3 \) and the result follows. \(\square \)

By setting \(k = \delta \) in Theorem 2, we obtain the following result.

Theorem 8. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If

\[
\rho(G) \geq \rho(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1})),
\]

then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \), where \(\rho(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1})) \) is the largest root of the equation

\[
\lambda^3 - (n - 3)\lambda^2 - (2\delta - 1)\lambda + 2\delta(n - \delta - 1) - n + 1 = 0.
\]

Theorem 9. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If \(n \geq 2\delta^2 - 2\delta + 7 \) and

\[
\rho(G) \geq n - 3,
\]

then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

Proof. Set \(k = \delta \) in the proofs of Theorems 3 and 4. If \(\delta \geq 3 \), then the result follows from Theorem 4. If \(\delta = 2 \), then case (a) cannot occur in the proof of Theorems 3. In Theorem 3, by noting that \(f(n - 3) > 0, f(n - 4) < 0, f(0) > 0, f(-\sqrt{3}) = 2\sqrt{3} - 4 < 0 \), and \(f(-\infty) > 0 \), we have \(\rho(G) < n - 3 \) and so Theorem 3 holds for \(\delta = k = 2 \). Hence, Theorem 4 also holds for \(\delta = k = 2 \) and the result follows. \(\square \)

Remark 3. In the proof of Theorem 3, if we take \(k = \delta \geq 2 \) and \(n = \delta^2 - 2\delta + 6 \), then \(f(n - 3) = g(n) = g(\delta^2 - 2\delta + 6) = 10 - 4\delta < 0 \) when \(\delta \geq 3 \). Notice that \(f(+\infty) = +\infty \). So, the largest root of \(f(x) = 0 \) is greater than \(n - 3 \) if \(\delta \geq 3 \), and it follows that \(\rho(G) > n - 3 \). That is to say, the requirement \(n \geq \delta^2 - 2\delta + 7 \) in Theorem 9 is best possible when \(\delta \geq 3 \).

By setting \(k = \delta \) in Theorem 5, we have the following result.

Theorem 10. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If

\[
\rho(G) \leq \sqrt{2(n - \delta - 1)},
\]

then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

4. Super-Connected Graphs

For any connected graph \(G \) of order \(n \), if \(2 \leq n \leq 4 \), then \(G \) is super-\(\kappa \). Therefore, \(n \geq 5 \) is considered in this section.

Theorem 11. Let \(G \) be a connected graph of order \(n \geq 5 \), size \(m \), and minimum degree \(\delta \). If

\[
m \geq \left(\frac{n - 2}{2} \right) + 2\delta,
\]

then \(G \) is super-\(\kappa \), unless \(G = (K_{\delta} \cup (K_2 \cup K_{n-\delta-2})) \) and \(e \), where \(e = xy \) is an edge of \(K_{\delta} \cup (K_2 \cup K_{n-\delta-2}) \) with \(d(x) = \delta + 1 \) and \(d(y) = n - 1 \).

Proof. Since \(m \geq \left(\frac{n - 2}{2} \right) + 2\delta \), by Theorem 6 (a), \(\kappa(G) = \delta \). On the contrary, suppose that \(G \) is not super-\(\kappa \). Let \(S \) be an arbitrary minimum vertex-cut with \(\delta \) vertices, and let \(X_0, X_1, \ldots, X_\rho \) (\(\rho \geq 2 \)) denote the vertex-sets of the components of \(G - S \), where \(2 \leq |X_0| \leq |X_1| \leq \cdots \leq |X_\rho| \). Denote \(Y = \bigcup_{i=1}^{\rho} X_i \). Since \(G - S \) is disconnected, there are no edges between \(X_0 \) and \(Y \) in \(G \), and

\[
m \geq \frac{1}{2} n(n - 1) - |X_0| \cdot |Y|.
\]

Thus, by \(|X_0| + |Y| = n - \delta \) and \(2 \leq |X_0| \leq |Y| \leq n - \delta - 2 \), we have

\[Complexity]
Let G be a connected graph of order $n \geq 5$ and minimum degree δ. If
\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{2 + (n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}},
\]
then G is super-κ.

Proof. On the contrary, suppose that G is not super-κ. Since G is connected, by (50) and Lemma 1, we have
\[
\sqrt{2 + (n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}} \leq \rho(G) - \frac{\delta - 1}{2} \leq 2|E(G)| - \delta n + \frac{(\delta + 1)^2}{4},
\]
which yields
\[
|E(G)| \geq \left(\frac{n - 2}{2}\right) + 2\delta.
\]
By Theorem 11, $G = K_4 \vee (K_3 \cup K_{n-4}) - e$, where $e = xy$ is an edge of $K_4 \vee (K_3 \cup K_{n-4})$ with $d(x) = \delta + 1$ and $d(y) = n - 1$.

Since $|E(G)| = \left(\frac{n - 2}{2}\right) + 2\delta$, the equalities hold in (51). Thus, by Lemma 1, G is either a regular graph or a bidiregular graph in which each vertex is of degree δ or $n - 1$. However, the vertices of G have degree from the set $\{\delta, \delta + 1, n - 3, n - 2, n - 1\}$. Thus, G cannot be a bidiregular graph, which yields a contradiction. Hence, G is super-κ.

Theorem 13. Let G be a connected graph of order $n \geq 5$ and minimum degree δ. If
\[
\rho(G) \geq \rho(K_4 \vee (K_3 \cup K_{n-4})),
\]
then G is super-κ, where $\rho(K_4 \vee (K_3 \cup K_{n-4}))$ is the largest root of the equation
\[
\lambda^3 - (n - 3)\lambda^2 - (2\delta + 1)\lambda + 2(\delta + 1)(n - \delta - 2) - n + 1 = 0.
\]

Proof. On the contrary, suppose that G is not super-κ. Let S be an arbitrary minimum vertex-cut with $\kappa \leq \delta$ vertices, and let $X_0, X_1, \ldots, X_{p-1}$ ($p \geq 2$) denote the vertex-sets of the components of $G - S$, where $2 \leq |X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}|$. Denote $Y = \cup_{i=1}^{p-1} X_i$. Then $2 \leq |X_0| \leq |Y| \leq n - \kappa - 2$ and $|X_0| + |Y| = n - \kappa$. Since there are no edges between X_0 and Y in G, G is a subgraph of $K_\kappa \vee (K_{|X_0|} \cup K_{|Y|})$ and $\rho(G) \leq \rho(K_\kappa \vee (K_{|X_0|} \cup K_{|Y|}))$.

According to (15) in the proof of Theorem 2, $\rho(K_\kappa \vee (K_{|X_0|} \cup K_{|Y|}))$ is the largest root of the equation
\[
\lambda^3 - (n - 3)\lambda^2 - (2\delta + 1)\lambda + 2(\delta + 1)(n - \delta - 2) - n + 1 = 0.
\]
Then we have
\[
f(\lambda; |X_0|, |Y|, \kappa) = \lambda^3 - (n - 3)\lambda^2 + |X_0||Y| - 2n(\lambda + 1) - n + 1 = 0.
\]

(55)

5. Sufficient Conditions for Triangle-Free Graphs

Let us extend an interesting result by applying the famous theorem of Mantel [26] and Turán [27].

Theorem 15 (see [26, 27]). For any triangle-free graph \(G \) of order \(n \), we have \(|E(G)| \leq \left\lfloor \left(\frac{1}{4} \right) n^2 \right\rfloor \), with equality if and only if \(G = K_{(n/2), (n/2)} \).

Theorem 16. Let \(G \) be a connected triangle-free graph of order \(n \), size \(m \), and minimum degree \(\delta \geq k \geq 2 \). If
\[
m \geq \delta^2 + \frac{1}{4}(n - 2\delta + k - 1)^2,
\]
then \(G \) is a k-connected, unless \(V(G) = X \cup S \cup Y \) and \(S \) is a minimum vertex-cut of \(G \) with \(G[S] = K_{\delta,k} \) and \(G[X \cup S] = K_{\delta,k} \).

Proof. Let \(\kappa = \kappa(G) \). On the contrary, suppose that \(\kappa \leq k - 1 \). Let \(S \) be a minimum vertex-cut of \(G \) and let \(X, Y_1, \ldots, Y_p \) (\(p \geq 2 \)) denote the vertex-sets of the components of \(G - S \), where \(|X| \leq |Y_1| \leq \cdots \leq |Y_p| \). Denote \(Y = \bigcup_{i=1}^{p} Y_i \). Then \(|X| \leq |Y| \) and \(|X| + |Y| = n - \kappa \). By Theorem 15, we deduce that
\[
|E(G[X \cup S])| \leq \left\lfloor \frac{(|X| + |S|)^2}{4} \right\rfloor,
\]

(62)

with equalities if and only if \(G[X \cup S] = K_{\lfloor (|X| + |S|)/2 \rfloor, \lfloor (|X| + |S|)/2 \rfloor} \).

\[
|E(G[Y \cup S])| \leq \left\lfloor \frac{(|Y| + |S|)^2}{4} \right\rfloor,
\]

(63)

If \(x \in X \), then \(\delta \leq d_G(x) \leq |X| + |S| \). The assumption \(\kappa \leq k - 1 \leq \delta - 1 \) implies that \(x \) has at least one neighbor \(y \in Y \). Since \(G \) is triangle-free, we deduce that \(N_G(x) \cap N_G(y) = \emptyset \), where \(N_G(x) \) is the neighbor set of \(x \). As \(N_G(x) \cup N_G(y) \leq X \cup S \), it follows that
\[
|X| + |S| = |X \cup S| \geq |N_G(x) \cup N_G(y)| = |N_G(x)| + |N_G(y)| \geq 2\delta,
\]

(64)

and thus \(|X| \geq 2\delta - \kappa \). Therefore, we arrive at
\[
2\delta - \kappa \leq |X| \leq |Y| \leq n - 2\delta.
\]

(65)

Together with \(|X| + |Y| = n - \kappa \) and (62), it leads to

\[
\delta(\beta(G) - K_{\kappa,k+2}) = \delta + 1 > \delta, \quad \text{a contradiction.}
\]

This completes the proof.
\[
m = |E(G[X \cup S])| + |E(G[Y \cup S])| - |E(G[S])|
\]
\[
\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2 - |E(G[S])| \quad \text{(by (62))}
\]
\[
\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2
\]
\[
= \frac{1}{4}(|X| + |Y| + |S|)^2 + |S| - |X| \cdot |Y|
\]
\[
\leq \frac{n^2 + \kappa^2}{2} - \frac{(2\delta - \kappa)(n - 2\delta)}{2} \quad \text{(by (65))}
\]
\[
= \delta^2 + \frac{1}{4}(n - 2\delta + \kappa)^2
\]
\[
\leq \delta^2 + \frac{1}{4}(n - 2\delta + k - 1)^2, \quad \text{(by } \kappa \leq k - 1)\).
\]

Combining this with (61), we have \(m = \delta^2 + \left(\frac{1}{4}(n - 2\delta + k - 1)^2\right)\), and so \(|S| = \kappa = k - 1, |X| = 2\delta - \kappa + 1, |Y| = n - 2\delta, |E(G[S])| = 0, |E(G[X \cup S])| = \delta^2, \text{ and } |E(G[Y \cup S])| = \left(\frac{1}{4}(n - 2\delta + k - 1)^2\right)\). Therefore, \(G[S] = K_{K-1}, G[X \cup S] = K_{\delta}, \text{and } G[Y \cup S] = K_{(n-2\delta+k-1)/2}, (n-2\delta+k-1)/2\). This completes the proof. \(\square\)

Theorem 17. Let \(G\) be a connected triangle-free graph of order \(n\) and minimum degree \(\delta \geq 2\). If
\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{\frac{1}{4}(n - 2\delta + k - 1)^2 - \delta(n - 2\delta) + \frac{(\delta + 1)^2}{4}}.
\]
then \(G\) is \(k\)-connected.

Proof. On the contrary, suppose that \(k(G) < k\). Since \(G\) is connected, by (67) and Lemma 1, we have
\[
\sqrt{\frac{1}{4}(n - 2\delta + k - 1)^2} - \delta(n - 2\delta) + \frac{(\delta + 1)^2}{4}
\]
\[
\leq \rho(G) - \frac{\delta - 1}{2} \leq \sqrt{|E(G)|} - \delta n + \frac{(\delta + 1)^2}{4},
\]
which yields
\[
|E(G)| \geq \delta^2 + \frac{1}{4}(n - 2\delta + k - 1)^2.
\] By setting \(k = \delta\) in Theorems 16 and 17, we obtain the two following theorems. \(\square\)

Theorem 18. Let \(G\) be a connected triangle-free graph of order \(n\), size \(m\), and minimum degree \(\delta \geq 2\). If
\[
m \geq \delta^2 + \frac{1}{4}(n - \delta - 1)^2,
\]
then \(G\) is maximally connected, unless \(V(G) = X \cup S \cup Y\) and \(S\) is a minimum vertex-cut of \(G\) with \(G[S] = K_{K-1}, G[X \cup S] = K_{\delta}, \text{ and } G[Y \cup S] = K_{(n-2\delta+k-1)/2}, (n-2\delta+k-1)/2\).

Theorem 19. Let \(G\) be a connected triangle-free graph of order \(n\) and minimum degree \(\delta \geq 2\). If
\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{\frac{1}{4}(n - \delta - 1)^2 + \delta(n - 2\delta) + \frac{(\delta + 1)^2}{4}},
\]
then \(G\) is maximally connected.

For super-connected graphs, we have the following results.

Theorem 20. Let \(G\) be a connected triangle-free graph of order \(n\), size \(m\), and minimum degree \(\delta \geq 2\). If
\[
m \geq \delta^2 + \frac{1}{4}(n - \delta)^2,
\]
then \(G\) is super-\(k\).

Proof. Let \(k = k(G)\). On the contrary, suppose that \(G\) is not super-\(k\). Since \(m \geq \delta^2 + \left(\frac{1}{4}(n - \delta)^2\right)\), by Theorem 18, \(\kappa = \delta\). Let \(S\) be a minimum vertex-cut of \(G\) with \(\delta\) vertices, and let \(X, Y_1, \ldots, Y_{p+1}\) denote the vertex-sets of the components of \(G - S\), where \(2 \leq |X| \leq |Y_1| \leq \cdots \leq |Y_{p+1}|\). Set \(Y = \bigcup_{i=1}^{p+1} Y_i\) then \(|Y| \geq |X| \geq 2\). Therefore, with the same proceeding of the proof of Theorem 16 (from (62) to (65)), we arrive at
\[
\delta \leq |X| \leq |Y| \leq n - 2\delta.
\]
Together with \(|X| + |Y| = n - \delta\) and (62), it leads to
\[
m = |E(G[X \cup S])| + |E(G[Y \cup S])| - |E(G[S])|
\]
\[
\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2 - |E(G[S])|
\]
\[
\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2
\]
\[
= \frac{1}{4}(|X| + |Y| + |S|)^2 + |S| - |X| \cdot |Y|
\]
\[
= \frac{n^2 + \delta^2 - \delta(n - 2\delta)}{2}
\]
\[
= \delta^2 + \frac{1}{4}(n - \delta)^2.
\]
Combining this with (72), we have \(m = \delta^2 + \left\lfloor \frac{1}{4} (n - \delta^2) \right\rfloor \), and so \(|X| = |S| = \delta, |Y| = n - 2\delta, |E(G[S])| = 0, |E(G[X \cup S])| = \delta^2, \) and \(|E(G[Y \cup S])| = \left\lfloor \frac{1}{4} (n - \delta^2) \right\rfloor \). Therefore, \(G[S] = K_{\delta}, G[X \cup S] = K_{\delta, \delta}, \) and \(G[Y \cup S] = K_{n - 2\delta |(n - \delta^2)|} \). Thus, \(G[X] = K_{\delta} \), which contradicts the fact that \(G[X] \) is a component of \(G \) with at least two vertices. The result follows. \(\square \)

Theorem 21. Let \(G \) be a connected triangle-free graph of order \(n \) and minimum degree \(\delta \geq 2 \). If

\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{\frac{1}{4} (n - \delta^2) - \delta (n - 2\delta)} + \frac{(\delta + 1)^2}{4},
\]

then \(G \) is super-\(\kappa \).

Proof. Since \(G \) is connected, by (75) and Lemma 1, we have

\[
\sqrt{\frac{1}{4} (n - \delta^2) - \delta (n - 2\delta)} + \frac{(\delta + 1)^2}{4} \leq \rho(G) - \frac{\delta - 1}{2} \leq 2|E(G)| - \delta n + \frac{(\delta + 1)^2}{4},
\]

which yields

\[
|E(G)| \geq \delta^2 + \frac{1}{4} (n - \delta^2) .
\]

By Theorem 20, \(G \) is super-\(\kappa \). \(\square \)

Remark 4. The lower bound on \(m \) given in Theorem 20 is sharp. For example, let \(n = 3\delta + 3, V(G) = X \cup S \cup Y, G[X] = K_{\delta}, G[Y] = K_{1, \delta+1} \) and \(S \) is a minimum vertex-cut of \(G \) with \(G[S] = K_\delta, G[X \cup S] = K_{\delta, \delta+1}, \) and \(G[Y \cup S] = K_{\delta+1, \delta+1} \). It is easy to check that

\[
|E(G)| = \delta (\delta + 1) + (\delta + 1)^2 = \delta^2 + \frac{1}{4} (n - \delta^2) - 1.
\]

However, \(G - S = K_{1, \delta} \cup K_{1, \delta+1} \), which yields that \(G \) is not super-connected.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The research of Zhen-Mu Hong is supported by NSFC (no. 11601002), Key Projects in Natural Science Research of Anhui Provincial Department of Education (nos. KJ2020A0015, KJ2018A0438, and KJ2016A003) and Outstanding Young Talents International Visiting Program of Anhui Provincial Department of Education (no. gxgxwfx2018031). The research of Fuyuan Chen is supported by NSFC (no. 11601001).

References

